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Abstract

Let (Pn) be the Catalan-Larcombe-French numbers. The numbers Pn occur in the
theory of elliptic integrals, and are related to the arithmetic-geometric-mean. In this
paper we investigate the properties of the related sequence Sn = Pn/2

n instead, since
Sn is an Apéry-like sequence. We prove a congruence and an inequality for Pn.

1 Introduction

Let (Pn) be the sequence given by

P0 = 1, P1 = 8 and (n+ 1)2Pn+1 = 8(3n2 + 3n+ 1)Pn − 128n2Pn−1 (n ≥ 1). (1)
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The numbers Pn are called Catalan-Larcombe-French numbers since Catalan first defined
Pn in [1], and Larcombe and French [6] proved that

Pn = 2n
⌊n/2⌋
∑

k=0

(−4)k
(

2n− 2k

n− k

)2(
n− k

k

)

=
n

∑

k=0

(

2k
k

)2(2n−2k
n−k

)2

(

n
k

) ,

where ⌊x⌋ is the greatest integer not exceeding x. The numbers Pn are related to the
arithmetic-geometric-mean. See [6] and A053175 in Sloane’s “On-Line Encyclopedia of In-
teger Sequences”.

Let (Sn) be defined by

S0 = 1, S1 = 4 and (n+ 1)2Sn+1 = 4(3n2 + 3n+ 1)Sn − 32n2Sn−1 (n ≥ 1). (2)

Comparing (2) with (1), we see that

Sn =
Pn

2n
.

Zagier noted that

Sn =

⌊n/2⌋
∑

k=0

(

2k

k

)2(
n

2k

)

4n−2k.

As observed by Jovović [7] in 2003 ,

Sn =
n

∑

k=0

(

n

k

)(

2k

k

)(

2n− 2k

n− k

)

(n = 0, 1, 2, . . .).

Recently Z. W. Sun stated that

Sn =
n

∑

k=0

(

2k

k

)2(
k

n− k

)

(−4)n−k =
1

(−2)n

n
∑

k=0

(

2k

k

)(

2n− 2k

n− k

)(

k

n− k

)

(−4)k.

The first few values of Sn are shown below:

S0 = 1, S1 = 4, S2 = 20, S3 = 112, S4 = 676, S5 = 4304, S6 = 28496,

S7 = 194240, S8 = 1353508, S9 = 9593104, S10 = 68906320,

S11 = 500281280, S12 = 3664176400, S13 = 27033720640.

Let p be an odd prime. Jarvis, Larcombe, and French [3] proved that if n = arp
r + · · ·+

a1p+ a0 with a0, a1, . . . , ar ∈ {0, 1, . . . , p− 1}, then

Pn ≡ Par · · ·Pa1Pa0 (mod p).

Jarvis and Verrill [5] showed that

Pn ≡ (−1)
p−1

2 128nPp−1−n (mod p) for n = 0, 1, . . . , p− 1
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and
Pmpr ≡ Pmpr−1 (mod pr) for m, r ∈ Z

+,

where Z
+ is the set of positive integers.

For a prime p let Zp denote the set of those rational numbers whose denominator is not
divisible by p. Let p be an odd prime, n ∈ Zp and n 6≡ 0,−16 (mod p). The second author
[11] proved that

p−1
∑

k=0

(

2k

k

)

Sk

(n+ 16)k
≡

(n(n+ 16)

p

)

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

n2k
(mod p),

where (a
p
) is the Legendre symbol.

In 1894 Franel [2] introduced the following Franel numbers (fn):

fn =
n

∑

k=0

(

n

k

)3

(n = 0, 1, 2, . . .).

The first few Franel numbers are as below:

f0 = 1, f1 = 2, f3 = 10, f4 = 56, f5 = 346, f6 = 2252, f7 = 15184.

Franel [2] noted that the sequence (fn) satisfies the recurrence relation:

(n+ 1)2fn+1 = (7n2 + 7n+ 2)fn + 8n2fn−1 (n ≥ 1).

Let r ∈ Z
+ and p be a prime with p ≡ 5, 7 (mod 8). The second author [11] conjectured

that
S pr−1

2

≡ 0 (mod pr) and f pr−1

2

≡ 0 (mod pr). (3)

In this paper we prove (3) in the case r = 2. We also prove the second author’s conjecture
[11]:

(

1 +
1

m(m− 1)

)

S2
m > Sm+1Sm−1 for m = 2, 3, . . . .

2 Basic lemmas

Lemma 1 (Lucas’ theorem [8]). Let p be an odd prime. Suppose a = arp
r + · · · + a1p + a0

and b = brp
r + · · ·+ b1p+ b0, where ar, . . . , a0, br, . . . , b0 ∈ {0, 1, . . . , p− 1}. Then

(

a

b

)

≡

(

ar
br

)

· · ·

(

a0
b0

)

(mod p).

Lucas’ theorem is often formulated as follows.
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Lemma 2 ([8]). Let p be an odd prime and a, b ∈ Z
+. Suppose a0, b0 ∈ {0, 1, . . . , p − 1}.

Then
(

ap+ a0
bp+ b0

)

≡

(

a

b

)(

a0
b0

)

(mod p).

Lemma 3 ([4, Lemma 2.7]). For any positive integer n we have

Sn = 2
n

∑

k=1

(

n− 1

k − 1

)(

2k

k

)(

2n− 2k

n− k

)

.

Lemma 4 ([9]). Let p be an odd prime. Suppose n = n1p + n0 and k = k1p + k0 with

k1, n1 ∈ Z
+ and k0, n0 ∈ {0, 1, . . . , p− 1}. Then

(

n

k

)

≡

(

n1

k1

)

(

(1 + n1)

(

n0

k0

)

− (n1 + k1)

(

n0 − p

k0

)

− k1

(

n0 − p

k0 + p

)

)

(mod p2).

Lemma 5. Let p be an odd prime. Then

(p−1)/2
∑

t=0

(−1)t
(

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

)

(

−1
2

t

)2

≡ 0 (mod p2).

Proof. For 0 ≤ t ≤ (p− 1)/2, from Lemma 2 we have

(p−1
2

− p

p+ t

)

= (−1)t+1

(

p+ p+1
2

+ t− 1

p+ t

)

≡ (−1)t+1

(p+1
2

+ t− 1

t

)

= −

(p−1
2

− p

t

)

(mod p)

and so
(p−1

2
− p

t

)

+

(p−1
2

− p

p+ t

)

= (−1)t
(

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

)

≡ 0 (mod p).

We first assume p ≡ 1 (mod 4). Applying Lemma 4 we get

(3(p−1)
4

p−1
4

)

−

(

p+ 3(p−1)
4

p+ p−1
4

)

≡

(3(p−1)
4

p−1
2

)

−
(

2

(3(p−1)
4

p−1
2

)

−

(3(p−1)
4

− p
p−1
2

)

)

= −

(3(p−1)
4

p−1
2

)

+ (−1)
p−1

2

(3(p−1)
4

p−1
2

)

= 0 (mod p2)
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and
(p−1

2
+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

+

(

p− 1− t
p−1
2

− t

)

−

(

p+ p− 1− t

p+ p−1
2

− t

)

≡ −

(p−1
2

+ t
p−1
2

)

+

(p−1
2

− p+ t
p−1
2

)

−

(

p− 1− t
p−1
2

)

+

(

−1− t
p−1
2

)

=
(

(−1)
p−1

2 − 1
)

(p−1
2

+ t
p−1
2

)

+
(

(−1)
p−1

2 − 1
)

(

p− 1− t
p−1
2

)

= 0 (mod p2).

Also,

(−1)t
(

−1
2

t

)2

− (−1)
p−1

2
−t

(

−1
2

p−1
2

− t

)2

≡ (−1)t
(

(p−1
2

t

)2

−

( p−1
2

p−1
2

− t

)2
)

= 0 (mod p).

By the above four congruences, we have

(p−1)/2
∑

t=0

(−1)t
(

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

)

(

−1
2

t

)2

=

(p−5)/4
∑

t=0

(−1)t
(

−1
2

t

)2
(

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

)

+ (−1)
p−1

4

(

−1
2

p−1
4

)2
(

(3(p−1)
4

p−1
4

)

−

(

p+ 3(p−1)
4

p+ p−1
4

)

)

+

(p−5)/4
∑

t=0

(−1)
p−1

2
−t

(

−1
2

p−1
2

− t

)2
(

(

p− 1− t
p−1
2

− t

)

−

(

p+ p− 1− t

p+ p−1
2

− t

)

)

≡

(p−5)/4
∑

t=0

(

(−1)t
(

−1
2

t

)2

− (−1)
p−1

2
−t

(

−1
2

p−1
2

− t

)2
)(

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

)

+ (−1)
p−1

4

(

−1
2

p−1
4

)2
(

(3(p−1)
4

p−1
4

)

−

(

p+ 3(p−1)
4

p+ p−1
4

)

)

≡ 0 (mod p2).

Thus the result is true for p ≡ 1 (mod 4).
Now we assume p ≡ 3 (mod 4). By Lemma 4,

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

≡ −
(

(p−1
2

+ t
p−1
2

)

+

(

p− 1− t
p−1
2

)

)

(mod p2).
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As
(p−1

2
+ t

p−1
2

)

+

(

p− 1− t
p−1
2

)

≡

(p−1
2

+ t
p−1
2

)

+

(

−1− t
p−1
2

)

=

(p−1
2

+ t
p−1
2

)

+ (−1)
p−1

2

(

t+ p−1
2

p−1
2

)

= 0 (mod p)

and

(−1)t
(

−1
2

t

)2

+ (−1)
p−1

2
−t

(

−1
2

p−1
2

− t

)2

≡ (−1)t
(

(p−1
2

t

)2

−

( p−1
2

p−1
2

− t

)2
)

= 0 (mod p),

we obtain

(p−1)/2
∑

t=0

(−1)t
(

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

p+ t

)

)

(

−1
2

t

)2

≡ −

(p−1)/2
∑

t=0

(−1)t
(

(p−1
2

+ t
p−1
2

)

+

(

p− 1− t
p−1
2

)

)

(

−1
2

t

)2

= −

(p−3)/4
∑

t=0

(

(p−1
2

+ t
p−1
2

)

+

(

p− 1− t
p−1
2

)

)(

(−1)t
(

−1
2

t

)2

+ (−1)
p−1

2
−t

(

−1
2

p−1
2

− t

)2
)

≡ 0 (mod p2).

Hence the result is also true in this case. The proof is now complete.

Lemma 6 ([10, Theorem 3.3]). Let p be a prime with p ≡ 5, 7 (mod 8). Then

p−1

2
∑

k=0

(

2k
k

)3

(−64)k
≡ 0 (mod p2).

Lemma 7 ([4, Lemma 2.8]). Let m ∈ Z and k, p ∈ Z
+. Then

(

mpr − 1

k

)

= (−1)k−⌊ k
p
⌋

(

mpr−1 − 1

⌊k/p⌋

) k
∏

i=1, p∤i

(

1−
mpr

i

)

.

3 Congruences for Sp2−1
2

and fp2−1
2

(mod p2)

Theorem 8. Let p be a prime with p ≡ 5, 7 (mod 8). Then

S p2−1

2

≡ f p2−1

2

≡ 0 (mod p2).

Moreover,

S p2−1

2

≡ f p2−1

2

(mod p3).
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Proof. For p−1
2

< t < p and 0 ≤ s ≤ p−1
2
, from Lemma 2 we see that

(

p2 − 1
p2−1
2

)

≡

(

p− 1
p−1
2

)2

≡ 1 (mod p),

(p−1
2
p+ p−1

2

sp+ t

)

≡

(p−1
2

s

)(p−1
2

t

)

= 0 (mod p),

(

2sp+ 2t

sp+ t

)

=

(

(2s+ 1)p+ 2t− p

sp+ t

)

≡

(

2s+ 1

s

)(

2t− p

t

)

= 0 (mod p)

and
(

p2 − 1− 2sp− 2t
p2−1−2sp−2t

2

)

=

(

(p− 2s− 2)p+ 2p− 2t− 1

(p−1
2

− s− 1)p+ p+ p−1
2

− t

)

≡

(

p− 2s− 2
p−1
2

− s− 1

)(

2p− 2t− 1

p+ p−1
2

− t

)

= 0 (mod p).

Now we assert that

(p−1)/2
∑

t=0

(p−1
2
p+ p−1

2

sp+ t

)3

≡ 0 (mod p2) for s = 0, 1, 2, . . . . (4)

We prove the result by induction on s. For 0 ≤ t ≤ (p− 1)/2 we see that

(p2−1
2

t

)

≡

(

−1
2

t

)

=

(

2t
t

)

(−4)t
(mod p2).

From Lemma 6 we know that the result is true for s = 0. Suppose that (4) holds for s = k.
For s = k + 1, applying Lemma 4 we have

(p−1)/2
∑

t=0

( p−1
2
p+ p−1

2

(k + 1)p+ t

)3

≡

( p−1
2

k + 1

)3
p−1

2
∑

t=0

(p+ 1

2

(p−1
2

t

)

−
(p− 1

2
+ k

)

(p−1
2

− p

t

)

− k

(p−1
2

− p

t+ p

)

−
(

(p−1
2

− p

t

)

+

(p−1
2

− p

t+ p

)

))3

(mod p2).

Hence
∑(p−1)/2

t=0

( p−1

2
p+ p−1

2

(k+1)p+t

)
3

≡ 0 (mod p2) for k ≥ p−1
2
. For k < p−1

2
, by the inductive

hypothesis and Lemma 4 we have

(p−1)/2
∑

t=0

(p+ 1

2

(p−1
2

t

)

−
(p− 1

2
+ k

)

(p−1
2

− p

t

)

− k

(p−1
2

− p

t+ p

)

)3

≡ 0 (mod p2).
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Also,
( p−1

2

t

)

≡
( p−1

2
−p
t

)

≡
(

− 1

2

t

)

(mod p) and
( p−1

2
−p
t

)

+
( p−1

2
−p

t+p

)

= (−1)t
(

( p−1

2
+t

t

)

−
(

p+ p−1

2
+t

t+p

)

)

≡

0 (mod p) for t ∈ {0, 1, . . . , p−1
2
}. By Lemma 5,

(p−1)/2
∑

t=0

( p−1
2
p+ p−1

2

(k + 1)p+ t

)3

≡

( p−1
2

k + 1

)3
(

(p−1)/2
∑

t=0

(p+ 1

2

(p−1
2

t

)

−
(p− 1

2
+ k

)

(p−1
2

− p

t

)

− k

(p−1
2

− p

t+ p

)

)3

+ 3

(p−1)/2
∑

t=0

(p+ 1

2

(p−1
2

t

)

−
(p− 1

2
+ k

)

(p−1
2

− p

t

)

− k

(p−1
2

− p

t+ p

)

)

×
(

(p−1
2

− p

t

)

+

(p−1
2

− p

t+ p

)

)2

− 3

(p−1)/2
∑

t=0

(p+ 1

2

(p−1
2

t

)

−
(p− 1

2
+ k

)

(p−1
2

− p

t

)

− k

(p−1
2

− p

t+ p

)

)2

×
(

(p−1
2

− p

t

)

+

(p−1
2

− p

t+ p

)

)

−

(p−1)/2
∑

t=0

(

(p−1
2

− p

t

)

+

(p−1
2

− p

t+ p

)

)3)

≡ −3

( p−1
2

k + 1

)3 (p−1)/2
∑

t=0

(

−1
2

t

)2
(

(p−1
2

− p

t

)

+

(p−1
2

− p

t+ p

)

)

= −3

( p−1
2

k + 1

)3 (p−1)/2
∑

t=0

(−1)t
(

−1
2

t

)2
(

(p−1
2

+ t

t

)

−

(

p+ p−1
2

+ t

t+ p

)

)

≡ 0 (mod p2).

Hence

f p2−1

2

≡

(p−1)/2
∑

s=0

(p−1)/2
∑

t=0

(p−1
2
p+ p−1

2

sp+ t

)3

≡ 0 (mod p2).

Set H0 = H0(1, 1) = 0, Hk =
∑k

i=1
1
k
and Hk(1, 1) =

∑

1≤i<j≤k
1
ij
for k ∈ Z

+. For 0 ≤ s ≤

(p− 1)/2, it is easily seen that Hp−1 ≡ 0 (mod p),
(

p−1
2s

)

≡ 1− pH2s + p2H2s(1, 1) (mod p3)
and so 1

(p−1

2s )
≡ 1+ pH2s+ p2

(

H2
2s−H2s(1, 1)

)

(mod p3). By Lemma 7, for 0 ≤ t ≤ (p− 1)/2

we see that

(

p2 − 1

2sp+ 2t

)

=

(

p− 1

2s

) 2sp+2t
∏

i=1,p∤i

(

1−
p2

i

)

≡

(

p− 1

2s

)

(

1− p2
2sp+2t
∑

i=1,p∤i

1

i

)

(mod p3).
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Applying (4), Lemma 6 and the identity
(

a− b

c− d

)(

b

d

)

=

(

a

c

)(

c

d

)(

a− c

b− d

)

/

(

a

b

)

we derive that

S p2−1

2

≡

(p−1)/2
∑

s=0

(p−1)/2
∑

t=0

( p2−1
2

sp+ t

)(

2sp+ 2t

sp+ t

)(

p2 − 1− 2sp− 2t
p2−1
2

− sp− t

)

=

(

p2 − 1
p2−1
2

) (p−1)/2
∑

s=0

(p−1)/2
∑

t=0

(

(p2−1)/2
sp+t

)3

(

p2−1
2sp+2t

)

≡

(

p2 − 1
p2−1
2

) (p−1)/2
∑

s=0

1
(

p−1
2s

)

(p−1)/2
∑

t=0

(p−1
2
p+ p−1

2

sp+ t

)3
(

1 + p2
2sp+2t
∑

i=1,p∤i

1

i

)

≡

(

p2 − 1
p2−1
2

) (p−1)/2
∑

s=0

1
(

p−1
2s

)

(p−1)/2
∑

t=0

(p−1
2
p+ p−1

2

sp+ t

)3

+ p2
(

p2 − 1
p2−1
2

) (p−1)/2
∑

s=0

(

2s
s

)3

(−64)s

(p−1)/2
∑

t=0

(

2t
t

)3

(−64)t
H2t

≡

(

p2 − 1
p2−1
2

)

(

(p−1)/2
∑

s=0

(p−1)/2
∑

t=0

(p−1
2
p+ p−1

2

sp+ t

)3

+ p

(p−1)/2
∑

s=0

(

H2s + p(H2
2s −H2s(1, 1))

)

(p−1)/2
∑

t=0

(p−1
2
p+ p−1

2

sp+ t

)3
)

≡

(p−1)/2
∑

s=0

(p−1)/2
∑

t=0

(p−1
2
p+ p−1

2

sp+ t

)3

≡ f p2−1

2

(mod p3).

Summarizing the above proves the theorem.

4 An inequality involving (Sm)

Theorem 9. For m = 2, 3, 4, . . . we have

(

1 +
1

m(m− 1)

)

S2
m > Sm+1Sm−1.

Proof. It is easily seen that

(

1 +
1

(m− 1)(m− 2)

)

S2
m−1 > SmSm−2 for m = 3, 4, . . . , 13.
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Now suppose m ≥ 14 and
(

1 + 1
(m−1)(m−2)

)

S2
m−1 > SmSm−2. By (2), Lemma 3 and the

inductive hypothesis we have

(

1 +
1

m(m− 1)

)

S2
m − Sm+1Sm−1

=
(

1 +
1

m(m− 1)

)

S2
m −

4(3m2 + 3m+ 1)

(m+ 1)2
SmSm−1 +

32m2

(m+ 1)2
S2
m−1

>
(m2 −m+ 1

m(m− 1)
Sm −

4(3m2 + 3m+ 1)

(m+ 1)2
Sm−1 +

32m2(m− 1)(m− 2)

(m+ 1)2(m2 − 3m+ 3)
Sm−2

)

Sm

=
(

(20m5 − 60m4 + 52m3 + 28m2 − 36m+ 12)Sm−1

+ (−128m5 + 320m4 − 256m3 − 32m2 + 192m− 96)Sm−2

)

×
Sm

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

=
16Sm

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

m−2
∑

k=0

(

m− 2

k

)(

2k

k

)(

2m− 4− 2k

m− 2− k

)

F (m, k),

where

F (m, k) = (5m5 − 15m4 + 13m3 + 7m2 − 9m+ 3)
2k + 1

k + 1

− 8m5 + 20m4 − 16m3 − 2m2 + 12m− 6.

Form ≥ 14 it is easily seen that 3 < (2m−7)(2m−5)
(m−3)(m−2)

< 4, 5m5−15m4+13m3+7m2−9m+3 > 0,

−8m5+20m4−16m3−2m2+12m−6 < 0, 6m7−75m6+223m5−283m4−61m3+427m2−87m−
42 > 0, and F (m, k + 1) > F (m, k) for k = 0, 1, . . . ,m− 3. Thus, F (m,m− 3) + F (m, 1) >
F (m, 5) + F (m, 1) > 0 and

F (m, k) ≥ F (m, 2) =
5

3
(5m5 − 15m4 + 13m3 + 7m2 − 9m+ 3)

− 8m5 + 20m4 − 16m3 − 2m2 + 12m− 6 > 0 for k ≥ 2.

10



From the above we derive that

(

1 +
1

m(m− 1)

)

S2
m − Sm+1Sm−1

>
16Sm

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

(

2
∑

k=0

(

m− 2

k

)(

2k

k

)(

2m− 4− 2k

m− 2− k

)

F (m, k)

+
m−2
∑

k=m−4

(

m− 2

k

)(

2k

k

)(

2m− 4− 2k

m− 2− k

)

F (m, k)
)

=
16Sm

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

(

(

2m− 4

m− 2

)

(

F (m,m− 2) + F (m, 0)
)

+ 3(m− 2)(m− 3)

(

2m− 8

m− 4

)

(

F (m,m− 4) + F (m, 2)
)

+ 2(m− 2)

(

2m− 6

m− 3

)

(

F (m, 1) + F (m,m− 3)
)

)

>
(

3(m2 − 5m+ 6)F (m,m− 4) +
4(2m− 7)(2m− 5)

(m− 3)(m− 2)
F (m, 0)

)

×
16Sm

(

2m−8
m−4

)

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

=
Sm

(

2m−8
m−4

)

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

(

(

6(m− 2)(2m− 7) +
8(2m− 7)(2m− 5)

(m− 3)(m− 2)

)

× (40m5 − 120m4 + 104m3 + 56m2 − 72m+ 24)

+ (−128m5 + 320m4 − 256m3 − 32m2 + 192m− 96)

×
(

3(m− 2)(m− 3) +
4(2m− 7)(2m− 5)

(m− 3)(m− 2)

)

)

>
(

(

6(m− 2)(2m− 7) + 24
)

(40m5 − 120m4 + 104m3 + 56m2 − 72m+ 24)

+
(

3(m− 2)(m− 3) + 16
)

(−128m5 + 320m4 − 256m3 − 32m2 + 192m− 96)
)

×
Sm

(

2m−8
m−4

)

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

= (6m7 − 75m6 + 223m5 − 283m4 − 61m3 + 427m2 − 87m− 42)

×
16Sm

(

2m−8
m−4

)

(m+ 1)2(m2 − 3m+ 3)m3(m− 1)

> 0.

Hence the inequality is proved by induction.
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Corollary 10. For m = 2, 3, 4, . . . we have

(

1 +
1

m(m− 1)

)

P 2
m > Pm+1Pm−1.

Proof. Since Pm = 2mSm, the result follows from Theorem 9.
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