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Abstract

Several authors have considered the problem of finding rational points (x;,y;),i =
1,2,...,n on various curves f(z,y) = 0, including conics, elliptic curves and hyperellip-
tic curves, such that the z-coordinates x;,7 = 1,2,...,n are in arithmetic progression.
In this paper we find infinitely many sets of three points, in parametric terms, on the
unit circle 22 4+ y? = 1 such that the z-coordinates of the three points are in arithmetic
progression. It is an open problem whether there exist four rational points on the unit
circle such that their z-coordinates are in arithmetic progression.

1 Introduction

A sequence of rational points (z;,v;),i = 1,2,...,n lying on a curve f(x,y) = 0 is said to be
in arithmetic progression if the x-coordinates x;,7 = 1,2, ...,n are in arithmetic progression.
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The problem of finding rational points in arithmetic progression on conics, elliptic curves
and hyperelliptic curves has been extensively studied by several mathematicians [1, 2, 3, 4,
5,6,7, 8,11, 12, 13, 14, 15].
This paper is concerned with finding rational points in arithmetic progression on the unit
circle defined by the equation,
Pyt =1 (1)

This problem does not appear to have been discussed in the existing literature, and the
general result concerning arithmetic progressions on conic sections contained in [3] seems to
be of little help in solving the problem.

It is obvious that the three points, (—1,0),(0,1), and (1,0), lying on the unit circle (1)
are in arithmetic progression. In general, if (z1,;) is any rational point on the unit circle,
the three points, (—z1,v1), (0,1), and (x1,y;), lie on the unit circle and their z-coordinates
are in arithmetic progression. However, in all these examples, only one of the three points
lies in the first quadrant.

In this paper we will obtain, in parametric terms, infinitely many arithmetic progressions
of three rational points on the unit circle such that all of the three points lie in the first quad-
rant. We use these arithmetic progressions to find infinitely many arithmetic progressions
of three rational points on the ellipse,

X?/a* +Y? )b =1, (2)

where a and b are positive rational numbers.

We also consider the problem of finding four rational points in arithmetic progression on
the unit circle. We prove that for any rational point (z1,y;) lying on the unit circle, the arith-
metic progression consisting of the three rational points, (—z1, 1), (0,1) and (21, y1), cannot
be extended to an arithmetic progression of four rational points. Further, we show that there
is no arithmetic progression of four rational points of the type, (—3x1,y2), (—x1,v1), (z1, Y1)
and (3z1,ys2), on the unit circle. The problem of finding four rational points in arithmetic
progression on the unit circle, however, remains open.

2 Three rational points in arithmetic progression on
the unit circle

We assume that there exist three rational points P;, P, and P3 in arithmetic progression on
the unit circle (1) with their coordinates being given by (v — v, y1), (u,y2) and (u + v, ys3)
respectively. As these points lie on the circle (1), we have,

(u—v)+y; =1,

v +ys =1, (
(u+v)’+y; =1 (
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It is easily seen that for the three points to be in the first quadrant and have distinct
zr-coordinates, we must have

w(u® —v*) £0 and (7 —135) (¥ — v3) (W5 — y3) # 0. (6)

Taking the difference of the Eqgs. (3) and (4), we get, after suitable transpositions, the
equation,
v(2u —v) = (y1 — y2) (41 + ¥2), (7)
while, taking the difference of the Eqs. (4) and (5), we get, after suitable transpositions, the
equation,
v(2u+v) = (Y2 — y3) (Y2 + 3)- (8)
Under the conditions (6), Egs. (7) and (8) are solvable if and only if there exist nonzero
rational numbers m and n such that,

v=m(y1 — ya2), m(2u —v) = y1 + o,

9
v=n(ys — y3), n(2u +v) = ys + ys3. 9)

Now (9) may be considered as four linear equations in five variables u,v, 41, y2 and ys,
and are therefore readily solved. We thus get the following solution of (9):

u=r(m-+n)(mn+1), v =2r(m —n)mn,
v =r(2m’n® +m?+2mn —n?),  yp = r(2m*n® +m?* + n?), (10)

y3 = r(2m*n* — m?* 4 2mn + n?),

where r is an arbitrary parameter.
We now substitute the values of u and y, given by (10) in Eq. (4), and thus get,

(n® +1)(m? + 1)(4m*n?® + m? + 2mn + n?)r* = 1, (11)

which, on writing,
n=2t/(t*—1), (12)
r= ("= 1)%/(s(t* + 1)), (13)

may be written as,
s = (t* + 1482 + D)m* + 48 — t)m® + (t* + 18> + 1)m? + 4(3 — t)m + 412 (14)

The right-hand side of Eq. (14) may be considered as a quartic function of m, and it has
to be made a perfect square. A method of making a quartic function a perfect square has
been described by Fermat [10, p. 639] and, on applying this method, we get the following
solution of equation (14):

m = 6t(t* —1)/(t* — 112 + 1), (15)
s=2t(t" + 7+ )4t + 2 +4)/(t" — 117 + 1)% (16)



With the value of s given by (16), we get, on using (13),
r= (% =12t + 122 — 1)/ 2t (P + T+ 1) (4t + 2+ (P + 1), (17)

and a solution of Egs. (3), (4) and (5) is given by (10) where the values of m,n and r are
given, in terms of an arbitrary parameter ¢, by (12), (15) and (17).

We thus get the desired set of three rational points, P;, P», and P3, whose z-coordinates,
in terms of the arbitrary parameter ¢, are given below explicitly:

(4410 — 655 — 6815 + 68t* 4 652 — 4)/f (1),
(4810 — 1785 + 415 — 4t* 41712 — 4) /£ (1), (18)

where f(t) = (12 + 1)(t* + 72 + 1) (4¢* + t* + 4).

It is easily seen that when t > 4.145, the x-coordinates of all the three points are positive.
As a numerical example, taking ¢t = 5, we get the following three rational points which lie
on the unit circle and whose z-coordinates are in arithmetic progression:

(78108/325117,315595/325117),  (200508/325117,255925/325117)
and (322908/325117,37835/325117).

We have already found one value of m, given by (15), which makes the quartic function
on the right-hand side of Eq. (14) a perfect square. Using this known value of m, we can
repeatedly apply the aforementioned method of Fermat to find infinitely many values of m
(in terms of the parameter ¢) that make the right-hand side of Eq. (14) a perfect square,
and we can thus find infinitely many parametric solutions of the system of Egs. (3), (4) and
(5). We thus obtain infinitely many sets of three points, in terms of an arbitrary parameter,
whose z-coordinates are in arithmetic progression, and such that the three points lie on the
unit circle.

We also note that there is a one-to-one correspondence between rational points (x,y) on
the unit circle (1) and the rational points on the ellipse (2) given by ¢(z,y) = (ax,by). As we
have already found infinitely many sets of three rational points, Py, P, and Ps, in arithmetic
progression on the unit circle (1) with all three points having positive z-coordinates, the
images of these points, ¢(P;), (FPz), and ¢(Ps), on the ellipse (2) immediately yield infinitely
many sets of three rational points in arithmetic progression on the ellipse (2) with all the
three points ¢(P;), ¢(P,), and ¢(P;) having positive z-coordinates.

3 Four rational points in arithmetic progression on the
unit circle

We now explore the possibility of finding four rational points in arithmetic progression on
the unit circle (1).



We have noted in the introduction that if (z1,¥;) is any arbitrary rational point on the
unit circle, the three points, (—x1, 1), (0,1) and (x1,y;), on the unit circle are in arithmetic
progression. We now show that this sequence of rational points cannot be extended to a
longer sequence of rational points whose z-coordinates are in arithmetic progression. As-
suming this is possible, there must be a rational point on the unit circle whose x-coordinate
is 2x1 or —2x. In either case, the following two diophantine equations must be satisfied:

i +yi =1, (19)
dri+y5 =1, (20)

It is well-known that the complete solution of equation (19) is given by,
v =2t/(1+%), y=(1-1)/(1+t), (21)

where ¢ is an arbitrary parameter. Substituting the value of x; given by (21) in Eq. (20), we
get, after suitable transpositions, the equation,

ya(? + 1) —t* 4+ 142 — 1 = 0. (22)
The birational transformation given by,
t=(X—-2))Y, yo=(X>—6X>+16)/(X*+Y?—4X +4), (23)

and
X =Py =3+ +1)/(2t7), Y =y — T +y+1)/(2t%), (24)

transforms Eq. (22) to the cubic equation,
Y2 =X34X? —4X — 4. (25)

Now equation (25) represents an elliptic curve and a reference to Cremona’s well-known
tables of elliptic curves [9] shows that the rank of the elliptic curve (25) is 0. Further, the
torsion points of the curve (25) yield only the trivial solutions of equations (19) and (20),
namely (z1,91,y2) = (0,+1,£1). As there are no nontorsion rational points on the curve
(25), it follows that Eqgs. (19) and (20) do not have any nontrivial solutions. Thus the
sequence of three points (—xz1, 1), (0,1), (z1,y1) on the unit circle (1) cannot be extended
to a longer sequence of rational points whose z-coordinates are in arithmetic progression.

Next we consider whether there exists an arithmetic progression, on the unit circle (1),
of four rational points of the type (£x1,y1), (£321,y2). For four such rational points to lie
on the unit circle, we must have,

iy =1, (26)
9r7 +y5 = 1. (27)



Proceeding as in the case of Egs. (19) and (20), we find that the diophantine Eqgs. (26)
and (27) lead to the elliptic curve,

Y?=X%—- X? 24X — 36, (28)

which is also of rank 0, and we conclude, as before, that there is no arithmetic progression,
on the unit circle (1), of four rational points of the type (£x1,y1), (£3z1,y2).

Limited trials, conducted to check whether the arithmetic progression of three rational
points whose z-coordinates are given by (18) can be extended to an arithmetic progression
of four rational points, did not yield any positive result.

It still remains an open problem whether there exists a sequence of four rational points
in arithmetic progression on the unit circle.
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