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Abstract

We consider integer sequences connected to the famous Laplace continued fraction
for the function R(t) =

∫∞

t ϕ(x)dx/ϕ(t), where ϕ(t) = e−t2/2/
√
2π is the standard

normal density. We compute the generating functions for these sequences and study
their relation to the Hermite and Bessel polynomials. Using the master equation for
the generating functions, we find a new proof of the Ramanujan identity.

1 Introduction

We consider two infinite matrices, p = ‖pk,m‖k,m≥0 and q = ‖qk,m‖k,m≥0, defined as follows.
If m > k or k −m ≡ 1 (mod 2), then

pk,m = qk,m = 0, k,m = 0, 1, . . . .

If k = m+ 2n and n ≥ 0 then

pk,m =
k!

m! 2n n!
, (1)
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and

qk,m =

(

k+m
2

)

!

m!
2−n

n
∑

j=0

(

k + 1

j

)

. (2)

The matrices p and q are connected to the Laplace continued fraction [11]

L(t) :=
1

t+
1

t+
2

t+
3

t+
4

. . .

, t > 0, (3)

for the function R(t) := Φ̄(t)/ϕ(t), where ϕ(t) is the standard normal density and Φ̄(t) =
∫∞

t
ϕ(s)ds is the tail of the standard normal distribution. The function, R(t), is often called

the Mills ratio, after John Mills who tabulated it [13] in 1929. The Mills ratio appears
in the probability theory, [5, 6, 12, 15] in the context of asymptotic expansions for the
normal probability integral, in statistical analysis [8, 13] and in the area of numerical analysis
[3, 9, 14, 16] where the functional inequalities and irrational approximations for R(t) are
discussed.

In this paper we study the matrices p and q. In Section 2, we show that certain integer
sequences in [17] are encapsulated in these matrices. In particular, the triangular array
A180048 is described by (2). In Section 2, we also describe connections between the matrix
p and the coefficients of the Hermite and Bessel polynomials [1, 2].

In Section 3, we introduce and study the generating polynomials. Despite the fact that
the recurrence relations for the polynomials Pk and Qk have been known for a very long
time1, their coefficients were not systematically studied until recently. The first analysis of
these coefficients, published in [9], appeared only in 2006, to the best of our knowledge2.

The statements in the first three sections are elementary. Their proofs are left to the
reader. In Section 4, we derive the master equation linking together the generating functions
of the Laplace polynomials and the Laplace continued fraction, L(t). In Section 5, the master
equation is used for a short derivation of the famous identity discovered by Ramanujan:

1

1 +
2

1 +
3

. . .

= −1 +
1

√

eπ
2
−

∞
∑

n=0

1
(2n+1)!!

.

1Some of these relations were derived by Jacobi in [7].
2Our definition of the coefficients of the polynomials Qk(t) is different from that in [9].
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2 Matrices p and q

We shall start with the following recurrence equations for the elements of p and q.

Proposition 1. The elements of the matrices p and q satisfy

m · pk,m = k · pk−1,m−1, k ≥ 1, 1 ≤ m ≤ k, (4)

pk+1,m = pk,m−1 + (m+ 1) · pk,m+1, k ≥ 0, 1 ≤ m ≤ k, (5)

qk,m = pk,m + (m+ 1) · qk−1,m+1, k ≥ 1, 1 ≤ m ≤ k, (6)

qk,m = qk−1,m−1 + k · qk−2,m, k ≥ 2, 1 ≤ m ≤ k. (7)

Proof. The proof is based on the following lemma.

Lemma 2. Write

S
(j)
i (k) =

j
∑

l=i

(

k

l

)

, k > j.

Then

S
(n−1)
0 (k)− 2S

(n−2)
0 (k − 1) =

(

k − 1

n− 1

)

. (8)

The derivation of (4) is straightforward. The derivation of (5), (6) and (7) is based on
Lemma 2, which in the case of (7) is used twice.

The elements in the first nine rows and columns of the matrix p are given in Table 1.

k m
0 1 2 3 4 5 6 7 8

0 1 0 0 . . . 0
1 0 1 0 . . . 0
2 1 0 1 0 . . . 0
3 0 3 0 1 0 . . . 0
4 3 0 6 0 1 0 . . . 0
5 0 15 0 10 0 1 0 . . . 0
6 15 0 45 0 15 0 1 0 0
7 0 105 0 105 0 21 0 1 0
8 105 0 420 0 210 0 28 0 1

Table 1: Matrix p = ‖pk,m‖.

The matrix p encapsulates many remarkable integer sequences. The rows of the matrix de-

scribe the coefficients of the Laplace polynomials [10], Pk(t) =
k
∑

m=0

pk,mt
m. These polynomials
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will be discussed in the next section. The columns of p are integer sequences that can be found
in [17]. In particular, the first column is p2n,0 = (2n− 1)!!, (n = 1, 2, . . . ), which is A001147.
In the case m = 1, the column p2n−1,1 = p2n,0. If m = 2 then p2n+2,2 = (n + 1) · (2n + 1)!!,
which is A001879. In the case m = 3 we have the sequence A000457.

The diagonals of p also represent some remarkable integer sequences. The diagonal
pk,2N−k represents the coefficients of the Nth Bessel polynomial. Indeed, the Bessel polyno-
mials are

yN(t) =
N
∑

j=0

(N + j)!

(N − j)! · j!
( t

2

)j

, N = 0, 1, . . . .

Their coefficients, BN,j := (N + j)!/((N − j)!j!2j), are equal to pN+j,N−j, for j = 0, 1, . . . , N .

Thus the Bessel polynomials can be written as yN(t) =
N
∑

j=0

pN+j,N−jt
j.

The diagonals k −m = 2n also represent some well-known sequences. If n = 0 then we
have the sequence A000012. If n = 1, pm+2,m = (m+1)(m+2)/2 is the sequence of triangular
numbers A000217. If n = 2, pm+4,m is the sequence of tritriangular numbers A050534.

Analytical properties of the matrix q are equally interesting. The elements in the first
eight rows of the matrix q are given in Table 2. For small m, Formula (2) can be simplified.

k m
0 1 2 3 4 5 6 7 8

0 1 0 0 . . . 0
1 0 1 0 . . . 0
2 2 0 1 0 . . . 0
3 0 5 0 1 0 . . . 0
4 8 0 9 0 1 0 . . . 0
5 0 33 0 14 0 1 0 . . . 0
6 48 0 87 0 20 0 1 0 0
7 0 279 0 185 0 27 0 1 0

Table 2: Elements of the matrix q = ‖qk,m‖.
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Proposition 3. For n = 0, 1, 2, . . . , we have

q2n,0 = (2n)!!, (9)

q2n+1,1 = (2n+ 2)!!− (2n+ 1)!!, (10)

q2n+2,2 =
1

2
(2n+ 4)!!− (2n+ 3)!!, (11)

q2n+3,3 =
1

3!
(2n+ 6)!!− 1

2!
(2n+ 5)!! +

1

3!
(2n+ 3)!!, (12)

q2n+4,4 =
1

4!
(2n+ 8)!!− 1

3!
(2n+ 7)!! +

1

3!
(2n+ 5)!!. (13)

According to Proposition 3, the first column of the matrix q, described by (9), corre-
sponds to the sequence A000165. The second column, satisfying Equation (10), describes
the sequence A129890. The third column, satisfying Equation (11), represents the integer
sequence A035101. This sequence is related to the Catalan numbers (see [17]) but our for-
mula (11) looks simpler. The sequence q2n+3,3 represents the integer sequence A263384. The
sequence q2n+4,4, described by (13), is less known.

The elements of the matrix q = ‖qk,m‖ can be represented as a linear combination of the
diagonal elements of the matrix p. Let k ≡ m (mod 2), and n = (k −m)/2. Then [10]

m! · qk,m =
n

∑

j=0

(m+ j)! · pk−j,m+j.

3 Polynomials Pk(t) and Qk(t)

3.1 Laplace and Jacobi polynomials

Consider the polynomials Pk(t) :=
k
∑

m=0

pk,mt
m, and Qk(t) :=

k
∑

m=0

qk,mt
m, where pk,m and

qk,m are defined by (1) and (2), respectively. In this section, we shall connect these polyno-
mials with the convergents of the Laplace continued fraction, L(t). For this reason, we call
Pk(t) and Qk(t) the Laplace polynomials in what follows.

Proposition 4 ([7, 9, 10, 14]). For k ≥ 1, the Laplace polynomials satisfy the following

recurrent equations

Pk+1(t) = tPk(t) + P ′
k(t), (14)

Qk(t) = Pk(t) +Q′
k−1(t), (15)

Pk+1(t) = tPk(t) + kPk−1(t), (16)

Qk+1(t) = tQk(t) + (k + 1)Qk−1(t), (17)

where P0(t) = Q0(t) = 1.
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Proposition 4 allows one to find the polynomials Pk(t) and Qk(t) for any integer k ≥ 1.
The first eight polynomials are given in Table 3.

k Pk(t) Qk−1(t)
1 t 1
2 t2 + 1 t
3 t3 + 3t t2 + 2
4 t4 + 6t2 + 3 t3 + 5t
5 t5 + 10t3 + 15t t4 + 9t2 + 8
6 t6 + 15t4 + 45t2 + 15 t5 + 14t3 + 33t
7 t7 + 21t5 + 105t3 + 105t t6 + 20t4 + 87t2 + 48
8 t8 + 28t6 + 210t4 + 420t2 + 105 t7 + 27t5 + 185t3 + 279t

Table 3: Laplace polynomials Pk(t) and Qk−1(t).

For t > 0, we consider the rational functions Lk(t) = Qk−1(t)/Pk(t), (k = 1, 2, . . . ). The
function Lk(t) is the kth convergent of the continued fraction3, L(t):

lim
k→∞

Lk(t) = L(t) = R(t), t > 0.

The function R(t) satisfies the differential equation

dR(t)

dt
= t ·R(t)− 1. (18)

Let us now consider the derivatives of the function R(t). From (18) we derive

dkR(t)

dtk
= t · d

k−1R(t)

dtk−1
+ (k − 1) · d

k−2R(t)

dtk−2
. k = 2, 3, . . . . (19)

It was proved in [7, 9, 10] that 4

dkR(t)

dtk
= R(t) · Pk(t)−Qk−1(t), k = 1, 2, . . . . (20)

3.2 Laplace and Hermite polynomials

The polynomials Pk(t) are closely connected to the Hermite polynomials [1, 2]. Denote the

differentiation operator by D: Dg(t) = dg(t)
dt

. Then, as usual, Dng(t) = dng(t)
dtn

, (n = 1, 2, . . . ).
Recall that the Hermite polynomials can be defined as

Hk(t) := (−1)ket
2/2 Dke−t2/2.

3See [9] and [10] regarding this statement
4Equation (20) follows from (18), (19) and Proposition 4.
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Lemma 5. The Laplace polynomials, Pk(t), satisfy

Pk(t) = e−t2/2 Dket
2/2, k = 0, 1, 2, . . . . (21)

Proof. We shall prove this lemma by induction. For k = 1

e−t2/2 Det
2/2 = t = P1(t).

Suppose that e−t2/2 Dnet
2/2 = Pn(t). Let us verify that

Pn+1(t) = e−t2/2 Dn+1et
2/2.

Indeed,

Dn+1et
2/2 = D

(

Dnet
2/2

)

= D
(

et
2/2 · Pn(t)

)

= et
2/2

(

tPn(t) + P ′
n(t)

)

.

Therefore
e−t2/2 Dn+1et

2/2 = tPn(t) + P ′
n(t).

Since Equation (14) and the initial condition, P1(t) = t, uniquely determine the sequence of
polynomials generated by the recurrence (14), we obtain

e−t2/2 Dn+1et
2/2 = Pn+1(t),

as was to be proved.

Lemma 5 implies (see [9, 10])

Pk(t) = (−i)kHk(it). (22)

This relation allows us to reformulate the classical results obtained for the Hermite polyno-
mials in terms of the Laplace polynomials. In particular, one can easily derive from (22) and
the generating function of the Hermite polynomials,

H(t, s) :=
∞
∑

k=0

Hk(t)
sk

k!
= est−s2/2 ,

the generating function P(s, t) =
∑∞

k=0 Pk(t)
sk

k!
.

Lemma 6 ([9, 10]). The generating function, P(s, t), is

P(s, t) = exp
(

st+
s2

2

)

. (23)
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4 Master equation

Let us now compute the generating function of the Laplace polynomials Qk(t). Write

Q(s, t) :=
∞
∑

k=0

∞
∑

m=0

qk,mt
m sk+1

(k + 1)!
.

Lemma 7. The generating function Q(s, t) is

Q(s, t) =
√
2π e(s+t)2/2 ·

(

Φ̄(t)− Φ̄(s+ t)
)

. (24)

Proof. We have,

Q(s, t) =
∞
∑

k=0

Qk(t)
sk+1

(k + 1)!
and P(s, t) =

∞
∑

k=0

Pk(t)
sk

k!
.

The Taylor series expansion for the function R(t) can be written as

R(s+ t) =
∞
∑

k=0

dkR(t)

dtk
sk

k!
.

Recall that the derivatives of the function R(t) satisfy Equation (20):

dkR(t)

dtk
= Pk(t)R(t)−Qk−1(t).

We have
R(s+ t) =

√
2πe(s+t)2/2Φ̄(s+ t) .

Therefore

√
2π e(s+t)2/2 · Φ̄(s+ t) =

∞
∑

k=0

dkR(t)

dtk
sk

k!

= R(t)
∞
∑

k=0

Pk(t)
sk

k!
−

∞
∑

k=0

Qk−1(t)
sk

k!

= R(t) · est+s2/2 −Q(s, t)

=
√
2π et

2/2 · Φ̄(t) · est+s2/2 −Q(s, t).

Finally, we obtain

Q(s, t) =
√
2π e(s+t)2/2 ·

(

Φ̄(t)− Φ̄(s+ t)
)

.

Equation (24) is thus proved.
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Theorem 8. The generating functions, P(s, t) and Q(s, t), satisfy

R(s+ t) +Q(s, t) = P(s, t)R(t). (25)

Proof. We have
√
2π exp(t2/2) · Φ̄(t) = R(t). From Lemma 7 we derive

Q(s, t) =
√
2π e(s+t)2/2 ·

(

Φ̄(t)− Φ̄(s+ t)
)

= est+s2/2 ·R(t)−R(t+ s).

The latter relation is equivalent to (25).

5 Identities

In [10] we derived a new, to the best of our knowledge, identity

∞
∑

n=0

∞
∑

m=0

n
∑

j=0

(n+m)!

m!j!(m+ 2n+ 1− j)!
2−n =

√
2πe2

(

Φ(2)− Φ(1)
)

,

having an unusual combination of constants in the right hand side. In fact, the whole
derivation is based on the substitution s = t = 1 into (25) in Theorem 8. Choosing integer
values for s and t we obtain a series of elegant combinatorial identities similar to those
discussed in [10]. Another interesting, unexpected connection to the Laplace continued
fraction is the Ramanujan identity [4, Entry 43, p. 166]:

1

1 +
2

1 +
3

1 +
4

1 +
5

. . .

=
1

√

eπ
2
−

∞
∑

n=0

1
(2n+1)!!

− 1. (26)

This identity can be derived from Equation (25). We will need the following generalization
of (26).

Proposition 9. For s > 0, consider the continued fraction

S(s) =
1

s+
2

s+
3

s+
4

s+
5

. . .

.
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Then

S(s) = 1

es2/2
√

π
2
−

∞
∑

n=0

s2n+1

(2n+1)!!

− s. (27)

Proof. From (25) we derive

R(s) +Q(s, 0) = es
2/2 ·R(0), (28)

and

Q(s, 0) =
∞
∑

n=0

q2n,0
s2n+1

(2n+ 1)!

=
∞
∑

n=0

(2n)!!
s2n+1

(2n+ 1)!

=
∞
∑

n=0

s2n+1

(2n+ 1)!!
. (29)

Inspecting the continued fractions (3) and S(s) we find

S(s) = −s+
1

L(s) , (30)

and, therefore, for s > 0

S(s) = −s+
1

R(s)
.

Taking into account that R(0) =
√

π/2 we obtain from the latter equation, (28) and (29)

1

s+ S(s) = es
2/2

√

π

2
−

∞
∑

n=0

s2n+1

(2n+ 1)!!
. (31)

Equation (31) is equivalent to (27).

Substituting s = 1 into (27) we obtain the Ramanujan identity (26).

Remark 10. The series
∞
∑

n=0

s2n+1

(2n+1)!!
converges to the function

es
2/2

∫ s

0

e−u2/2du = (Φ(s)− 0.5)/ϕ(s),

where ϕ(s) = exp(−s2/2)/
√
2π. The coefficients of the convergents of the continued fraction

S(s) are described by the triangular array A180048.
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