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Abstract

In this article, we consider infinite sums of the reciprocals of the tribonacci numbers.
Then, by applying the floor function to the reciprocals of these sums, we obtain a
new identity involving the tribonacci numbers. Further, we give the formulas for an
alternating sum of the reciprocals of the tribonacci numbers and a sum of reciprocal
hypertribonacci numbers.

1 Introduction

As is well known, the sequences of Fibonacci numbers A000045 {F,}>°, and tribonacci
numbers A000073 {T,,}°°, are defined, respectively, by

Fn+1:Fn+Fn—1a FO:(); =1
Tn+2:Tn+1+Tn+Tn—17 TO:Ou T =1,=1.

Ohtsuka and Nakamura [2] derived a formula for infinite sums of reciprocal Fibonacci

numbers, as follows:

~1
i 1 ) B, if n is even and n > 2; (1)
— Fy, " lF,o—1, ifnisoddand n>1,
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where || is the floor function. Holliday and Komatsu [1] generalized a formula (1) for
the generalized Fibonacci numbers. Similar properties were investigated in several different
ways; see [5, 9, 10, 11]. In [5], the author gave a similar formula (1) for alternating sums of
reciprocal Fibonacci numbers as

(Z %) = (~)"Fp—1  (n>1), (2)

and the generalized Fibonacci numbers are shown in [6]. Liu and Zhao [7] showed the formula
for the infinite sums of reciprocal hyperfibonacci numbers A136431 as:

(iz; F'>_ —F,—1 (n>3). (3)

k=n

Komatsu [3] studied the reciprocals of the tribonacci numbers and proved the following

formula: 1
e 1 -
Z = =T, — Tn—h
(kn Tk)
where || - || is the nearest integer. Komatsu and Laohakosol [4] extended the above identity

on the tribonacci numbers to the higher order linear recurrence.
In this paper, we consider the floor function, to develop similar formulas to (1), (2), and
(3) for the tribonacci numbers.

2 Results

We begin by noting that the sequence of tribonacci numbers can be defined for negative
values of n by using the definition and the given initial conditions. The first forty negative
terms are shown in the following table.

n |1, n | T, n T, n T,

1 0 11 7 21 | —206 31 5345

2 1 12 ] =20 22 | 421 32 | —8400
3| —1 13 18 23 | —271 33 3136
4 0 14 9 24 | —356 34 | 10609
5 2 15| —47 25 | 1048 35 | —22145
6 | =3 16 56 26 | —963 36 | 14672
7 1 17 0 27 | —441 37 | 18082
8 18 | —103 28 | 2452 38 | —H4899
9 | =8 19 | 159 29 | —2974 39 | 51489
10| 5 20 | —56 30 81 40 | 21492
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We first provide three lemmas which will be used in the proofs of the main theorems.
Lemma 1. Let n be a positive integer. Then
(i) T2 — TrniTog1r = T (niny
fii) S0, Ty = (Tuga + T — 1)/2
(iit) Tn > T_(nes)  (n 2 3).

Proof. For any integer k, Shannon and Horadam [8] gave the following matrix equation:

Tpir 11 10" [T T
Toik—1|=1]1 0 0 Ty1| = A" | Ty
Totk—2 010 Tk—2 Ti—2
We have
Torr Thye 1
Ts - Tn—lTn+1 = Tn TnJrl 0
T,.1 T, 0
[T, T Ty
= A" To A" Ty ATATT To
_T—l T() T—l
L1 T
=]A"|0 1 T,
00 T,

which completes the proof of part (i). Since T4 o — Ty,s1 = T, + T,,_1, evaluating a partial
sum by using a telescopic sum, we get part (ii). For part (iii), a straightforward proof may
be carried out by induction. O]
Lemma 2. Let n > 1 be a positive integer. Then

[e.9]

, 1 1 1
() T —T, ,+1 ; T, T, —T, ,—1

3 1 2 (—1)F 1
) T T 1 <2 T S T T T

n



Proof. Since the proofs of both parts (i) and (ii) are quite similar, we only give a proof for

part (i). Using Lemma 1 (i), we have

1 1 1
Ty—Tp1—1 Tpr—Tn—1 T,

Thi+1 1
To(Ty—Tpy—1) Ty —T,—1
T Ty — T2 4 Tpyy — Ty — 1
(T, — Ty — 1)(Tpyr — T, — 1)

Toir — Tpy = Topnrny — 1
Tn(Tn - Tnfl - 1)(Tn+1 - Tn - 1)

T+ Tno— T (nin) — 1

To(Tyy — Ty — 1) (Tpyr — T, — 1)

By Lemma 1 (iii), the numerator of the right-hand side of the above identity is positive,

1 - 1 . 1
T,—T,1—1"T, Tyq—T,—1
By applying the above inequality repeatedly, we obtain
1 - 1 n 1
T,—-1T,1—1 T, T,n—-1T,—1
- 1 . 1 . 1
Tn Tn+1 Tn+2 - Tn+1 —1
> 1y T
Tn Tn+1 Tn+2 ,
SO
— Te Tn—T,1—1
Similarly, we can show that
1 - 1 n 1
Tn_Tn—1+1 Tn Tn+1_Tn+]—

Repeating the above inequality, we get the left inequality of part (i).

Lemma 3. Let n > 2 be a positive integer. Then

(i) If T-(nin) <0, then 330 7= < 57—

Tn_Tn—l

(ii) If T_(ns1) > 0, then Y232 > 77—




Proof. By Lemma 1 (i), we have

1 1 1 - =1 1
T, T —Toy Ton T, TuTo—Toq)  Tom—T,
Tg — o1l 1
Tn(Tn - Tnfl)(TnJrl - Tn)
T—(n—l—l)
Tn<Tn - Tn—l)(Tn-H - Tn)'

If T—(n+l) < 0, then

1 - 1 L 1
Tn - Tn—l Tn Tn—i—l - T‘n7

repeating the above inequality, we get
_ Tk Tn - Tnfl .

k=n
We can prove part (ii) in a similar way.
Now we are ready to state and prove the main results.

Theorem 4. Let n be a positive integer. Then

-1
i 1 o T, — Tnfla Zf Tf(nJrl) < 0;
PR Ty T, —T, 1—1, Zf T_(m_l) > 0.

Proof. f n=1,then T_ 5 =1 >0 and

SO

Therefore,

The case n = 2 can be similarly verified.
If n > 2, by combining the inequalities of Lemma 2 (i) and Lemma 3, we get

1 =1 1
R s Z <gz—7m—  (To@mm <0),



and

1 1
— < —_—<— T (1) > 0).
Tn_Tn—l ;Tn Tn_Tn—l_l ( (n+D) )

-1
i 1 - Tn - Tnfla if T (n+1) < O;
= T, T T =1, i Ty > 0.

We now calculate the analogous values to Theorem 4 for n = 3 (as 7_4 = 0 is not

included). Since
oo o0 1
I DI !
k=3 k=1

E4) -

Observe for 1 < n < 19 that, if 3|n, the value of 7", is negative. We have the following
corollary.

Hence,

]

E |

we have

|M8

Corollary 5. Let n < 19 be a positive integer with n # 16. Then

-1
i 1 . Tn_Tn—h Zf3|(n+1)7
— Ty T, —T,1—1, if 3 f(n+1).
Theorem 6. Let n > 1 be a positive integer. Then

(i <—1>k>‘1 B {(—n"(Tn FT), i (L) T > O

— Ty (=)™(T, + T—1) — 1, if (—1)”T_(n+1) < 0.

Proof. Observe that

1 -y 1 (DT
(_1)n<Tn + Tn—l) Tn (_1>n+1(Tn+1 + Tn) Tn(Tn + Tn—l)(Tn+1 + Tn) .

If (=1)"T_(n41) > 0, then

1 (—1)" 1
(_1>n(Tn +Tn—1) g Tn - (_1>n+1(Tn+1 +Tn>7




we obtain

— (=" 1
; To ~ (CV(T, + T

Similarly, if (=1)"7T_ 41y < 0, then

— (—D)F 1
; To ~ (“)"(Tn + Toy)

k=n

Combining the inequality of Lemma 2 (ii) and the above inequalities, we obtain the desired
result. O

Theorem 7. Let n > 4 be a positive integer. Then

00 1 -1
(Z - > =T, 1.
k=n Zi:l j—‘l

Proof. We shall prove our theorem directly, using Lemma 1 (ii), it is equivalent to

1 2 1

— < < > 4).
T, ;Tk—ﬂ‘i_Tk_l T, —1 (TL_ )
Consider
1 2 1 _ TooTo — T + Ty + 30, — 1,10 — T — 2
T,—1 Tyo+Tp—1 Th+1 (T, — )(Tpyo + Ty — 1) (Tyyy — 1)
_ T?E—&-l + Tn_lTn—i-l + Tn+1 + 3Tn - TnTn+2 - Tr% -2
(T = )(Toy2 + T, = 1)(T11 — 1)
_ —(n+2) — Tf(n+1) + Tn+1 + 3Tn —2
(T, — V)(Thso + T, — 1)(Th1 — 1)
> 0,
we have
2 - 1 1
Thio+T,—1 T,—1 T,y
Thus,

S To+ T —1 T, — 1



In a similar way, we have

1 2 U ThoTopn —TnThy — T + 10 — 1T 0 — T2
YT” - Tnpo+ 1, —1 N Tt B To(Thio+ T, — )T
T2y = T Thys — T + T i T — T + T,
T (Tpyo + T — DTy
— T_(ni2) = Topr = Ty + 1o
LT+ T — )T
_ T_(ny2) — (T + Ty 4+ Ths) — T (ny1) +Tn
a T (Toio + Ty — 1) Tt
T2y = Tn1 — T2 = T_(n41)
T(Thso + T, — V)T
<0 (n>4).

Therefore,
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