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Abstract

Lehmer proved that the values of the cosine function evaluated at rational multiples

of π are algebraic numbers. We show how to determine explicit, closed form expressions

for the minimal polynomials of these algebraic numbers.

1 Introduction

The following information concerning algebraic values of the cosine (and certain trigonomet-
ric) functions evaluated at rational multiples of π is well-known [2], [5, Chapter 3].
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Let n ∈ N, k ∈ {1, 2, . . . , n} with n > 2 and gcd(k, n) = 1. Then the value 2 cos(2kπ/n)
is an algebraic integer of degree ϕ(n)/2 whose minimal polynomial is ψn(x) ∈ Z[x], where

ψn(x+ x−1) = x−ϕ(n)/2Φn(x), (1)

with Φn being the nth cyclotomic polynomial and ϕ denoting the Euler’s totient function.
A simple proof of a special case of pure quadratic cosine values

√
r is given in [10] and

extended in [8], which also contains details of algebraic cosine values of small degrees.
It is natural to ask whether there is an explicit, closed form expression for ψn(x). Since

there is no explicit closed form expression for a general cyclotomic polynomial, Φn(x), such a
task seems non-trivial. Recall that in order to find an expression for Φn(x), a usual approach
is to use certain reduction formulas to write it as an algebraic expression involving known
cyclotomic polynomials.

Our aim is to derive some reduction formulae, as with the case of cyclotomic polynomials,
which will enable us to completely determine explicit forms of the polynomials ψn(x). In
addition, we mention two remarks concerning the values of the cosine functions evaluated at
an algebraic irrational multiple of π and certain constructible values.

2 Minimal polynomials

Since cos(2kπ/n) = cos(2π(n − k)/n), as k runs those integers in {1, 2, . . . , n} which are
relatively prime to n, there are precisely ϕ(n)/2 (= degψn(x)) distinct values of cos(2kπ/n)
which shows that these cosine values are all the roots of ψn(x) [9, Lemma, p. 473]. We base
our investigation on the following explicit form of ψp(x), p odd prime, due to Surowski and
McCombs [7].

Proposition 1. [7, Theorem 2.1] Let p = 2s + 1 be an odd prime. If ψp(x) ∈ Z[x] is the
minimal polynomial of 2 cos(2π/p), then

ψp(x) =
s
∑

j=0

(−1)jσjx
s−j,

where

σ2k = (−1)k
(

s− k

k

)

(k = 0, 1, . . . , ⌊s/2⌋)

σ2k−1 = (−1)k
(

s− k

k − 1

)

(k = 1, . . . , ⌊(s+ 1)/2⌋).

Incorporating this result with our preceding remark, we get
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Theorem 2. Let p = 2s + 1 be an odd prime. The minimal polynomial of 2 cos(2kπ/p),
where k ∈ {1, 2, . . . , p}, gcd(k, p) = 1, is

ψp(x) =

⌊s/2⌋
∑

j=0

(−1)j
(

s− j

j

)

xs−2j −
⌊(s+1)/2⌋
∑

j=1

(−1)j
(

s− j

j − 1

)

xs−(2j−1).

We also need some identities involving cyclotomic polynomials, [3, Chapter 2].

Lemma 3. Let q be a prime, and let m, e ∈ N. Then

A. Φqe(x) = Φq

(

xq
e−1

)

= 1 + xq
e−1

+ x2q
e−1

+ · · ·+ x(q−1)qe−1

;

B. Φmqe(x) = Φmq

(

xq
e−1

)

;

C. Φmq(x) =
Φm(xq)
Φm(x)

provided that gcd(m, q) = 1.

In order to determine explicit forms of minimal polynomials for 2 cos(2kπ/n) for other
positive integers n, Lehmer’s identity (1) indicates that we should first find explicit forms of
xs + x−s as a polynomial in x+ x−1, which is done in the next lemma.

Lemma 4. For t ∈ N, let Xt := xt + x−t, X := X1 = x+ x−1. Then

X2t = X2t −
{(

2t− 1

1

)

+

(

2t− 2

0

)}

X2t−2 +

{(

2t− 2

2

)

+

(

2t− 3

1

)}

X2t−4

+ · · ·+ (−1)t−1

{(

t+ 1

t− 1

)

+

(

t

t− 2

)}

X2 + (−1)t · 2

X2t+1 = X2t+1 −
{(

2t

1

)

+

(

2t− 1

0

)}

X2t−1 +

{(

2t− 1

2

)

+

(

2t− 2

1

)}

X2t−3

+ · · ·+ (−1)t−1

{(

t+ 2

t− 1

)

+

(

t+ 1

t− 2

)}

X3 + (−1)t
{(

t+ 1

t

)

+

(

t

t− 1

)}

X1,

i.e., in general, for s ∈ N, we have

Xs = Xs −
{(

s− 1

1

)

+

(

s− 2

0

)}

Xs−2 +

{(

s− 2

2

)

+

(

s− 3

1

)}

Xs−4 + · · ·

+ (−1)⌊s/2⌋
{(

s− ⌊s/2⌋
⌊s/2⌋

)

+

(

s− ⌊s/2⌋ − 1

⌊s/2⌋ − 1

)}

Xs−2⌊s/2⌋

=

⌊s/2⌋
∑

k=0

(−1)k
{(

s− k

k

)

+

(

s− k − 1

k − 1

)}

Xs−2k,

with the convention that
(

n
r

)

= 0 for negative r.
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Proof. Taking n = p = 2s+ 1, an odd prime, Lehmer’s identity (1) becomes

x−sΦp(x) = x−
p−1

2 Φp(x) = ψp

(

x+ x−1
)

. (2)

Equating the left hand side of (2) (using Lemma 3 A)

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 = x2s + x2s−1 + · · ·+ x+ 1,

with the right hand side (using Theorem 2), we get

(

xs + x−s
)

+
(

xs−1 + x−(s−1)
)

+ · · ·+
(

x+ x−1
)

+ 1

=

(

s

0

)

(

x+ x−1
)s −

(

s− 1

1

)

(

x+ x−1
)s−2

+

(

s− 2

2

)

(

x+ x−1
)s−4 − · · ·

+ (−1)⌊s/2⌋
(

s− ⌊s/2⌋
⌊s/2⌋

)

(

x+ x−1
)s−2⌊s/2⌋

+

(

s− 1

0

)

(

x+ x−1
)s−1 −

(

s− 2

1

)

(

x+ x−1
)s−3

+

(

s− 3

2

)

(

x+ x−1
)s−5 − · · ·

+ (−1)⌊(s+1)/2+1⌋

(

s− ⌊(s+ 1)/2⌋
⌊(s+ 1)/2⌋ − 1

)

(

x+ x−1
)s−(2⌊(s+1)/2⌋−1)

. (3)

Putting s = 2t, equating terms with even powers, we get

X2t +X2t−2 + · · ·+X2 + 1 =
(

x2t + x−2t
)

+
(

x2t−2 + x−(2t−2)
)

+ · · ·+
(

x2 + x−2
)

+ 1

=

(

2t

0

)

(

x+ x−1
)2t −

(

2t− 1

1

)

(

x+ x−1
)2t−2

+

(

2t− 2

2

)

(

x+ x−1
)2t−4

+ · · ·

+ (−1)t−1

(

2t− t+ 1

t− 1

)

(

x+ x−1
)2

+ (−1)t
(

2t− t

t

)

= X2t −
(

2t− 1

1

)

X2t−2 +

(

2t− 2

2

)

X2t−4 + · · ·+ (−1)t−1

(

t+ 1

t− 1

)

X2 + (−1)t. (4)

Replacing t by t− 1 in (4), we get

X2t−2 +X2t−4 + · · ·+X2 + 1

= X2t−2 −
(

2t− 3

1

)

X2t−4 +

(

2t− 4

2

)

X2t−6 + · · ·+ (−1)t−2

(

t

t− 2

)

X2 + (−1)t−1. (5)

Subtracting (5) from (4), we get the first assertion. The second assertion follows from
equating terms with odd exponents in (3) and proceed similarly.

Lemmas 4 and 3 enable us to find an explicit form of any minimal polynomial through
the following reduction identities.
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Theorem 5.

I. For odd prime p and e ∈ N, the minimal polynomial of 2 cos(2kπ/pe), where k ∈
{1, 2, . . . , pe}, gcd(k, p) = 1, is

ψpe(x) = ψp







⌊pe−1/2⌋
∑

k=0

(−1)k
{(

pe−1 − k

k

)

+

(

pe−1 − k − 1

k − 1

)}

xp
e−1−2k






.

II. If p is an odd prime, and e,m are positive integers with m ≥ 2, gcd(m, p) = 1, then the
minimal polynomial of 2 cos(2kπ/mpe), where k ∈ {1, 2, . . . ,mpe}, gcd(k,mp) = 1, satisfies

ψmpe(x) =
ψm

(

∑⌊pe/2⌋
k=0 (−1)k

{(

pe−k
k

)

+
(

pe−k−1
k−1

)}

xp
e−2k

)

ψm

(

∑⌊pe−1/2⌋
k=0 (−1)k

{

(

pe−1−k
k

)

+
(

pe−1−k−1
k−1

)

}

xpe−1−2k
) .

III. The minimal polynomial of 2 cos(2π/2) is

ψ2(x) = x+ 2.

IV. For e ∈ N, e ≥ 2, the minimal polynomial of 2 cos(2kπ/2e), where k ∈ {1, 2, . . . , 2e},
gcd(k, 2) = 1, is

ψ2e(x) =
2e−2

∑

k=0

(−1)k
{(

2e−1 − k

k

)

+

(

2e−1 − k − 1

k − 1

)}

x2
e−1−2k + 2.

Proof.
I. Using Lehmer’s identity (1) and Lemma 3 A, we have

ψpe(X) = ψpe
(

x+ x−1
)

= x−ϕ(pe)/2Φpe(x) = x−pe−1(p−1)/2Φp(x
pe−1

)

= ψp

(

xp
e−1 + x−pe−1

)

= ψp(Xpe−1)

= ψp







⌊pe−1/2⌋
∑

k=0

(−1)k
{(

pe−1 − k

k

)

+

(

pe−1 − k − 1

k − 1

)}

Xpe−1−2k






.

II. Using Lehmer’s identity (1), gcd(m, p) = 1, Lemma 3 B and C, we get

ψmpe(X) = ψmpe
(

x+ x−1
)

= x−ϕ(mpe)/2Φmpe(x) = x−ϕ(m)pe−1(p−1)/2Φmp(x
pe−1

)

=

(

xp
e
)−ϕ(m)/2

Φm(x
pe)

(xpe−1)
−ϕ(m)/2

Φm(xp
e−1)

=
ψm(x

pe + x−pe)

ψm(xp
e−1 + x−pe−1)

=
ψm(Xpe)

ψm(Xpe−1)
.

III. This is obvious from 2 cos(2π/2) = −2.
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IV. Observe from Lehmer’s identity (1), Lemma 3 A, and Lemma 4 that

ψ2e(X) = ψ2e
(

x+ x−1
)

= x−ϕ(2e)/2Φ2e(x) = x−2e−2

Φ2(x
2e−1

) = ψ2

(

x2
e−1

+ x−2e−1

)

= ψ2(X2e−1) = ψ2

(

2e−2

∑

k=0

(−1)k
{(

2e−1 − k

k

)

+

(

2e−1 − k − 1

k − 1

)}

X2e−1−2k

)

,

and the desired assertion follows from part III.

3 Two more remarks about values of the cosine func-

tion

We end this paper with two further related observations.

3.1 Values at irrational multiples of π

Since all the cosine values evaluated at rational multiples of π are algebraic, it is natural
to ask about the values at irrational multiples of π. We give an answer to this question
using the following result of Robinson [6, Theorem 3(a)], that is a nice consequence of the
Lindeman-Weierstrass theorem and the Gelfond-Schneider theorem.

Proposition 6. If α, β are algebraic with αi (i =
√
−1) irrational, then cos(α log β),

sin(α log β) and tan(α log β) for β 6= 0, 1 are transcendental numbers regardless of the branch
of the natural logarithm.

The answer to our question is given in the following theorem.

Theorem 7. If γ is an algebraic irrational number, then cos(γπ), sin(γπ), and tan(γπ) are
transcendental numbers.

Proof. Taking β = exp(πi) = −1 and α as an algebraic number such that αi = γ is an
algebraic irrational number, Proposition 6 shows that cos(γπ) = cos(αiπ) = cos(α log β) is
transcendental, and similarly for the sine and tangent functions.

3.2 Constructible values

Since cos(2kπ/n) (n > 2, k ∈ {1, . . . , n}, gcd(k, n) = 1) is an algebraic number of degree
ϕ(n)/2, another natural question is whether this algebraic number is constructible [1, Section
7.11]. The answer is an immediate consequence of the following result whose proof can be
found in [4].
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Theorem 8. Let k/n (n > 2) be a rational number with gcd(k, n) = 1. Then the algebraic
integers 2 cos(2πk/n) are constructible if and only if ϕ(n) is a power of 2, i.e., if and only
if n = 2αp1p2 · · · pr, where α is a non-negative integer, p1, . . . , pr are distinct odd primes of
the form 2β + 1.

We are grateful to the referee for the following information. Theorem 8 is a well-known an-
cient result. Gauss proved in his Disquisitiones arithmeticae that the numbers 2 cos(2πk/n)
are constructible (of course, it is enough to take k = 1); in particular, he stated the con-
struction of the 17th-gon, that is a famous fact in the life of Gauss. The converse part is
usually attributed to Wantzel (1838).
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[4] A. Mostowski, Un théorème sur les nombres cos 2πk/n, Colloq. Math. 1 (1948), 195–196.

[5] I. Niven, Irrational Numbers, Carus Monographs, Vol. 11, The Mathematical Associa-
tion of America, 1956.

[6] M. L. Robinson, On certain transcendental numbers, Michigan Math. J. 31 (1984),
95–98.

[7] D. Surowski and P. McCombs, Homogeneous polynomials and the minimal polynomial
of cos(2π/n), Missouri J. Math. Sci. 15 (2003), 4–14.

[8] P. Tangsupphathawat, Algebraic trigonometric values at rational multiples of π, Acta
et Commentationes Universitatis Tartuensis de Mathematica 18 (2014), 9–18.

[9] W. Watkins and J. Zeitlin, The minimal polynomial of cos(2π/n), Amer. Math. Monthly
100 (1993), 471–474.

7



[10] J. L. Varona, Rational values of the arccosine function, Central European J. Math. 4
(2006), 319–322.

2010 Mathematics Classification: Primary 11R04; Secondary 33B10, 11J72.
Keywords : cosine function, algebraic value, multiple of π.

Received February 8 2016; revised version received March 15 2016. Published in Journal of
Integer Sequences, March 19 2016.

Return to Journal of Integer Sequences home page.

8

http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Minimal polynomials
	Two more remarks about values of the cosine function
	Values at irrational multiples of 
	Constructible values

	Acknowledgments

