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Abstract

Let (T},)n>0 be the Tribonacci sequence defined by the recurrence Ty49 = Tp41 +
T, +T,_1, with Ty = 0 and T} = T5 = 1. In this short note, we prove that there are
no integer solutions (u,m) to the Brocard-Ramanujan equation m! + 1 = u? where u
is a Tribonacci number.

1 Introduction

In the past few years, several authors have considered Diophantine equations involving fac-
torial numbers. For instance, Erdds and Selfridge [6] proved that n! is a perfect power only
when n = 1. However, the most famous among such equations was posed by Brocard [5] in
1876 and independently by Ramanujan ([17], [18, p. 327]) in 1913. The Diophantine equation

m! +1 = u? (1)

is now known as Brocard-Ramanujan Diophantine equation.

It is a simple matter to find the three known solutions, namely m = 4, 5 and 7. Recently,
Berndt and Galway [2] showed that there are no further solutions with m < 10°. An
interesting contribution to the problem is due to Overholt [15], who showed that the equation
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(1) has only finitely many solutions if we assume a weak version of the abc conjecture.
However, the Brocard-Ramanujan equation is still an open problem.

Let (F,)n>0 be the Fibonacci sequence (sequence A000045 in the OEIS [19]) given by
Fo=0, Fi=1and F, o = F,41 + F,, for n > 0.

A number of mathematicians have been interested in Diophantine equations that involve
both factorial and Fibonacci numbers. For example, Grossman and Luca [8] showed that if
k is fixed, then there are only finitely many positive integers n such that

E,=mi!+mol + -+ my!

holds for some positive integers my, ..., myg. Also, all the solutions for the case k < 2 were
determined. Later, Bollman, Herndndez and Luca [3] solved the case k = 3. In a recent
paper, Luca and Siksek [11] found all factorials expressible as the sum of at least three
Fibonacci numbers.

In 1999, Luca [10] proved that F,, is a product of factorials only when n = 1,2,3,6 and 12.
Also, Luca and Stanica [12] showed that the largest product of distinct Fibonacci numbers
which is a pI'OdUCt of factorials is F1F2F3F4F5F6F8F10F12 =11

In 2012, Marques [13] proved that (m,u) = (4,5) is the only solution of Eq. (1) where
u is a Fibonacci number. His proof depends on the primitive divisor theorem together with
factorizations formulas for F,, 4 1.

Among the several generalizations of Fibonacci numbers, one of the best known is the
Tribonacci sequence (T),),>0 (sequence A000073 in the OEILS). This is defined by the recur-
rence T,y =T, + T,_1 + T,,_2, with initial values Ty = 0 and T} = T; = 1. The first few
terms of this sequence are

0,1,1,2,4,7,13,24, 44, 81,149, 274, 504, 927, 1705.

Tribonacci numbers have a long history. They were first studied in 1914 by Agronomof
[1] and subsequently by many others. The name Tribonacci was coined in 1963 by Feinberg
[7].

Here, we are interested in solutions (m, u) of the Brocard-Ramanujan equation where u is
a Tribonacci number. We point out that in this we have neither a primitive divisor theorem
for T,, nor a factorization formula for 7,, + 1.

More precisely, we shall prove the following theorem.

Theorem 1. There is no solution (m,u) for the Brocard-Ramanujan equation (1), where u
18 a Tribonacci number.

The idea behind the proof is as follows. The equation we are interested in solving is
m! = (T,, —1)(T,, 4+ 1). The 2-adic valuation of m! is m + O(logm). We show that the 2-adic
valuation of (7, — 1)(T;, + 1) is < 8logn/log2. Thus m g 8logn/log2. This forces m! to
be smaller than (T, — 1)(7T,, + 1), for m and n sufficiently large, which allows us to complete
the proof.
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2 The proof of Theorem 1

2.1 A key lemma

The p-adic order, v,(r), of r is the exponent of the highest power of a prime p which divides
r. The p-adic order of a Fibonacci number was completely characterized by Lengyel [9].
Also, very recently the 2-adic order of Tribonacci numbers was made explicit by Lengyel and
Marques [14]. Here, we shall prove the following key result which will play an important role
in the proof of Theorem 1.

Lemma 2. We have

(15, if n = 61;
0, if n=0,3 (mod 4);
(T, +1) = 1, ifn=1,2,6 (mod 8);
3, if n=>5 (mod 16);
va((n + 3)%) — 3, if n =13,29,45 (mod 64);
(2((n —61)(n+3)) —3, ifn>61 andn =061 (mod 64).

and, for n > 5,

0, ifn=0,3 (mod 4);
1, ifn =5 (mod 8);
(T, —1) =< mn+2)—1, if n =6 (mod 8);
vo(n —2) —1, if n =2 (mod 8);
(2((n = 1)(n+7)) =3, ifn=1 (mod 8).

The case T,, — 1:

First, note that Lengyel and Marques [14] proved that 7, — 1 is odd for every n = 0,3
(mod 4), which proves the first case. Now, note that, in order to prove the second case, it
suffices to prove that 7,, = 3 (mod 4). In this case, we have n = 8k + 5, with £ > 0. Then
we proceed on induction on k. For k = 0, it follows directly, since Ts —1=7—1=6=2-3.
So, we suppose that Tgx5 = 3 (mod 4). Using the sum formula for T,, (proved by Feng [16]),
we have that

Tekr1)+s = T(8k+5)+8
= TeTspqs + (T6 + T5)Tspre + TrTspqr
= 13Tsk15 + 2078k 16 + 2415k 7
= 3 (mod4).



In the third case, for t > 6 and s > 1 odd, we write n = 2!73s + 2. Now, by a Lengyel
and Marques result [14, Lemma 3.1], we have that

T2t—35+2 = T2t—3s+1 —|— T2t—35 + TQt—3S_1
1+27* 40 (mod 2%
1+27% (mod 27%).

This yields v5(T;, — 1) =t —4 = 15(273s) — 1 = 1p(n — 2) — 1.

The fourth case follows by proceeding in the same way as the third one. For ¢ > 6 and
s > 1 odd, we write n = 2735 — 2. Then, by the Lengyel and Marques result [14, Lemma
3.1], we have that

T2t73s,2 — T2t73s+1 - ,_Z—YQt—SS - T2t73s,1
1—-2"*~0 (mod 2"%)
1+27* (mod 27?).

This yields v5(T, — 1) =t —4 = 15(23s) = 1 = (n +2) — 1.

Now, for the last case, we know that 16 divides exactly one among n — 1 and n + 7.
Suppose that 16|(n+ a), for some a € {—1,7}. Then vo(n+b) =3 for b € {—1,7}\ {a}. So,
we desire to prove that

vo(T,, — 1) = e(n+ a).

For that, we write n = 2725 — q, for t > 5 and s > 1 odd, and proceed as in Lengyel and
Marques [14, Lemma 3.1] to prove that

Ty2s g —1=2"2 (mod 2"1).

Therefore
(T, —1)=t—2=w(n+a)+1,

and this completes the proof.
O

The case T, + 1:

The first two cases are trivial. The third and the fourth cases follow in the same way.
Note that, in order to prove them, it suffices to show that 7,, = 1 (mod 4) when n = 1,2,6
(mod 8) and to show that 7, = 7 (mod 16) when n = 5 (mod 16). In order to avoid
unnecessary repetitions, we shall prove only one of these cases. So, let us write n = 8k + 6
and apply induction on k£ > 0. For k£ = 0, it follows directly, since Ts+1 = 13+1 =14 = 2-7.
Now, suppose that Tg;1s = 1 (mod 4). Then, we have that

Tstk+1)+6 = T(8k+6)+8
= TeTsppe + (T6 + T5) Tspgr + TrTspqs
= 13Tsk16 + 207817 + 2415k 5
= 1 (mod4).
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Now, for the the fifth case, note that, if n = 64k + 13,
va(n+3)%*) =3 = 2(n+3)—3
= 2u(64k + 13+ 3) —3 =215(16(4dk+1)) —3=2-4—-3
= 5.
So, it suffices to prove that 7,, = 31 (mod 64). Again, we proceed on induction. First,

observe that 713 = 927 = 31 (mod 64). Now, we have that

Toae+1)+13 = T(64k+13)+64
TsoT6ak+13 + (Too + T61)Toanr14 + Tos3T6ar+15
= —1+ 32T64k:+14 (mod 64)

But, from the previous case, we have that Tgyrr14 = 1 (mod 4). Then,

T64(k+1)+13 = -1+ 32T64k+14 (HlOd 64)
= 32—1 (mod 64)
= 31 (mod 64).

When n = 29,45 (mod 64), we proceed in the same way.

For the last case, we proceed as for the last case of the previous theorem. Note that 128
divides exactly one among n—61 and n+3. Suppose that 128|(n+a), for some a € {—61, 3}.
Then vy(n +b) =6 for b € {—61,3}\ {a}. So, we desire to prove that

VQ(Tn + 1) = VQ(?’L + CL) + 3.

For that, we write n = 2725 — a, for t > 8 and s > 1 odd, and proceed as in Lengyel and
Marques [14, Lemma 3.1] to prove that

Ty24_q+1=2"""" (mod 212).
Therefore
I/Q(Tn—l—l) :t+1 :I/2<n+(l)+3.

This completes the proof. O
Now, we are ready to deal with the proof of the main theorem.

2.2 The proof

If n <61, a straightforward search shows that there are no solutions. So we shall suppose
that n > 61. Then m > 30. Next we use the fact that vp(m!) > m — [logm/log2| — 1
(which is a consequence of the De Polignac’s formula) together with Lemma 2. Then

logm
m_hoggQJ_l < w(m!) = vo(Tp — 1) + (Ty + 1)

< n((n+2)n—=2)(n—1)n+T7)(n+3)>*n—61)+5
< 8wp(n+w) + 5,
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for some w € {—61,—-2,—1,2,3,7}. Thus va(n+w) > (m — [logm/log2| —6)/8. Therefore,
Lm=llogm/log2]=6)/8] | (4 ). In particular, 2L(m—lloem/log2]=6)/8] < | 4 | < n 4 61 (here
we used that n + w # 0). By applying the log function, we obtain

1 1 1 1
1, _|lgm| < og(n~|—6)' )
8 log 2 log 2
On the other hand, (1.83)*"* < T2 = m!+1 < 2(m/2)™ (the first inequality was proved
by Bravo and Luca [4]). So n < 0.9mlog(m/2) + 2.6. Substituting this in equation (2), we

obtain | | |
1 o |losm | A o 0g(0.9m log(m/2) + 63.6)
log 2 log 2

8

This inequality yields m < 78. Then n < 0.9 - 78log(78/2) 4+ 2.6 = 259.782.... Now, we use
a simple routine written in Mathematica which does not return any solution in the range
30 < m <78 and 62 < n < 259. The proof is complete. m

3 Acknowledgment

The authors would like to thank CNPq for the financial support and to the editor and the
referee for helpful comments.

References

[1] M. Agronomof, Sur une suite récurrente, Mathesis 4 (1914), 125-126.

[2] B. C. Berndt and W. Galway, The Brocard-Ramanujan diophantine equation n! + 1 =
m?, Ramanugjan J. 4 (2000), 41-42.

[3] M. Bollman, H. S. Hernandez, and F. Luca, Fibonacci numbers which are sums of three
factorials. Publ. Math. Debrecen T7 (2010), 211-224.

[4] J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci
sequences, Publ. Math. Debrecen 82 (2013), 623-639.

[5] H. Brocard, Question 166, Nouv. Corresp. Math. 2 (1876), 287.

[6] P. Erdés and J. L. Selfridge, The product of consecutive integers is never a power.
Hllinois J. Math. 19 (1975), 292-301.

[7] M. Feinberg, Fibonacci-Tribonacci, Fibonacci Quart. 1 (1963), 71-74.

[8] G. Grossman and F. Luca, Sums of factorials in binary recurrence sequences, J. Number
Theory 93 (2002), 87-107.



[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]

T. Lengyel, The order of the Fibonacci and Lucas numbers. Fibonacci Quart. 33 (1995),
234-239.

F. Luca, Products of factorials in binary recurrence sequences. Rocky Mountain J. Math.
29 (1999), 1387-1411.

F. Luca and S. Siksek, Factorials expressible as sums of at most three Fibonacci numbers,
Proc. of the Edinburgh Math. Soc. 53 (2010), 679-729.

F. Luca and P. StéﬂiCé, F1F2F3F4F5F6F8F10F12 = 11', Port. Math. 63 (2006), 251-260.

D. Marques, Fibonacci numbers at most one away from the product of factorials. Notes
on Number Theory and Discrete Mathematics 18 (2012), 13-19.

D. Marques and T. Lengyel, The 2-adic order of the Tribonacci numbers and the equa-
tion T,, = m!. J. Integer Sequences 17 (2014), Article 14.10.1.

M. Overholt, The Diophantine equation n! + 1 = m?, Bull. London Math. Soc., 25
(1993), 104.

J. Feng, More identities on the tribonacci numbers, Ars Combin. 100 (2011), 73-78.
S. Ramanujan, Question 469, J. Indian Math. Soc. 5 (1913), 59.
S. Ramanujan, Collected Papers, Chelsea, 1962.

N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically
at https://oeis.org.

2010 Mathematics Subject Classification: Primary 11B39, Secondary 11Dxx.
Keywords: Fibonacci number, p-adic order, Tribonacci number, Brocard-Ramanujan equa-

tion.

(Concerned with sequences A000045 and A000073.)

Received December 22 2015; revised versions received March 15 2016; April 26 2016. Pub-
lished in Journal of Integer Sequences, April 26 2016.

Return to Journal of Integer Sequences home page.


https://cs.uwaterloo.ca/journals/JIS/VOL17/Lengyel/lengyel21.html
https://oeis.org
http://oeis.org/A000045
http://oeis.org/A000073
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	The proof of Theorem 1
	A key lemma
	The proof

	Acknowledgment

