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Abstract

In 2009, Shapiro posed the following question: “What is the asymptotic proportion

of Dyck paths having an even number of hills?” In this paper, we answer Shapiro’s

question, as well as a generalization of the question to ternary paths. We find that the

probability that a randomly chosen ternary path has an even number of hills approaches

125/169 as the length of the path approaches infinity. Our strategy relies on properties

of the Fine number sequence and extends certain relationships between the Catalan

and Fine number generating functions.

1 Introduction

Much has been written about patterns of returns and hills on Dyck paths, which are enu-
merated by the Catalan numbers. Here we begin by extending some of those results to the
setting of the sequence,

tn =
1

2n+ 1

(

3n

n

)

,
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Figure 1: There are t3 = 12 non-crossing trees with 4 vertices.

which we will henceforth refer to as the ternary numbers.1

The ternary numbers (A001764) are a well-known sequence, appearing often throughout
the literature and having many interpretations. For example, Stanley [12, Exercise 5.45–
46] documents the ternary numbers counting noncrossing trees with n edges (see Figure 1),
recursively labeled forests on [n], and plane ternary trees with 3n+1 vertices. Bearing these
combinatorial interpretations in mind, it is not difficult to see that the generating function
for the ternary numbers T (z) =

∑∞

n=0 tnz
n satisfies the cubic equation

T (z) = 1 + zT 3(z). (1)

For example, equation (1) can be explained in terms of non-crossing trees by noting that
every noncrossing tree is either empty or can be pictorially decomposed as

s sT1 T2 T3

where each of T1, T2 and T3 is a noncrossing tree. Since each edge of a noncrossing tree is
associated with a z in T (z) and T (z) is the generating function for T1, T2 and T3, we obtain
the relationship in (1).

The ternary numbers can be considered an analogue of the Catalan number sequence
A000108, cn = 1

n+1

(

2n
n

)

, whose generating function C(z) =
∑∞

n=0 cnz
n satisfies C(z) =

1 + zC2(z) and has the closed form

C(z) =
1−

√
1− 4z

2z2
.

Among many other interpretations, the Catalan numbers count Dyck paths, which are paths
that start at (0, 0), end at (2n, 0), use up steps U of the form (1, 1), down steps D of the
form (1,−1) and never go below the x-axis. For example, UUDUDD is a Dyck path of
length 6 and there are a total of c3 = 5 possible Dyck paths of length 6. (See Figure 2.)

One way to generalize Dyck paths is to hold the length of the down stepD as a parameter.

Definition 1. Let t ≥ 0. A t-Dyck path is a path from (0, 0) to (tn, 0) where n ≥ 0 with
step set {U(1, 1)} ∪ {D(1,−t+ 1)} which never goes below the x-axis.

2
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Figure 2: Of the c3 = 5 Dyck paths of length 6 there are two with no hills.

Figure 3: Of the t2 = 3 ternary paths of length 6, there are two with no hills.

In the case where t = 3, we obtain so-called ternary paths which are counted by the
ternary numbers. For example, UUUDUD is one of the 3 possible ternary paths of length 6.
(See Figure 3.) Using a decomposition argument similar to that used for noncrossing trees,
one can show that T (z) is the generating function for the number of ternary paths of length
3n.

In general, it is known that the number of t-Dyck paths of length tn is the generalized
Catalan number

1

(t− 1)n+ 1

(

tn

n

)

.

Let Ct(z) denote the generating function for the generalized Catalan numbers, that is,

Ct(z) =
∞
∑

n=0

1

(t− 1)n+ 1

(

tn

n

)

zn.

The fact that
Ct(z) = 1 + z(Ct(z))

t

follows immediately from the fact that every t-Dyck path is either the empty path or has
the form UP1UP2UP3 · · ·UPt−1DPt where each Pi is a t-Dyck path. Note that C0(z) = 1,
C1(z) = 1/(1− z), C2(z) = C(z) is the generating function for the Catalan numbers and

C3(z) = T (z) (2)

is the generating function for the ternary numbers tn = 1
2n+1

(

3n
n

)

. We also want to point
out a fact that we use often in this paper. Adopting the conventional notation [zn]A(z) to

1The reader should not confuse our use of the term “ternary numbers” with any unrelated synonym for

base 3 numbers.
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denote the coefficient of zn in a formal power series A(z), we note that Graham et al. [7]
showed via the cycle lemma that

[zn]Cs
t (z) =

s

tn+ s

(

tn+ s

n

)

. (3)

In this more general context, we want to consider a few of the commonly studied statistics
on Dyck paths. One common statistic for Dyck paths is the number of returns. A return
on a t-Dyck path is a non-origin point on the path with ordinate 0. An elevated t-Dyck
path is a t-Dyck path with exactly one return. Notice that an elevated t-Dyck path has the
form UP1UP2UP3 · · ·UPt−1D where each Pi is a t-Dyck path. Therefore, we know that the
generating function for the number of elevated t-Dyck paths is z(Ct(z))

t−1. In Section 2.1,
we provide a limiting distribution for the number of returns on t-Dyck paths.

Another common statistic associated with Dyck paths is the number of peaks at a certain
height. A peak in a t-Dyck path is an occurrence of the sequence UD and the height of a
peak is the ordinate of the intersection of its two steps. For Dyck paths, a peak of height
one is also known as a hill. More generally though, for t ≥ 1, we define a hill in a t-Dyck
path as a ground level subpath of the form U t−1D. Note that a hill in a t-Dyck path is not
generally the same as a peak of height t − 1. For instance, there are two 3-Dyck paths of
length 6 having no hills, while there is just one 3-Dyck path of length 6 having no peaks at
height 2. (See Figure 3.) In this paper, we are more concerned with hills than peaks.

Any discussion of hills among Dyck paths will surely include references to the Fine
numbers (A000957). The Fine number sequence, which begins

1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, . . .

has a number of interesting connections to the Catalan sequence. In this paper, fn will
denote the nth Fine number and F (z) =

∑∞

k=0 fnz
n will denote the generating function for

the Fine numbers, which in its closed form, is

F (z) =
1−

√
1− 4z

z(3−
√
1− 4z)

.

The Fine number sequence is well documented in the literature, notably as the subject of
some surveys [1, 2, 3, 4]. Among their numerous applications, the Fine numbers count Dyck
paths of length 2n having no hills. For example, of the five Dyck paths of length 6, there
are f3 = 2 having no hills. See Figure 2. In Sections 3.2 and 4 of this article, we describe
and interpret a natural analogue of the Fine number sequence for t-Dyck paths.

The Motzkin numbers (A001006) form another combinatorial sequence with deep con-
nections to the Catalan numbers. The Motzkin numbers {mn} count Motzkin paths, which
are paths from (0, 0) to (n, 0) with step set {U(1, 1), L(1, 0), D(1,−1)} which never go below
the x-axis. If we modify Motzkin paths by requiring that the level step take one of two pos-
sible colors, then C2(z) is the generating function for the number of resulting paths. With

4
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the further restriction of no level steps on the x-axis, the generating function is F (z). In
the effort to describe a Fine analogue for t-Dyck paths, there is a natural encounter with a
Motzkin analogue for t-Dyck paths, as we will see in Section 4.

At various points in the paper, we will encounter Riordan arrays. A Riordan array
R = (g(z), f(z)) is an infinite lower triangular matrix whose kth column has a generating
function given by g(z)fk(z) with g(0) 6= 0 and f(0) = 0. It is sometimes helpful to use
Riordan arrays to summarize statistics on paths and other combinatorial objects and we will
do so here when convenient. For example, the entry in row n and column k (where n, k ≥ 0)
of the Riordan array (A033184)

(

C(z), zC(z)
)

=

























1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
132 132 90 48 20 6 1

. . .

























, (4)

is [zn]zkCk+1(z), the coefficient of zn in zkCk+1(z). Note also that [zn]zkCk+1(z) is the
number of Dyck paths of length 2(n+1) having exactly k+1 returns to the x-axis. Riordan
arrays form a group under matrix multiplication known as the Riordan group, which has
served as both a tool and object of combinatorial study [11]. The product of two Riordan
arrays is given by

(g1(z), f1(z)) ∗ (g2(z), f2(z)) = (g1(z)g2(f1(z)), f2(f1(z))) .

One can also express the product of a Riordan array and an infinite column vector as

(g1(z), f1(z)) ∗ h(z) = g1(z)h(f1(z)),

where h(z) is the generating function for the entries of an infinite column vector.
In the study of returns and hills among t-Dyck paths, we will encounter the negative

binomial distribution, which often shows up in combinatorial statistics [5], and we wish to
remind the reader about the characteristics of a negative binomial distribution. In general, we
say Y has the negative binomial distribution with parameters r, p and write Y ∼ negbin(r, p),
when

P (Y = k) =

(

k − 1

r − 1

)

pr(1− p)k−r,

or equivalently, Y is the random variable for the trial at which the rth success occurs in
a sequence of Bernoulli trials with success probability p. The distribution negbin(r, p) is

known to have expected value E(Y ) = r(1−p)
p

and variance Var(Y ) = r(1−p)
p2

.
The article is organized as follows. In Section 2, we consider the asymptotic distribution

for the number of returns and the number of hills among t-Dyck paths. In Section 3, we

5
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compute exact probabilities for the number of hills among Dyck paths of length 2n in order
to determine the asymptotic proportion of Dyck paths having an even number of hills. We
also introduce an analogue of the Fine numbers for the ternary numbers and determine the
asymptotic probability that a ternary path has an even number of hills. In Section 4, we
describe a Fine analogue for Ct(z) in terms of colored Motzkin-like paths and we present a
combinatorial identity involving its generating function.

2 Returns and hills via the Riordan group

In this section, we use the Riordan group to study the number of returns and hills among
ternary paths. The ultimate goal is to determine the limiting distribution for the number of
returns and for the number of hills among t-Dyck paths.

2.1 The number of returns among ternary paths, t-Dyck paths

First, we describe the generating function for the number of ternary paths having a given
number of returns. Recall from equation (2) that C3(z) = T (z) is the generating function
for the number of ternary paths.

Proposition 2. Let T (z) be the generating function for the number of ternary paths. For
0 ≤ m ≤ n, zmT 2m(z) is the generating function for the number of ternary paths of length
3n having exactly m returns to the x-axis.

Proof. Any ternary path of length 3n where n ≥ 1 has at least one return, i.e., the empty
path is the only path with no returns. For n ≥ 0, any nonempty ternary path of length 3n
with exactly m returns must has the form

(UP1UQ1D)(UP2UQ2D)(UP3UQ3D) · · · (UPmUQmD)

where each Pi, Qi is a (possibly empty) ternary path. When counting ternary paths with
T (z), each D is associated with a z, so the generating function for the number of ternary
paths with exactly m returns is zmT 2m(z).

If rn,m denotes the number of ternary paths of length 3n having m returns to the x-axis,
then the following array (A109971)

(rn,m)n,m≥0 =

























1
0 1
0 2 1
0 7 4 1
0 30 18 6 1
0 143 88 33 8 1
0 728 455 182 52 10 1

. . .

























=
(

1, zT 2(z)
)

, (5)
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is a Riordan array whose row sums are the ternary numbers.

Theorem 3. The probability that a randomly chosen ternary path has m returns approaches
4m

3m+1 as path length approaches infinity. The asymptotic distribution for the (nonzero) number
of returns among ternary paths is the negative binomial distribution with parameters 2 and
2/3. Hence, the expected number of returns among ternary paths approaches 2 with variance
3/2.

Proof. We proceed by calculating the associated probabilities. Let Yn ≥ 0 denote the number
of returns for a ternary path of length 3n. Let pm(n) be the probability that a randomly
chosen ternary path of length 3n has m returns, that is, pm(n) = P (Yn = m). We know
from Proposition 2 that the generating function for the number of paths with m returns is
zmT 2m(z). Making use of (3), we obtain

pm(n) =
[zn]zmT 2m(z)

[zn]T (z)

=

2m
3(n−m)+2m

(

3(n−m)+2m
n−m

)

1
2n+1

(

3n
n

)

=
2m(2n+ 1)(n−m+ 1)(n−m+ 2) · · · (n− 1)

3(3n−m)(3n−m+ 1)(3n−m+ 2) · · · (3n− 1)

=
2m(2n+ 1)(n− 1)m−1

3(3n− 1)m

where xj = x(x− 1)(x− 2) · · · (x− j + 1). It follows immediately that as n → ∞,

pm(n) →
4m

3m+1
=

(

(m+ 1)− 1

1

)(

2

3

)2(
1

3

)(m+1)−2

= P (Y = m+ 1)

where m ≥ 0 and Y ∼ negbin(2, 2
3
).

So, we see that pm(n) → P (Y = m + 1) where Y ∼ negbin(2, 2
3
). Notice that Yn = 0

if and only if n = 0. So if we wish to restrict to the case where the number of returns is
nonzero, we may consider Yn+1. Since E(Y ) = 2(1/3)

2/3
= 1, we can conclude that E(Yn+1) =

E(Yn) + 1 → E(Y ) + 1 = 2 and Var(Yn + 1) = Var(Yn) → Var(Y ) = E(Y )
2/3

= 3
2
.

We can also use the Riordan group to determine (exactly) E(Yn), the expected number of
returns among ternary paths of length 3n. Observe that the total number of returns among
all ternary paths of length 3n is given by the generating function for the infinite column
vector,
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























1
0 1
0 2 1
0 7 4 1
0 30 18 6 1
0 143 88 33 8 1
0 728 455 182 52 10 1

. . .



















































0
1
2
3
4
5
6
...



























,

where the matrix on the left is given in equation (5). In terms of Riordan group multiplica-
tion, this product is

(1, zT 2(z)) ∗ z

(1− z)2
=

zT 2(z)

(1− zT 2(z))2

= z

(

T

1− zT 2

)2

= zT 4.

The last equality follows from the fact that

T

1− zT 2
=

T 2

T − zT 3
=

T 2

1
= T 2. (6)

Hence, the expected number of returns among ternary paths of length 3n is

E(Yn) =
[zn]zT 4

[zn]T

=

4
3(n−1)+4

(

3(n−1)+4
n−1

)

1
2n+1

(

3n
n

)

=
4(3n+ 1)n

(3n+ 1)(2n+ 2)

=
2n

n+ 1
.

And we have verified that indeed, the expected number of returns for ternary paths ap-
proaches 2.

We may also compute (exactly) the variance VarYn by considering the square of the
number of returns. Notice that
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























1
0 1
0 2 1
0 7 4 1
0 30 18 6 1
0 143 88 33 8 1
0 728 455 182 52 10 1

. . .



















































0
1
4
9
16
25
36
...



























= (1, zT 2(z)) ∗ z + z2

(1− z)3

=
zT 2

(1− zT 2)3
+

z2T 4

(1− zT 2)3

=
zT 4

1− zT 2
+ z2T 7

= zT 5 + z2T 7

which implies that

VarYn = EY 2
n − (EYn)

2

=
[zn]zT 5 + z2T 7

[zn]T
−
(

2n

n+ 1

)2

=

4
3(n−1)+4

(

3(n−1)+4
n−1

)

1
2n+1

(

3n
n

)

and Var Yn → 3
2
as n → ∞.

Now in the case of Dyck paths, the expected number of returns approaches 3 with vari-
ance 4 and the limiting distribution is negbin(2, 1

2
). Naturally, it would be nice to know

the corresponding statistics for generalized Dyck paths, and it is possible do so given the
fact that the generating function for the number t-Dyck paths having exactly m returns is
zmC

(t−1)m
t (z). The necessary calculations that follow proceed almost exactly as above and

we obtain the following result.

Theorem 4. Let Yn denote the random variable for the number of returns among t-Dyck
paths of length tn and let Y = lim

n→∞
Yn. Then

Y ∼ negbin

(

2,
t− 1

t

)

Hence, the expected number of returns among nontrivial t-Dyck paths approaches t+1
t−1

with

variance 2t
(t−1)2

.
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Proof. If Yn denotes the number of returns among t-Dyck paths of length tn, then

P (Yn = m) =
(t− 1)m((t− 1)n+ 1)nm

tn(tn− 1)m

which approaches
m(t− 1)2

tm+1
=

(

m+ 1− 1

2− 1

)(

t− 1

t

)2(
1

t

)m−1

as n → ∞.

2.2 The number of hills among ternary paths, t-Dyck paths

We begin this subsection with the observation that the formula for the number of ternary
paths of length 3n having exactly k hills is not as nice as the formula we saw for the number
of returns in the previous subsection. This is due to the fact that counting hills among
ternary paths requires an analogue to the Fine numbers.

Let Ft(z) be the generating function for the number of t-Dyck paths of length tn having
no hills. (In the case where t = 2, Ft(z) is the generating function for the Fine numbers.)
It follows that the generating function for the number of t-Dyck paths of length tn having
exactly m hills is zmFm

t (z) and the nth row of the Riordan array (Ft(z), zFt(z)) gives a
distribution of the t-Dyck paths of length tn by number of hills. Though there is no closed
formula for the entries of (Ft(z), zFt(z)), there is much that can be said about this Riordan
array and in Sections 3.2 and 4, we indulge the reader with more detail in the case when
t = 3. The following identity extends naturally from the relationship between the Catalan
and Fine numbers:

Ct(z) =
Ft(z)

1− zFt(z)
⇐⇒ Ft(z) =

Ct(z)

1 + zCt(z)
(7)

Because this identity will come in handy now, we will use it here without proof. However,
the interested reader is directed to Theorem 14 in Section 4 for further exploration and
justification of (7).

Because there is no nice closed formula for the number of hills among t-Dyck paths,
some care must be taken to give a closed formula for the exact probability that a ternary
path has a given number of hills. Again, we defer to Section 3.2 for the necessary details
regarding this computation. At present, however, we can use the Riordan group to compute
the moments for the asymptotic distribution of hills among ternary paths, and in fact more
generally, among t-Dyck paths.

Theorem 5. The expected number of hills among t-Dyck paths approaches 2
t

(

t−1
t

)t−2
with

variance 2
t

(

t−1
t

)t−2
(

tt−1+(t−1)t−2

tt−1

)

as path length approaches infinity. In particular, the ex-

pected number of hills among ternary paths approaches 4
9
with variance 44

81
.
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Proof. Let Xn denote the random variable for the number of hills on a t-Dyck path of length
tn. It is relatively straightforward to compute the first moment E(Xn). The generating
function for the total number of hills among t-Dyck paths is simply zC2

t (z) — this is true
because every hill is preceded and followed by a t-Dyck path of some length. Hence,

E(Xn) =
[zn]zC2

t

[zn]Ct

=
[zn−1]C2

t

[zn]Ct

=

2
t(n−1)+2

(

t(n−1)+2
n−1

)

1
(t−1)n+1

(

tn
n

)

=
2n(tn− (t− 1))!((t− 1)n+ 1)!

(tn)!((t− 1)n− (t− 3))!

=
2((t− 1)n+ 1)t−2

t(tn− 1)t−2
,

where xj = x(x − 1)(x − 2) · · · (x − j + 1). Consequently, we see that E(Xn) → 2
t

(

t−1
t

)t−2

as n → ∞.
To compute the second moment E(X2

n), we need to compute the sum of the squares of
the number of hills among t-Dyck paths of length tn. Here, we will make use of Riordan
group algebra. Given that the generating function for the sequence of squares is z+z2

(1−z)3
, we

want to consider the sequence obtained by the Riordan product

(Ft, zFt) ∗
z + z2

(1− z)3
=

zF 2
t + z2F 3

t

(1− zFt)3

=
zF 2

t

(1− zFt)3
+ z2C3

t

=
zC3

t
Ct

1+zCt

+ z2C3
t

= zC2
t + 2z2C3

t ,

which gives us the sum of the squares of the number of hills among t-Dyck paths. Hence,
the second moment is

E(X2
n) =

[zn]zC2
t + 2z2C3

t

[zn]Ct

= E(Xn) +
[zn−2]2C3

t

[zn]Ct

= E(Xn) + 2

3
t(n−2)+3

(

t(n−2)+3
n−2

)

1
(t−1)n+1

(

tn
n

)

=
2((t− 1)n+ 1)t−2

t(tn− 1)t−2
+

6(n− 1)n

(t(n− 2) + 3)(t(n− 2) + 4)

((t− 1)n+ 1)2t−4

(tn)2t−4

11



and E(X2
n) → 2

t

(

t−1
t

)t−2
+ 6

t2

(

t−1
t

)2t−4
= 2

t

(

t−1
t

)t−2
(

tt−1+3(t−1)t−2

tt−1

)

Now, we may compute the variance of Xn as follows

Var(Xn) = E(X2
n)− (E(Xn))

2

=
2((t− 1)n+ 1)t−2

t(tn− 1)t−2
+

6(n− 1)n

(t(n− 2) + 3)(t(n− 2) + 4)

((t− 1)n+ 1)2t−4

(tn)2t−4

−
(

2((t− 1)n+ 1)t−2

t(tn− 1)t−2

)2

and notice that Var(Xn) → 2
t

(

t−1
t

)t−2
+ 6

t2

(

t−1
t

)2t−4− 4
t2

(

t−1
t

)2t−4
= 2

t

(

t−1
t

)t−2
(

tt−1+(t−1)t−2

tt−1

)

as n → ∞.

The relationship between the asymptotic mean and variance for the number of hills
provides the initial evidence for the following conjecture.

Conjecture 6. Let Xn denote the random variable for the number of hills among t-Dyck
paths of length tn and let X = lim

n→∞
Xn. Then

X ∼ negbin

(

2,
tt−1

tt−1 + (t− 1)t−2

)

The evidence for this conjecture is based on verification of the result in the case where
t ≤ 3 (see Section 3) and the computation of the moments E(Xm

n ). To compute E(Xm
n ),

we consider the mth power of the number of hills. The generating function for the power

sequence 0m, 1m, 2m, 3m, . . . is
em(z)

(1− z)m+1
, where

em(z) =
m
∑

k=1

em,kz
k

is the Eulerian polynomial of degree m and

em,k =
k
∑

j=0

(−1)j(k − j)m
(

m+ 1

j

)

are the Eulerian numbers (A008292). To find the mth moment for the number of hills, we
consider the Riordan product

(Ft, zFt) ∗
em(z)

(1− z)m+1
=

m
∑

k=1

em,k
zkF k+1

t

(1− zFt)m+1

12
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Now we may compute the expected value of Xm
n , making use of identity (7), as follows:

E(Xm
n ) =

[zn]
m
∑

k=1

em,k
zkF k+1

t

(1− zFt)m+1

[zn]Ct

=

m
∑

k=1

em,k [zn] zkCk+1
t

(

Ct

Ft

)m−k

[zn]Ct

=
m
∑

k=1

em,k
[zn−k] Ck+1

t (1 + zCt)
m−k

[zn]Ct

=
m
∑

k=1

(

m−k
∑

j=0

em,k

(

m− k

j

) j+k+1
t(n−(j+k))+j+k+1

(

t(n−(j+k))+j+k+1
n−(j+k)

)

1
tn+1

(

tn+1
n

)

)

=
1

[zn]Ct(z)

m
∑

k=1

(

m−k
∑

j=0

em,k

(

m− k

j

)

[zn]zj+kCj+k+1
t

)

Using Mathematica, this quantity has been verified to match the moments of

negbin

(

2,
tt−1

tt−1 + (t− 1)t−2

)

for t ≤ 10 and m ≤ 20.

3 Dyck paths and ternary paths with an even number

of hills

In this section, we provide a response and extension to the following question posed by L.
Shapiro [2] in a private communication: “What is the asymptotic proportion of Dyck paths
having an even number of hills?” Our approach relies on properties of the Fine numbers,
though it is also possible to use the techniques of the last section to answer the question.
Along the way we uncover some interesting combinatorial relationships between the Fine
and Catalan numbers sequences and one of their many generalizations.

3.1 Even number of hills among Dyck paths

Recall that F (z) =
∑∞

n=0 fnz
n is the generating function for the Fine numbers. Our first

observation is that the number of Dyck paths of length 2n having exactly k hills is given by

13



the (n, k)-th entry of th Riordan array (A065600)

(F (z), zF (z)) =



























1
0 1
1 0 1
2 2 0 1
6 4 3 0 1
18 13 6 4 0 1
57 40 21 8 5 0 1
...

...
...

...
...

...
. . .



























, (8)

where F (z) is the generating function for the Fine numbers.
It has been shown that the proportion of Dyck paths having no hills approaches 4/9.

This result, which appears in [4], follows from something described there as the “hill-killer”
identity:

C(z) + 1 = (z + 2)F (z) (9)

which implies that
cn = fn−1 + 2fn (10)

for n ≥ 1. Dividing both sides of (10) by cn and using the fact that cn−1/cn ∼ 1/4, one can
reveal that

fn/cn ∼ 4/9. (11)

To find the proportion of Dyck paths having exactly one hill, we can make use of the following
useful identity:

(2z + z2)F 2(z)− (1 + 2z)F (z) + 1 = 0, (12)

a result proven combinatorially by Cheon et al. [2]. If an is the number of Dyck paths of
length 2n having one hill then zF 2(z) is the generating function for an (A065601). Identity
(12) implies that

2an + an−1 = fn + 2fn−1 (13)

for n ≥ 1. Using the fact that fn/cn ∼ 4/9, cn−1/cn ∼ 1/4 and (13), we find the proportion
of Dyck paths having exactly one hill approaches 8/27, that is,

an/cn ∼ 8/27. (14)

This can be further generalized by multiplying both sides of (12) by zk−1F k−1, as

zk+1F k+1 + 2zkF k+1 − zk−1F k − 2zkF k + zk−1F k−1 = 0 (15)

to obtain a more general “hill-killer” recurrence.

14

http://oeis.org/A065600
http://oeis.org/A065601


Proposition 7. Let fn,k denote the number of Dyck paths of semilength n having exactly k
hills. That is, fn,k = [zn]zkF k+1. Then

fn−1,k + 2fn,k − fn,k−1 − 2fn−1,k−1 + fn−1,k−2 = 0 (16)

Proof. Follows directly from (15).

We may now use the recurrence in Proposition 7 to answer Shapiro’s question.

Theorem 8. The proportion of Dyck paths having an even number of hills approaches 5/8
as the length of the paths approaches infinity.

Proof. Dividing both sides of equation (16) by cn leads to the following:

fn−1,k

cn−1

· cn−1

cn
+ 2

fn,k
cn

− fn,k−1

cn
− 2

fn−1,k−1

cn−1

· cn−1

cn
+

fn−1,k−2

cn−1

· cn−1

cn
= 0 (17)

Let Lk := lim
n→∞

fn,k
cn

be the asymptotic proportion of Dyck paths having k hills. Using

the fact that lim
n→∞

cn−1

cn
=

1

4
, equation (17) implies

1

4
Lk + 2Lk − Lk−1 − 2Lk−1 ·

1

4
+ Lk−2 ·

1

4
= 0

which simplifies to

9

4
Lk =

3

2
Lk−1 −

1

4
Lk−2 (18)

for k ≥ 2. Note that L0 = 4/9 and L1 = 8/27, as we saw in equations (11) and (14).
Solving the linear recurrence in (18) gives,

L(z) :=
∞
∑

k=0

Lkz
k =

4

9− 6z + z2
=

4/9

(1− z/3)2
,

the (asymptotic) probability distribution for the number of hills. Hence,

[zk]L(z) = (k + 1) · 4
9

(

1

3

)k

which is the negative binomial distribution with index 2 and parameter 2/3. (Incidentally,
this is the same as the asymptotic distribution for the number of returns among ternary
paths, as we saw in Section 2.1.)

To obtain the asymptotic probability that a Dyck path has an even number of hills, take
the sum of the even indexed coefficients of L(z), which is

∞
∑

k=0

[z2k]L(z) =
∞
∑

n=0

(2k + 1) · 4
9

(

1

9

)k

=
5

8
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3.2 Even number of hills among ternary paths

Here we extend our approach in Section 3.1 to answering Shapiro’s question about Dyck
paths and determine the asymptotic probability that a randomly chosen ternary path has an
even number of hills. In this extension, we encounter and interpret the appropriate analogue
of the Fine numbers for the ternary numbers. Recall from (2) that C3(z) = T (z) denotes
the generating function for the ternary numbers

tn =
1

2n+ 1

(

3n

n

)

The Riordan array (A110616)

(T (z), zT (z)) =



























1
1 1
3 2 1
12 7 3 1
55 30 12 4 1
273 143 55 18 5 1
1428 728 273 88 25 6 1
...

...
...

...
...

...
. . .



























, (19)

counts ternary paths ending at height k ≥ 0. The (n, k)th entry is the number of ternary
paths with length 3n+ k and terminal height k.

Let tn,k denote the (n, k)th entry of (19), so that tn,0 = tn. Then tn,k = [zn]zkT k+1 =
[zn−k]T k+1, which as a consequence of (2) and (3) is

tn,k =
k + 1

2n− k + 1

(

3n− 2k

n− k

)

. (20)

This fact can be used to show that limn→∞ tn−1/tn = 4/27.
The generating function T 2(z) for the nonzero terms in the second column of (19) corre-

sponds to A006013 which counts

• elevated ternary paths of length 3(n+ 1),

• ground level points on all ternary paths of length 3n,

• leaves at the root of all noncrossing trees with n+ 2 vertices,

• even trees with 2(n+ 1) edges where the degree of the root is two, and

• a third of the leaves at the root of all ternary trees with 3(n+ 1) edges.
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r
1

r
k

N1 N2N3

e

Figure 4: A nonempty noncrossing tree N with no leaf at its root must have the form above.

It is not hard to show, using (20), that the average number of ground level points on
all ternary paths approaches 3, that is lim

n→∞
tn+1,1/tn = 3. Similarly, since the number of

leaves at the root for all noncrossing trees of order n + 1 is given by tn,1 = [zn]zT 2(z) =
[zn−1]T 2(z) = 1

n

(

3n−2
n−1

)

, one can show that the average number of leaves at the root tn,1/tn
approaches 4/9.

Next we offer an analogue to the Fine number sequence for the ternary numbers. We will
refer to a ternary path having no hills as a ternary-Fine path. Let F3(z) denote the generating
function for the number of ternary-Fine paths of length 3n. The sequence corresponding to
F3(z) begins 1, 0, 2, 7, 34, 171, . . . (A023053).

Theorem 9. If T (z) is the generating function for the number of ternary paths of length 3n
and F3(z) is the generating function for the number of ternary paths of length 3n having no

hills, then T (z) =
F3(z)

1− zF3(z)
and equivalently, F3(z) =

T (z)

1 + zT (z)
.

Proof. Every ternary path can be decomposed according to its number of hills. A ternary
path with k hills would have the form

(P1UUD)(P2UUD) · · · (PkUUD)Pk+1

where each Pi is a (possibly empty) ternary path with no hills. The associated generating
function is zkF k+1

3 (z) and summing over all k ≥ 0 provides the result.

In addition to ternary-Fine paths of length 3n, F3(z) also counts

• paths from (0, 0) to (n, 0) which never go below the x-axis and use step set {U(1, 1)}∪
{Lk(1, 0) : k = 1, 2, 3} ∪ {Dk(1,−1) : k = 1, 2, 3} ∪ {D(1,−2)} but L1, L2, L3, D3 are
not allowed to touch the x-axis,

• noncrossing trees with n+ 1 vertices having no leaves at the root,

• 2-plane trees with n+ 1 vertices, root labeled 2 and no leaves at the root

A detailed justification of the first bullet above will be presented in Section 4.

Remark 10. We may refer to the sequence associated with F3(z) as the ternary-Fine numbers.
It is worth noting that using the Lindstrom-Gessel-Viennot nonintersecting path system
argument for determinants [6, 9], one may conclude that the Hankel transform of the ternary-
Fine numbers is equal to the Hankel transform of the ternary numbers (A051255).
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Next we discuss the limiting distribution for the number of hills among ternary paths.
Before proceeding, we present a few generating function identities for F3 which prove useful
in accomplishing this.

Theorem 11. Let F3(z) be the generating function for the number of ternary paths of length
3n having no hills. Then

zF3(z)T
2(z) = F3(z) + zF3(z)− 1

Proof. First, rewrite this equation as

F3 = 1 + zF3(T
2 − 1).

We shall prove this last statement combinatorially in terms of noncrossing trees. F3 counts
noncrossing trees having no leaves at the root. Observe that any noncrossing tree N with no
leaf at the root is either empty or it consists of the following components: (A) the “longest”
edge e from the root (that is, the edge e from 1 to k, where k is as large as possible); (B)
subtrees N1, N2 (not both empty) attached to the left and right of k respectively, and; (C)
a (possibly empty) subtree N3 with no leaves at its root attached to the root 1. See Figure
4. Since, z counts (A), T 2 − 1 counts (B) and F3 counts (C), it is clear that 1 + zF3(T

2 − 1)
also counts the number of noncrossing trees having no leaf at the root.

The two preceding theorems can be used to give the following recursive identity for the
F3(z). Note that Theorem 12 can be thought of as an analogue of the Fine number identity
(12) referenced in [2]. In Section 4, we will consider the generalization of this identity for
t-Dyck paths.

Theorem 12. Let F3(z) be the generating function for the number of ternary paths of length
3n having no hills. Then

F 3
3 (z − z2 − z3) + F 2

3 (2z + 3z2)− F3(1 + 3z) + 1 = 0 (21)

Proof. First, we establish the following preliminary result:

T 2 = F 2
3 (1− z − z2) + F3(2 + 3z)− 2 (22)

We begin with the observation from Theorem 9 that

zT 2 =
zF 2

3

(1− zF3)2

18



which implies

zF 2
3 = zT 2(1− 2zF3 + z2F 2

3 )

zF 2
3 = zT 2 − 2z2T 2F3 + z3T 2F 2

3 )

zT 2 = zF 2
3 + 2z2T 2F − z3T 2F 2

3 .

Now, using Theorem 11, we obtain

zT 2 = zF 2
3 + 2z2T 2F − z3T 2F 2

3

zT 2 = zF 2
3 + 2zF3 + 2z2F3 − 2z − z2F 2

3 − z3F 2
3 + z2F3

T 2 = F 2
3 (1− z − z2) + F3(2 + 3z)− 2.

Multiplying both sides of equation (22) by zF and using Theorem 11 provides the result.

The number of ternary paths of length 3n having exactly k hills is given by the (n, k)th
entry of the Riordan matrix (A101371)

(F3(z), zF3(z)) =

























1
0 1
2 0 1
7 4 0 1
34 14 6 0 1
171 72 21 8 0 1
905 370 114 28 10 0 1

· · ·

























. (23)

Notice that the row sums of (23) are the ternary numbers. Let f̃n,k := [zn]zkF k+1
3 denote

the (n, k)th entry of (23), so that f̃n,0 = f̃n.
Now Theorem 12 suggests a recursion for f̃n,k. By multiplying both sides of (21) by

zk−1F k−1, we have

F k+2
3 (zk − zk+1 − zk+2) + F k+1

3 (2zk + 3zk+1)− F k
3 (z

k−1 + 3zk) + zk−1F k−1
3 = 0,

for all k ≥ 1, and by taking the nth coefficient of this last expression, we obtain the following
recursion for the triangle in (23):

f̃n+1,k+1 − f̃n,k+1 − f̃n−1,k+1 + 2f̃n,k + 3f̃n−1,k − f̃n,k−1 − 3f̃n−1,k−1 + f̃n−1,k−2 = 0 (24)

for all n ≥ 1 and k ≥ 2.
We can now also answer Shapiro’s question in the context of ternary paths.

Theorem 13. The proportion of ternary paths having an even number of hills approaches
125/169 as the length of the paths approaches infinity.
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Proof. Let L̃k denote the asymptotic probability that a ternary path has k hills. That is, let

L̃k = lim
n→∞

f̃n,k
tn

.

We will use equation (22) to find a generating function for L̃k. Divide both sides of equation
(24) by tn and let n tend to infinity.

Notice that as n → ∞,

f̃n+1,k

tn
=

f̃n+1,k

tn+1

· tn+1

tn
→ 27

4
L̃k

and
f̃n−1,k

tn
=

f̃n−1,k

tn−1

· tn−1

tn
→ 4

27
L̃k.

With these two observations and using recursion (24), we have

(

27

4
− 1− 4

27

)

L̃k+1 +

(

2 + 3 · 4

27

)

L̃k −
(

1 + 3 · 4

27

)

L̃k−1 +
4

27
L̃k−2 = 0 (25)

⇒ 605

108
L̃k+1 +

22

9
L̃k −

13

9
L̃k−1 +

4

27
L̃k−2 = 0 (26)

Using this recurrence, along with initial conditions L̃0, L̃1, and L̃2, we can determine that
the generating function for L̃k is

L̃(z) =
∞
∑

k=0

L̃kz
k =

324z + 405

605 + 264z − 156z2 + 16z3
=

(

9

11− 2z

)2

=

(

9/11

1− 2z/11

)2

(27)

(We refer the interested reader to Appendix A for a verification of the initial conditions
L̃0, L̃1, and L̃2.) Hence, the proportion of ternary paths having k hills is

[zk]L̃(z) = (k + 1) · 81

121

(

2

11

)k

which is the negative binomial distribution negbin(2, 9/11) with mean 4/9 and variance
44/81. Finally, the proportion of ternary paths having an even number of hills is given by

∞
∑

k=0

[z2k]L̃(z) =
81

121

∞
∑

k=0

(2k + 1) ·
(

4

121

)k

=
125

169
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4 Generalized Fine and Motzkin analogues

In this section, we generalize the Fine analogue from the previous section and provide some
interpretations. In particular, we give a generating function identity for which Theorem 12
is a special case. In connection with this generalized Fine analogue, we also introduce an
analogue for the Motzkin numbers and discuss some of its interpretations.

Recall that a t-Dyck path is a path from (0, 0) to (tn, 0) with step set {U(1, 1)} ∪
{D(1,−t + 1)} which never goes below the x-axis and that Ct(z) is the generating func-
tion for the number of t-Dyck paths of length tn, that is,

Ct(z) =
∞
∑

n=0

1

(t− 1)n+ 1

(

tn

n

)

zn.

Let’s start with our Fine analogue.

Theorem 14. Let Ft(z) be the generating function for the number of t-Dyck paths having
no hills. Then

Ct(z) =
Ft(z)

1− zFt(z)
.

Proof. This follows from the fact that t-Dyck paths can be sorted according to their number
of hills. A t-Dyck path with k hills would have the form

F0U
t−1DF1U

t−1DF2 · · ·U t−1DFk,

where each Fi is a t-Dyck path with no hills. Hence, the generating function for the number
of t-Dyck paths with k hills is zk(Ft(z))

k+1 and summing from k = 0 to infinity gives the
result.

Note that F1(z) = 1, F2(z) = F (z) is the generating function for the Fine numbers and
F3(z) = F3(z) is the Fine analogue of Section 3.2. In this paper, we have seen non-obvious
generating function identities for F2(z) and F3(z) which we want to understand in terms
of Ft(z). Recalling the approach to equation (12) which was used in [2], we first want to
consider a different path interpretation of Ft(z).

Consider the set of paths from (0, 0) to (n, 0) with step set {(1, 1)} ∪ {(1,−k + 1) : k =
1, 2, . . . t} which never go below the x-axis. In the case when t = 2, these are Motzkin paths.
Hence, we will refer to these paths in general as [t]-Motzkin paths. There is a well-known
correspondence between these [t]-Motzkin paths, plane [t]-trees and other combinatorial
structures [12]. With an appropriate coloring, these objects become another manifestation
of the generalized Catalan numbers.

Remark 15. The reader should be careful to distinguish the [t]-Motzkin paths described here
from “t-Motzkin paths” that have been described elsewhere in the literature. For instance,
in [2] the term “2-Motzkin path” is used to describe a path with step set

{U(1, 1), L1(1, 0), L2(1, 0), D(1,−1)}.
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3 3 3 3
3

3
3 3

3

Figure 5: There are 27 + 9 + 9 + 9 + 1 = 55 binomial [3]-Motzkin paths of length 3. Each
up step of the form (1, 1) can be just one color; each level step of the form (1, 0) can be one
of 3 colors; each down step of the form (1,−1) can be one of 3 colors; each down step of the
form (1,−2) can be just one color.

However, here, the step set for [t]-Motzkin paths has cardinality t+1. If we let Mt(z) denote
the generating function for the number of [t]-Motzkin paths of length n, then M1(z) =
C1(z) = 1/(1− z), M2(z) = M(z) and

M3(z) = 1 + z + 2z2 + 5z3 + 13z4 + 36z5 + 104z6 + 309z7 + · · · ,

is A036765. Based on a natural decomposition of [t]-Motzkin paths by initial step, one can
easily see that

Mt(z) =
t
∑

k=0

zk(Mt(z))
k.

Definition 16. Let t ≥ 1. A binomial [t]-Motzkin path is a path from (0, 0) to (n, 0)
with step set

t
⋃

k=0

{

Si(1,−k + 1) : i = 1, 2, . . . ,

(

t

k

)}

= {S1(1, 1)} ∪ {S1(1, 0), . . . , S(t1)
(1, 0)}

∪{S1(1,−1), . . . , S(t2)
(1,−1)} ∪ . . .

· · · ∪ {S1(1,−k + 1), . . . , S(t
k
)(1,−k + 1)} ∪ . . .

∪{S1(1,−t+ 3), . . . , S( t

t−2)
(1,−t+ 3)} ∪

{S1(1,−t+ 2), . . . , S( t

t−1)
(1,−t+ 2)} ∪ {S1(1,−t+ 1)}

which never goes below the x-axis. That is to say, there are 2t possible steps to choose from.
Each step has the form Si(1,−k+1) where k = 0, 1, . . . , t. Each Si(1,−k+1) is distinguished
with a color i where i is between 1 and

(

t
k

)

.

Example 17. See Figure 5 for a depiction of binomial [3]-Motzkin paths of length 3. There
are 55 binomial [3]-Motzkin paths of length 3. Since each up step U is one color, each level
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step L is one of 3 colors, each down step D1 of the form (1,−1) is one of 3 colors and the
down step D2 of the form (1,−2) can only be one color, we have 27 paths of the form LLL,
9 of the form LUD1, 9 of the form ULD1, 9 of the form UD1L and 1 of the form UUD2.

In general, binomial [t]-Motzkin paths are counted by generalized Catalan numbers.

Theorem 18. The generating function for the number of binomial [t]-Motzkin paths of length
n is (Ct(z))

t.

Proof. To see this, suppose M∗
t (z) is the generating function for binomial [t]-Motzkin paths.

Each binomial [t]-Motzkin path is either (1) empty, (2) of the form LP1 where L is a level
step and P1 is a colored t-Motzkin path, or (3) of the form UP1UP2UP3 · · ·UPk−1DkPk

where k = 2, . . . , t, U is an up step, each Pi is a binomial [t]-Motzkin path and Dk is a down
step of the form (1,−k + 1). Since there are

(

t
1

)

types of level step and
(

t
k

)

types of down
step of the form (1,−k + 1), we have

M∗
t (z) = 1 +

(

t

1

)

zM∗
t (z) +

(

t

2

)

z2(M∗
t (z))

2 +

(

t

3

)

z3(M∗
t (z))

3 + · · ·

=
t
∑

k=0

(

t

k

)

zk(M∗
t (z))

k

= (1 + zM∗
t (z))

t,

which implies that
1 + zM∗

t = (M∗
t )

1/t. (28)

Since (Ct(z))
t satisfies (28) and M∗

t (0) = 1 = Ct(0), it must be that M∗
t (z) = (Ct(z))

t =
(Ct(z)− 1)/z.

There is of course a natural bijection φ between binomial [t]-Motzkin paths of length n
and t-Dyck paths of length t(n + 1). Suppose P is a binomial [t]-Motzkin path. To create
φ(P ), first start with U t−1. Then reading P from left to right, whenever we encounter a step
Si(1,−k + 1) with color i, we adjoin a unique subpath Pk,i of length t consisting of k down
steps of the form D(1,−k + 1) and t− k U ’s. Since there are

(

t
k

)

possibilities for the color i
and

(

t
k

)

possible paths Pk,i, we can indeed assign each color i with a unique path Pk,i. Notice
that the adjoining of Pk,i would add a net of −t(k − 1) to the height of the path. Complete
φ(P ) by adjoining the final step D(1,−t + 1). The resulting path φ(P ) is a path of length
tn + t using U(1, 1)’s and D(1,−k + 1)’s, which never goes below the x-axis, i.e., a t-Dyck
path. The inverse map φ−1 is achieved by reading a t-Dyck from left to right, t consecutive
steps at a time (ignoring the first t − 1 U ′s and the last D) and then reversing the step to
subpath assignment.

It is known that binomial [2]-Motzkin paths having no level steps on the x-axis are
counted by the Fine numbers with generating function F (z) = F2(z). Given the bijection
φ described above, it is clear that a 2-Dyck path with a hill would correspond to binomial
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[2]-Motzkin paths with at least one level step on the x-axis. For t ≥ 3, we want to give an
interpretation of Ft(z) in terms of binomial [t]-Motzkin paths which is consistent with the
case when t = 2. Considering the map φ, one can imagine how a level step on the x-axis in a
binomial [t]-Motzkin path could create a hill in a t-Dyck path, but clearly for t ≥ 3, simply
disallowing such level steps would not be sufficient to generate Ft(z).

Theorem 19. Ft(z) is the generating function for the number of binomial [t]-Motzkin paths
of length n with the following step restrictions:

1. no level steps allowed on the x-axis and

2. only
(

t−1
k−1

)

colors are allowed for down steps of the form (1,−k + 1) which end on the
x-axis.

We may refer to the restricted binomial [t]-Motzkin paths described in Theorem 19 as
t-Fine paths.

Proof. Let Ht(z) be the generating function for the number of t-Fine paths of length n.
First, we will show that Ht(z) satisfies:

Ht(z) = 1 + zHt(z)[(Ct(z))
t−1 − 1] (29)

To see this, observe that every t-Fine path is either empty or has a return. If the t-Fine path
has a return, then it has the form

(UP1)(UP2) · · · (UPk−1)DkF ,

where each Pi is a binomial [t]-Motzkin path, Dk is the down step of the form (1,−k + 1)
incident with the first return and F is a t-Fine path. Since Dk can be one of

(

t−1
k−1

)

colors
and k = 2, 3, . . . , or t, we have

Ht = 1 + zHt

[

t
∑

k=2

(

t− 1

k − 1

)

(zCt
t )

k−1

]

= 1 + zHt

[

t−1
∑

k=1

(

t− 1

k

)

(Ct − 1)k

]

= 1 + zHt[((Ct − 1) + 1)t−1 − 1]

= 1 + zHt[(Ct)
t−1 − 1],

which implies that Ct−1
t =

Ht − 1 + zHt

zHt

or equivalently,

Ct − 1

zCt

=
Ht + zHt − 1

zHt

.
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And on the other hand, we have from Theorem 14 that

Ct − 1

zCt

=
Ft

1−zFt
− 1

z Ft

1−zFt

=
Ft + zFt − 1

zFt

.

Hence, given Ht(0) = 1 = Ft(0), it must be that Ht(z) = Ft(z).

Finally, we observe that as a direct consequence of Theorem 14 and the fact that Ct =
1 + zCt

t , we have the following generating function identity for Ft(z).

Theorem 20.

1 + zF t
t +

t−1
∑

k=0

[(

t− 1

k

)

+

(

t

k + 1

)

z

]

(−1)k+1zkF k+1
t = 0

Proof. Using Theorem 14, we obtain

Ct(z) = 1 + zCt
t (z)

=⇒ Ft(z) = 1− zFt(z) + zCt−1
t (z)Ft(z)

=⇒ Ft(z) =
(1− zFt(z))

t

(1− zFt(z))t−1
+

z(Ft(z))
t

(1− zFt(z))t−1

=⇒ Ft(z)(1− zFt(z))
t−1 = (1− zFt(z))

t + z(Ft(z))
t

and the result follows from the Binomial Theorem.

5 Conclusions and further work

Our study of returns and hills on t-Dyck paths has shown that, asymptotically speaking,
the number of returns is easier to determine than the number of hills. We established
that the asymptotic distribution for the number of returns among t-Dyck paths is negative
binomial with parameters (2, t−1

t
). Furthermore, in response to L. Shapiro’s question, we

have established that the probability that a randomly chosen Dyck path has an even number
of hills approaches 5

8
and the probability that a randomly chosen ternary path has an even

number of hills approaches 125
169

. Hence, it is apparently more likely for a ternary path to have
an even number of hills than for a Dyck path to have an even number of hills. In this case, we
have used a recursive identity for the generalized Fine functions F2(z) and F3(z) to determine
the exact probabilities needed to reach our conclusion. While such a recursive identity for
Ft(z) exists for all t (Theorem 20), the efficiency of its use decreases as t increases. In Section
2.2, we have provided strong evidence that the asymptotic distribution for the number of

hills among t-Dyck paths is in fact negative binomial with parameters
(

2, tt−1

tt−1+(t−1)t−2

)

, and

it would be very desirable to make this evidence conclusive.
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A Initial conditions for L̃n

Here are the computations to determine L̃0, L̃1, and L̃2 as initial conditions for the recurrence
in (26).

Equation (22) implies that, for n ≥ 1,

tn+1,1 = f̃n+1,1 − f̃n,1 − f̃n−1,1 + 2f̃n,0 + 3f̃n−1,0 (30)

Dividing both sides of (30) by tn+1, we obtain:

tn+1,1

tn+1

=
f̃n+1,1

tn+1

− f̃n,1
tn

· tn
tn+1

− f̃n−1,1

tn−1

· tn−1

tn
· tn
tn+1

+ 2
f̃n,0
tn

· tn
tn+1

+ 3
f̃n−1,0

tn−1

· tn−1

tn
· tn
tn+1

⇒ 4

9
= L̃1 − L̃1

(

4

27

)

− L̃1

(

4

27

)2

+ 2L̃0

(

4

27

)

+ 3L̃0

(

4

27

)2

⇒ 4

9
= L̃1

(

1− 4

27
−
(

4

27

)2
)

+ L̃0

(

2

(

4

27

)

+ 3

(

4

27

)2
)

⇒ 4

9
=

605

81
L̃1 +

264

81
L̃0

⇒ 324 = 605L̃1 + 264L̃0

⇒ 22 · 34 = 5 · 112L̃1 + 23 · 3 · 11L̃0

Now, if we multiply equation (22) by zT 2, we obtain

zT 4 = zF 2
3 T

2(1− z − z2) + zF3T
2(2 + 3z)− 2zT 2

Using Theorem 11, we can simplify this to

zT 4 + 2zT 2 = (F 2
3 + zF 2

3 − F3)(1− z − z2) + (F3 + zF3 − 1)(2 + 3z)

⇒ zT 4 + 2zT 2 = F 2
3 (1− 2z2 − z3) + F3(1 + 6z + 4z2)− (2 + 3z)

and therefore, we have for n ≥ 2,

tn+2,3 + 2tn,1 = f̃n+1,1 − 2f̃n−1,1 − f̃n−2,1 + f̃n + 6f̃n−1 + 4f̃n−2 (31)

Dividing both sides of (31) by tn+1, we obtain
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2

(

4

27

)

+ 2

(

4

9

)(

4

27

)

= L̃1 − 2L̃1

(

4

27

)2

− L̃1

(

4

27

)3

+ L̃0

(

4

27

)

+ 6L̃0

(

4

27

)2

+ 4L̃0

(

4

27

)3

⇒ 8 · 13
35

= L̃1

[

1− 2

(

4

27

)2

−
(

4

27

)3
]

+ L̃0

[

4

27
+ 6

(

4

27

)2

+ 4

(

4

27

)3
]

⇒ 23 · 34 · 13 = 5 · 112 · 31 · L̃1 + 22 · 11 · 131 · L̃0

(Note that (20) can be used to conclude that lim
n→∞

tn+2,3/tn+1 = 2.)

With two equations and two unknowns, we can determine L̃0 and L̃1.

L̃0 =
23

112
=

81

121
(32)

L̃1 =
22 · 34
113

=
324

1331
(33)

Now, equation (21) can be used to determine L̃2. Equation (21) implies that for n ≥ 1,

f̃n + 3f̃n−1 = f̃n+1,2 − f̃n,2 − f̃n−1,2 + 2f̃n,1 + 3f̃n−1,1 (34)

Dividing both sides by tn−1, we obtain

L̃0

(

27

4

)

+ 3L̃0 = L̃2

(

27

4

)2

− L̃2

(

27

4

)

− L̃2 + 2L̃1

(

27

4

)

+ 3L̃1

39

4
L̃0 =

605

16
L̃2 +

66

4
L̃1

⇒ L̃2 =
22 · 35
114

=
972

14641
(35)
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