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Abstract

We give a proof of Dixon’s binomial coefficient identity using recurrence equations
and induction.

1 Introduction

In 1912, Dixon [1] established the following famous identity

za:(_l)k(a—l—b)(b—l—c)(c—l—a):(a—i-b—i-c)! 0
= a+k)\b+k)\c+k al-bl-cl
where a, b, ¢ are nonnegative integers.

There are many proofs of Eq. (1). In 1916, MacMahon proved his master theorem. In
1962, Good [4] found a short proof of Eq. (1) using MacMahon’s master theorem. Gessel
and Stanton [3] gave a short proof using Laurent series in 1985. In 1990, Ekhad [2] gave a
very short proof using induction. In 2003, Guo [5] gave a short proof using polynomials.

We give an elementary proof of Eq. (1) using recurrence equations and induction. In
order to obtain recurrence equations, we will use some so-called auxiliary sums.

2 Proof of Eq. (1)

Proof. Let N denote the set of positive integers, and let Ny denote the set of nonnegative
integers. We let S(a,b,c) denote the left side of Eq. (1), where a,b,c € Ny. We introduce
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the auxiliary sums P(a,b,c), Q(a,b,c) and R(a,b,c) as follows
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From the last equation above, it follows that

P(a,b,c) = (a+b)(a+c)S(a—1,b,¢).
Similarly, we obtain that

Qa,b,c) = (a+b)(b+¢c)S(a,b—1,¢),

and

R(a,b,¢) = (a+c)(b+c)S(a,b,c = 1).
From Eqns. (2) and (3), we have that

P(CL, ba C) - Q(aa b7 C) = (CL2 - bQ)S(aa ba C)'
Let a # b. From Eqns. (5), (6) and (8), it follows that

S(a,b,c) = ((a+c)S(a—1,b,c) = (b+c)S(a,b—1,¢)).

a—>b
Similarly, if @ # ¢, then it follows that

S(a,b,c) =

((a+b)S(a—1,b,¢)— (b+c)S(a,b,c —1)).

a—=c¢C



We treat the case when a = b = ¢ separately.
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Therefore,
S(a,a,a) =3S(a,a,a —1). (11)
Now we give a proof of Eq. (1) using induction:
Eq. (1) is true if a = b = ¢ = 0. Let n € Ny be fixed. Assume that Eq. (1) holds for

all nonnegative integers a, b and ¢, such that a +b+ ¢ = n. Let a, b and ¢ be nonnegative
integers such that a + b+ ¢ =n + 1. Then we have three cases:

Case 1: If, at least, one of numbers a, b or ¢ is equal to zero, then Eq. (1) obviously holds.
Therefore, we may assume that a, b, c € N.

Case 2: If a = b = ¢, then we use Eq. (11). From the induction hypothesis, we have that
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Case 3: If a # b, then we use Eq. (9). From the induction hypothesis, we have that
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,and S(a,b—1,c) = (atbtc—1)
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S(a, b, c) = Lb((a L 6)S(a—1,b,¢) — (b+¢)S(a,b—1,¢))
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If @ = b then a # ¢. We do similarly as before using Eq. (10). This proves Case 3. By
induction, Eq. (1) follows. O
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