
23 11

Article 16.5.1
Journal of Integer Sequences, Vol. 19 (2016),2

3

6

1

47

Infinite Products Arising in Paperfolding

Leyda Almodovar
Department of Mathematics

University of Iowa
Iowa City, IA 52242

USA
leyda-almodovar@uiowa.edu

Hadrian Quan
Department of Mathematics

UC Santa Cruz
Santa Cruz, CA 95064

USA
hquan1@ucsc.edu

Eric Rowland
Department of Mathematics

University of Liege
Belgium

rowland@lacim.edu

Victor H. Moll
Department of Mathematics

Tulane University
New Orleans, LA 70118

USA
vhm@tulane.edu

Fernando Roman
Department of Mathematics
Kansas State University
Manhattan, KS 66506

USA
yahdiel@ksu.edu

Michole Washington
Department of Mathematics

Georgia Institute of Technology
Atlanta, GA 30332

USA
mwashington9@gatech.edu

Abstract

J.-P. Allouche recently examined two infinite products where the term is a rational

function of the index n raised to the term of the paperfolding sequence ǫn. A closed

form is given only for one of them. We discuss an attempt to produce the missing closed

form. We give a detailed analysis of convergence and a closed form for the analogous

question, where the paperfolding sequence is replaced by a periodic one.
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1 Introduction

The paperfolding sequence ǫn is defined by the rules

ǫ2n = (−1)n (1)

ǫ2n+1 = ǫn.

The first few values are {1, 1, −1, 1, 1}. For fixed a ∈ N, the rules (1) determine all subse-
quences of the form

{ǫ2an+b : a ∈ N, 0 ≤ b < 2a} (2)

in terms of constants, {ǫn} and {(−1)n}. For example, when a = 2,

ǫ4n = 1, ǫ4n+1 = ǫ2n = (−1)n, ǫ4n+2 = (−1)2n+1 = −1, ǫ4n+3 = ǫ2n+1 = ǫn. (3)

The work presented here is motivated by results given by Allouche [1]. In particular, the
evaluation

B =
∞
∏

n=1

(

2n

2n+ 1

)ǫn

=
1

8
√
2π

Γ

(

1

4

)2

(4)

is obtained using the auxiliary product

A =
∞
∏

n=0

(

2n+ 1

2n+ 2

)ǫn

. (5)

Indeed, the identity

AB =
1

2

∞
∏

n=1

(

n

n+ 1

)ǫn

(6)

is split according to the parity of n and (1) yields

AB =
1

2
A

∞
∏

n=1

(

2n

2n+ 1

)(−1)n

. (7)

The non-vanishing of A gives

B =
1

2

∞
∏

n=0

(4n+ 4)(4n+ 3)

(4n+ 5)(4n+ 2)
. (8)

A classical result expressing such products in terms of the gamma function gives the value of
B. Observe that the value of A does not come from this formulation. A search for a closed
form for A was the motivation for the results presented here.

An early evaluation of an infinite product was produced by Wallis in his representation

∞
∏

n=1

(2n)(2n)

(2n− 1)(2n+ 1)
=

π

2
. (9)
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The history of this discovery appears in Osler [7]. The literature contains a variety of infinite
product evaluations. For instance,

∞
∏

n=1

(

1 +
1

F2n+1

)

=
3

ϕ
and

∞
∏

n=1

(

1 +
1

L2n+1

)

= 3− ϕ, (10)

is given by Sondow [9]. Here Fn, Ln are the Fibonacci (Lucas) numbers and ϕ = 1
2
(
√
5 + 1)

is the golden ratio.
The value of infinite products usually involves classical constants of analysis. For instance,

Borwein [3] evaluates the function

D(x) = lim
n→∞

2n+1
∏

k=1

(

1 +
x

k

)(−1)k+1k

(11)

as a generalization of the values

∞
∏

n=1

(

1 +
2

n

)(−1)n+1n

=
π

2e
and

∞
∏

n=1

(

1 +
2

n

)(−1)nn

=
6

πe
(12)

established by Melzak [6]. Some exact evaluations are given in terms of the constant

A1 = exp

(

1

4
−
∫ ∞

0

e−s

s3

(

1− s

2
+

s2

12
− s

es − 1

)

ds

)

(13)

and the Catalan constant

G =
∞
∑

n=0

(−1)n

(2n+ 1)2
. (14)

Examples include

D(1) =
A6

1

21/6
√
π

and D
(

1
4

)

=
21/6

√
πA3

1

Γ
(

1
4

) eG/π. (15)

Other types of products involving gamma factors have recently been analyzed by Chamber-
land and Straub [4].

The question considered here deals with the evaluation of products of the form

P(R, s) =
∞
∏

n=1

R(n)sn . (16)

Here R is a rational function and s is an automatic sequence (as studied by Allouche [1]).
Examples include periodic sequences taking values in the alphabet {+1, −1} or k-automatic

sequences : a sequence {sn : n ≥ 0} is k-automatic if the set of subsequences {skjn+ℓ : n ≥ 0}
with j ≥ 0, ℓ ∈ [0, kj − 1] is finite. More information about such sequences appears in [2].
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The main example discussed here is the paperfolding sequence ǫn defined in (1). Splitting
the evaluation of a product into even and odd indices leads, in the special case of a rational
function of degree 1, to the identity

∞
∏

n=0

(

αn+ β

γn+ δ

)ǫn

=
∞
∏

n=0

(

2αn+ β

2γn+ δ

)(−1)n

×
∞
∏

n=0

(

2αn+ α + β

2γn+ γ + δ

)ǫn

. (17)

The exponent (−1)n appearing in the first product on the right is a periodic sequence of
period length 2. This motivates the evaluation of products with terms of the form R(n)Mn

where Mn is a periodic sequence. This is the topic of Sections 2–4.
Section 2 discusses the convergence of the product

P(R, 1) =
∞
∏

n=0

R(n), (18)

where

R(z) =
(z + a1) · · · (z + ad)

(z + b1) · · · (z + bd)
. (19)

This section reviews the elementary arguments showing that convergence in (18) is equivalent
to R(n) → 1 as n → ∞ and S(R) = 0. Here

S(R) =
∑

b∈R−1(∞)

b−
∑

a∈R−1(0)

a. (20)

The value of P(R, 1) is then given by

∞
∏

n=0

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ bd)
=

d
∏

k=1

Γ(bk)

Γ(ak)
. (21)

Section 3 discusses the convergence of products P(R,M), where R is a rational function and
M is a periodic sequence of period length 2. Section 4 extends the results to any periodic
sequence, with special emphasis on period lengths 3 and 4. Section 5 considers some infinite
products related to the paperfolding sequence, and Section 6 considers a generalization to
certain k-automatic sequences. An alternative proof of the evaluation of Allouche’s product
B is presented and a new form of the product A is given. The question of existence of a
closed form for A remains open.

2 Convergence of infinite products

This section considers the simplest type of product (16): R is a given rational function and
sn ≡ 1. The data for the rational function is a sequence of complex numbers {ak} and {bk}
where ak, bk are not 0 nor a negative integer. The convergence of the partial finite products

Pr(R, 1) =
r
∏

n=1

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
(22)
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is examined first.

Theorem 1. The infinite product

P(R, 1) =
∞
∏

n=1

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
(23)

converges if and only if d = r and a1 + · · · + ad = b1 + · · · + br; that is, R(n) → 1 and

S(R) = 0.

Proof. The convergence of a product
∏

(1+uk) is equivalent to the convergence of the series
∑

uk. Therefore uk → 0 is a necessary condition for convergence. This implies d = r. On
the other hand

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
= 1 + (a1 + · · ·+ ad − b1 − · · · − br)

1

n
+O(1/n2), (24)

and the second condition on the parameters ak, bk is now clear.

The next question is the evaluation of the limiting product. The motivation for the final
result is this: consider the problem of producing a function h(z) with zeros at a prescribed
sequence {zn}. This is elementary if the sequence is finite: the solution is simply given as

P (z) =
N
∏

n=1

(

1− z

zj

)

(25)

when zj 6= 0. On the other hand, if the sequence is infinite, convergence issues might appear.
For instance, if one would like to have a function that vanishes precisely at the negative
integers, then the natural first attempt

P1(z) =
∞
∏

n=1

(

1 +
z

n

)

(26)

fails to converge. To fix this, introduce an exponential correction and form the partial
products

P2,N (z) = e
z
(

1+
1
2
+
1
3
+···+

1
N

) N
∏

n=1

(

1 +
z

n

)

e−z/n (27)

= ez(E1(N)+lnN)

N
∏

n=1

(

1 +
z

n

)

e−z/n,

with

E1(N) = 1 +
1

2
+ · · ·+ 1

N
− lnN. (28)
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The limit
γ = lim

N→∞
E1(N) (29)

is the famous Euler constant. Therefore, the modified product

P2,N(z)

N z
:= ezE1(N)

N
∏

n=1

(

1 +
z

n

)

e−z/n (30)

has a limit as N → ∞. The infinite product has zeros at the negative integers. It turns out
to be convenient to write an infinite product with poles at the negative integers and also to
include 0 as a pole. This yields the classical gamma function Γ(z). The functional equation
Γ(z + 1) = zΓ(z) is used to simplify the result.

Theorem 2. The infinite product representation of the gamma function is given by

∞
∏

n=1

(

1 +
z

n

)−1

ez/n = eγzΓ(z + 1). (31)

It is now easy to write the value of the infinite product

P(R, 1) =
∞
∏

n=1

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
(32)

in Theorem 1. Start with

P(R, 1) =
∞
∏

n=1

(1 + b1/n)
−1eb1/n · · · (1 + br/n)

−1ebr/n

(1 + a1/n)−1ea1/n · · · (1 + ad/n)−1ead/n
(33)

and observe that the added exponential terms amount to 1. Passing to the limit in (33) gives

P(R, 1) =
d
∏

k=1

Γ(bk + 1)

Γ(ak + 1)
. (34)

To simplify the form of the result, shift n to n+ 1 in (32) to produce the following result.

Theorem 3. Let ak, bk ∈ C none of which are 0 or negative integers. Assume

a1 + · · ·+ ad = b1 + · · ·+ bd. (35)

Then
∞
∏

n=0

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ bd)
=

d
∏

k=1

Γ(bk)

Γ(ak)
. (36)
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3 The first example: Sequences of period length 2

This section considers products of the form

P(R,M) :=
∞
∏

n=0

R(n)Mn (37)

where Mn = (−1)n.
Start with the representation

R(z) = C
(z + a1) · · · (z + ad)

(z + b1) · · · (z + br)
. (38)

The partial products of P(R, s) are

N
∏

n=0

R(n)(−1)n =

⌊N/2⌋
∏

n=0

R(2n)

R(2n+ 1)
×
{

1, if N is odd;

R(N + 1), if N is even.
(39)

The first factor on the right in (39) is connected to the product P(R1, 1), where

R1(z) =
R(2z)

R(2z + 1)
. (40)

Its convergence is decided by Theorem 1. It is clear that the product on the left-hand side
of (39) converges if and only if both factors on the right converge separately.

In particular, if P(R,M) converges, then lim
n→∞

R(n) = 1 and it must be that C = 1 in

(38). To complete the discussion, it suffices to determine conditions under which P(R1, 1)
is finite. The rational function (40) factors as

R1(z) =
(2z + a1) · · · (2z + ad)

(2z + b1) · · · (2z + br)
× (2z + 1 + b1) · · · (2z + 1 + br)

(2z + 1 + a1) · · · (2z + 1 + ad)
, (41)

with d+ r zeros at
−1

2
a1, . . . ,−1

2
ad, −1

2
(1 + b1), . . . ,−1

2
(1 + br) (42)

and d+ r poles at
−1

2
b1, . . . ,−1

2
br, −1

2
(1 + a1), . . . ,−1

2
(1 + ad). (43)

Since R1(z) → 1 as z → ∞, convergence in (39) requires the relation

d
∑

k=1

ak +
r
∑

k=1

(1 + bk) =
r
∑

k=1

bk +
d
∑

k=1

(1 + ak). (44)

This is equivalent to the condition d = r.
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The value of P(R,M) is obtained from Theorem 3 as

P(R,M) = P(R1, 1) =
d
∏

k=1

Γ( bk
2
)Γ(1+ak

2
)

Γ(1+bk
2

)Γ(ak
2
)
. (45)

This is simplified using the duplication formula for the gamma function to obtain

d
∏

k=1

Γ( bk
2
)Γ(1+ak

2
)

Γ(1+bk
2

)Γ(ak
2
)
= 2(b1−a1)+···+(bd−ad)

d
∏

k=1

Γ2( bk
2
)Γ(ak)

Γ2(ak
2
)Γ(bk)

. (46)

The discussion above is summarized in the next statement.

Theorem 4. Let R(z) be a rational function and Mn = (−1)n. Then P(R,M) converges if
and only if R(z) → 1 as z → ∞. If

R(z) =
d
∏

k=1

(z + ak)

(z + bk)
and S(R) =

d
∑

k=1

bk −
d
∑

k=1

ak, (47)

then

P(R,M) = 2S(R)

d
∏

k=1

Γ2( bk
2
)Γ(ak)

Γ2(ak
2
)Γ(bk)

. (48)

Example 5. Let R(z) = (20z + 5)/(20z + 4). The convergence conditions are satisfied and
Theorem 4 gives

∞
∏

n=0

(

20n+ 5

20n+ 4

)(−1)n

=
Γ( 1

10
)Γ(5

8
)

Γ(1
8
)Γ(3

5
)
. (49)

Mathematica 9.0 does not evaluate the original product, but it does give the right-hand side
of (49) for

P(R1, 1) =
∞
∏

n=0

80n2 + 58n+ 6

80n2 + 58n+ 5
. (50)

Example 6. The infinite product

P(R, s) =
∞
∏

n=0

(

2αn+ β

2γn+ δ

)(−1)n

(51)

encountered in the paperfolding product (17) converges if and only if α = γ. The product is
then

P(R, s) =
∞
∏

n=0

(

n+ 2v

n+ 2u

)(−1)n

= 22(u−v)Γ
2(u)Γ(2v)

Γ2(v)Γ(2u)
, (52)

with u = δ/4α and v = β/4α.
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4 Convergence for periodic sequences

This section discusses the issue of convergence of the product

P(R,M) =
∞
∏

n=0

R(n)Mn (53)

where {Mn} is a periodic sequence of period length ℓ of elements of the alphabet {+1, −1}.
Notation. The results are expressed in terms of

M+ = {i : Mi = +1 and 0 ≤ i ≤ ℓ− 1} = {i1, i2, . . . , i|M+|} (54)

M− = {j : Mj = −1 and 0 ≤ j ≤ ℓ− 1} = {j1, j2, . . . , j|M−|},

and the period length is ℓ = |M+|+ |M−|.
The rational function is written as

R(n) = C
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ br)
(55)

with as, bt 6∈ {0, −1, 2, . . . } and

S(R) =
r
∑

t=1

bt −
d
∑

s=1

as. (56)

The partial product associated with P(R,M) is

N
∏

n=0

R(n)Mn =

⌊N/ℓ⌋
∏

k=0

∏

i∈M+

R(kℓ+ i)Mi

∏

j∈M−

R(kℓ+ j)Mj

N
∏

n=ℓ⌊N/ℓ⌋+1

R(n)Mn

=

⌊N/ℓ⌋
∏

k=0

∏

i∈M+ R(kℓ+ i)
∏

j∈M− R(kℓ+ j)

N
∏

n=ℓ⌊N/ℓ⌋+1

R(n)Mn , (57)

the last product being empty if N is a multiple of the period length ℓ. An elementary
argument shows that the convergence of P(R,M) requires the convergence of both products
in (57). The first product, which would lead to an expression of the form P(R1, 1) for a new
rational function R1 is labeled the main term. The second product is called the tail product.
We analyze its convergence first.

The tail product is defined by

PN,ℓ(M) =
N
∏

n=ℓ⌊N/ℓ⌋+1

R(n)Mn . (58)
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Its convergence implies R(n) → 1 as n → ∞. Observe that PN,ℓ(M) = 1 if N ≡ 0 (mod ℓ).
On the other hand, in the case N ≡ 1 (mod ℓ), one obtains

PN,ℓ(M) = R(N)MN = R(N)M1 ,

since MN = M1 by periodicity. Therefore, the convergence of P(R,M) requires R(N) → 1
for N ≡ 1 (mod ℓ). Similarly, if N ≡ 2 (mod ℓ),

PN,ℓ(M) = R(N − 1)MN−1R(N)MN = R(N − 1)M1R(N)M2 .

The convergence of P(R,M) already implies R(N − 1) → 1 since N − 1 ≡ 1 (mod ℓ). This
time it is required that R(N) → 1. Iterating this argument it follows that R(N) → 1 for
N ≡ j (mod ℓ) for any residue class j. This gives the next result.

Proposition 7. Assume P(R,M) converges. Then lim
n→∞

R(n) = 1.

The limiting value of the main term is P(R1, 1), where

R1(n) =
R(ℓn+ i1) · · ·R(ℓn+ i|M+|)

R(ℓn+ j1) · · ·R(ℓn+ j|M−|)
. (59)

The ingredients entering into the convergence of P(R1, 1) are discussed in the next result.
We assume the condition R(n) → 1.

Proposition 8. Let M∗ = |M+| − |M−| and assume P(R1, 1) converges. Then
lim
n→∞

R1(n) = 1 and

ℓS(R1) = M∗S(R). (60)

Proof. The behavior of R1(n) as n → ∞ comes directly from that of R. The identity (60) is
a direct computation.

Combining these propositions gives the following.

Theorem 9. Let R be a rational function satisfying lim
n→∞

R(n) = 1 with zeros and poles of

R are outside {0,−1,−2, . . . }. There are two cases.

1. Assume M∗ 6= 0. Then P(R,M) converges if and only if S(R) = 0.

2. Assume M∗ = 0. Then P(R,M) always converges.

For a general periodic sequence, the value of the product P(R,M) is given by the fol-
lowing.
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Theorem 10. Let R(n) be a rational function written in the form

R(n) =
(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ bd)
(61)

with ai, bj 6∈ {0, −1, −2, . . . }. Let {Mn} be a periodic sequence of ±1 with period length ℓ.
Assume the product

P(R,M) =
∞
∏

n=0

R(n)Mn (62)

converges. Then

P(R,M) = ℓS(R)
∏

1≤s≤d

Γ(as)

Γ(bs)

∏

i∈M+

Γ2
(

bs+i
ℓ

)

Γ2
(

as+i
ℓ

) . (63)

Proof. Splitting the product according to its residues modulo ℓ gives

∞
∏

n=1

R(n)Mn =
∞
∏

n=0

∏

i∈M+

j∈M−

R(ℓn+ i)

R(ℓn+ j)

=
∏

i∈M+

j∈M−

∞
∏

n=0

(

n+ a1+i
ℓ

)

· · ·
(

n+ ad+i
ℓ

) (

n+ b1+j
ℓ

)

· · ·
(

n+ bd+j
ℓ

)

(

n+ b1+i
ℓ

)

· · ·
(

n+ bd+i
ℓ

) (

n+ a1+j
ℓ

)

· · ·
(

n+ ad+j
ℓ

) .

The products may be expressed in terms of the gamma function to obtain

∞
∏

n=1

R(n)Mn =
∏

i∈M+

j∈M−

Γ
(

b1+i
ℓ

)

· · ·Γ
(

bd+i
ℓ

)

Γ
(

a1+j
ℓ

)

· · ·Γ
(

ad+j
ℓ

)

Γ
(

a1+i
ℓ

)

· · ·Γ
(

ad+i
ℓ

)

Γ
(

b1+j
ℓ

)

· · ·Γ
(

bd+j
ℓ

) (64)

and the result is simplified using Gauss’ multiplication formula

(2π)
ℓ−1
2 ℓ

1
2
−ℓzΓ(ℓz) =

ℓ−1
∏

j=0

Γ

(

z +
j

ℓ

)

. (65)

Take z = as/ℓ to produce

(2π)
ℓ−1
2 ℓ1/2−asΓ(as) = Γ

(as
ℓ

)

Γ

(

as + 1

ℓ

)

· · ·Γ
(

as + ℓ− 1

ℓ

)

= Γ

(

as + i1
ℓ

)

· · ·Γ
(

as + i|M+|

ℓ

)

Γ

(

as + j1
ℓ

)

· · ·Γ
(

as + j|M+|

ℓ

)

since every residue modulo ℓ appears exactly once in the sets M+ and M−. It follows that

∏

j∈M−

Γ

(

as + j

ℓ

)

=
(2π)(ℓ−1)/2ℓ1/2−asΓ(as)
∏

i∈M+ Γ
(

as+i
ℓ

) , (66)

for 1 ≤ s ≤ d. A similar result holds for bs. Replacing in (64) concludes the proof.
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Example 11. Consider the sequence {1,−1,−1}, where the bar indicates the fundamental
period; that is,

Mn =

{

1, if n ≡ 0 (mod 3);

−1, if n ≡ 1, 2 (mod 3).
(67)

ThereforeM+ = {0}, M− = {1, 2} so thatM∗ = −1. Theorem 9 states that the convergence

of P(R1, 1) is equivalent to S(R) = 0. Take R(z) =
(z + 1)(z + 3)

(z + 2)2
. The conditions for

convergence of P(R,M) are satisfied, and its value is

∞
∏

n=0

(

(n+ 1)(n+ 3)

(n+ 2)2

)Mn

=
Γ (1) Γ2

(

2
3

)

Γ (2) Γ2
(

1
3

)

Γ (3) Γ2
(

2
3

)

Γ (2) Γ2
(

3
3

) = 2 · Γ
4
(

2
3

)

Γ2
(

1
3

) =
3

2π2
Γ6
(

2
3

)

. (68)

by Theorem 10.

Example 12. Let R(z) =
(z + 2)(z + 3)

(z + 1)(z + 4)
and M = {1, 1, 1, −1}. Then M+ = {0, 1, 2} and

M− = {3}. Thus M∗ 6= 0. The product P(R,M) converges by Theorem 9, and Theorem 10
gives

∞
∏

n=0

(

(n+ 2)(n+ 3)

(n+ 1)(n+ 4)

)Mn

=
1

24π
Γ4
(

1
4

)

. (69)

5 The paperfolding sequence

The paperfolding sequence is defined by the rules

ǫ2n = (−1)n and ǫ2n+1 = ǫn. (70)

Allouche [1] considered the products

A =
∞
∏

n=0

(

2n+ 1

2n+ 2

)ǫn

and B =
∞
∏

n=1

(

2n

2n+ 1

)ǫn

, (71)

and proved

B =
Γ
(

1
4

)2

8
√
2π

. (72)

The closed-form evaluation of A remains an open problem.
The goal of this section is to present a new proof of (72) and to present an alternative

product expression for A. Observe that

∞
∏

n=0

(

an+ b

cn+ d

)ǫn

=
∞
∏

n=0

(

2an+ b

2cn+ d

)(−1)n

×
∞
∏

n=0

(

2an+ (a+ b)

2cn+ (c+ d)

)ǫn

. (73)

12



The convergence of the first product requires a = c and its value has been obtained in
Theorem 4 as

∞
∏

n=0

(

2an+ b

2cn+ d

)(−1)n

= 2d/2c−b/2aΓ
2
(

d
4c

)

Γ
(

b
2a

)

Γ2
(

b
4a

)

Γ
(

d
2c

) . (74)

Iterating this procedure converts the second factor in (73) into

∞
∏

n=0

(

2an+ (a+ b)

2cn+ (c+ d)

)ǫn

=
∞
∏

n=0

(

4an+ (a+ b)

4cn+ (c+ d)

)(−1)n

×
∞
∏

n=0

(

4an+ (3a+ b)

4cn+ (3c+ d)

)ǫn

. (75)

The first product on the right-hand side of (75) converges and Theorem 4 gives

∞
∏

n=0

(

4an+ (a+ b)b

4cn+ (c+ d)

)(−1)n

= 2d/4c−b/4aΓ
2
(

c+d
8c

)

Γ
(

a+b
4a

)

Γ2
(

a+b
8a

)

Γ
(

c+d
4c

) . (76)

Now observe that
c+ d

8c
=

1

4
+

d− c

8c
(77)

so (76) can be written as

∞
∏

n=0

(

4an+ (a+ b)b

4cn+ (c+ d)

)(−1)n

= 2d/4c−b/4aΓ
2
(

1
4
+ d−c

8c

)

Γ
(

1
2
+ b−a

2a

)

Γ2
(

1
4
+ b−a

8a

)

Γ
(

1
2
+ d−c

4c

) . (78)

Repeated application of this process gives

∞
∏

n=0

(

an+ b

cn+ d

)ǫn

= 2(d/c−b/a)
∑N

k=1
1/2k ×

N
∏

k=2

Γ2
(

1
4
+ d−c

c2k

)

Γ
(

1
2
+ b−a

a2k−1

)

Γ2
(

1
4
+ b−a

a2k

)

Γ
(

1
2
+ d−c

c2k−1

) ×

∞
∏

n=0

(

2Nan+ a(2N − 1) + b

2Ncn+ c(2N − 1) + d

)ǫn

. (79)

A direct argument shows that the last product converges to 1 when N → ∞. This completes
the proof of the next statement.

Theorem 13. The infinite product associated with the paperfolding sequence is given by

∞
∏

n=0

(

an+ b

cn+ d

)ǫn

= 2(d/c−b/a)

∞
∏

k=2

Γ2
(

1
4
+ d−c

c2k

)

Γ
(

1
2
+ b−a

a2k−1

)

Γ2
(

1
4
+ b−a

a2k

)

Γ
(

1
2
+ d−c

c2k−1

) . (80)
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The product appearing in Theorem 13 does not seem to admit a simple closed form for
general choice of the parameters a, b, d (recall that a = c is required for the convergence
of the product). Such a closed form is obtained in the special situation where the factors
telescope. This occurs when 2d = a + b. The next corollary (equivalent to a theorem of
Allouche [1, Theorem 1]) gives such a closed form, with α = d/a. In that situation

N
∏

k=2

Γ2
(

1
4
+ d−c

c2k

)

Γ2
(

1
4
+ b−a

a2k

) → Γ2(1
4
)

Γ2(α
2
− 1

4
)

(81)

and
N
∏

k=2

Γ
(

1
2
+ b−a

a2k−1

)

Γ
(

1
2
+ d−c

a2k−1

) → Γ(α− 1
2
)

Γ(1
2
)

. (82)

Corollary 14. A special case of the paperfolding product is given by

∞
∏

n=0

(

n+ 2α− 1

n+ α

)ǫn

= 21−α Γ2
(

1
4

)

Γ
(

1
2

)

Γ
(

α− 1
2

)

Γ2
(

α
2
− 1

4

) . (83)

Example 15. Take α = 3 to obtain

∞
∏

n=0

(

n+ 5

n+ 3

)ǫn

= 3. (84)

Example 16. The infinite product B in (71) comes by taking the limit as α → 1
2
. Indeed,

write (83) as
∞
∏

n=1

(

n+ 2α− 1

n+ α

)ǫn

=
α

α− 1
2

Γ2
(

1
4

)

2αΓ
(

1
2

)

Γ
(

α− 1
2

)

Γ2
(

α
2
− 1

4

) . (85)

The limit

lim
x→0

Γ(x)

xΓ2(x/2)
=

1

4
(86)

gives
∞
∏

n=1

(

2n

2n+ 1

)ǫn

=
Γ2
(

1
4

)

8
√
2π

, (87)

confirming (72).

Example 17. The method described above does not produce a closed form for the product
A in (71). A direct use of the expression in Theorem 13 gives

A =
∞
∏

n=0

(

2n+ 1

2n+ 2

)ǫn

=
√
2

∞
∏

k=2

(

Γ
(

1
4

)

Γ
(

1
4
− 1

2k+1

)

)2

× Γ
(

1
2
− 1

2k

)

Γ
(

1
2

) . (88)
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Iterating the duplication formula for the gamma function yields the so-called Knar for-
mula [5, volume 1, page 6, formula 6]

Γ(1 + z) = 22z
∞
∏

k=1

1√
π
Γ

(

1

2
+

z

2k

)

(89)

and z = −1
2
gives

∞
∏

k=2

Γ
(

1
2
− 1

2k

)

Γ
(

1
2

) = 2
√
π. (90)

Then (88) becomes

A =
∞
∏

n=0

(

2n+ 1

2n+ 2

)ǫn

= 2
√
2π

∞
∏

k=3

(

Γ
(

1
4

)

Γ
(

1
4
− 1

2k

)

)2

. (91)

The authors have been unable to reduce this any further.

6 Generalization to certain k-automatic sequences

This section extends the results on the paperfolding sequence to certain k-automatic se-
quences. As usual, let R(z) be a rational function written in the form

R(z) =
(z + a1) · · · (z + ad)

(z + b1) · · · (z + bd)
(92)

and assume that ai and bj are not in {0, −1, −2, . . . }.
Consider the case in which Mn is a 3-automatic sequence defined by the rules

M3n = q0(n), (93)

M3n+1 = q1(n),

M3n+2 = Mn,

where qj takes values in {+1, −1} and qj(n) is periodic of period length ℓj. Now split the
product according to residues modulo 3 to produce

∞
∏

n=0

R(n)Mn =
∞
∏

n=0

R(3n)M3n ×
∞
∏

n=0

R(3n+ 1)M3n+1 ×
∞
∏

n=0

R(3n+ 2)M3n+2

=
∞
∏

n=0

R(3n)q0(n) ×
∞
∏

n=0

R(3n+ 1)q1(n) ×
∞
∏

n=0

R(3n+ 2)Mn .

The convergence and values of the first two products are provided by Theorem 9 and
Theorem 10.
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Assume the convergence of the product

P0 =
∞
∏

n=0

R(3n)q0(n). (94)

Theorem 9 shows that this happens if |q0| = 0, where |q0| is the number of +1 minus the
number of −1 in one period. In the remaining case, it is required that S(R(3z)) = 0, where
S(R) is defined in (20). The exact form of the product is obtained from Theorem 10 which
yields, with R0(z) = R(3z),

P0 = P(R0, q0) = ℓ
S(R0)
0

∏

1≤s≤d

Γ(as/3)

Γ(bs/3)

∏

i∈q+
0

Γ2
(

bs+3i
3ℓ0

)

Γ2
(

as+3i
3ℓ0

) . (95)

A similar process gives an analytic formula for the second product. Repeating the previous
process yields a decomposition of the third product as

∞
∏

n=0

R(n)Mn =
∞
∏

n=0

R(9n+ 2)q0(n) ×
∞
∏

n=0

R(9n+ 5)q1(n) ×
∞
∏

n=0

R(9n+ 8)Mn .

As before, the first two products have an explicit analytic expression and the last one has to
be split again.

This process can be iterated to obtain a formula for the original product. For simplicity,
the results are given for R(z) a rational function of degree 1 and only in the case in which
all the periodic pieces qi(n) have a period length that is a power of a fixed even integer. In
this situation, the final formula can be simplified.

Theorem 18. Let R(z) =
z + b

z + d
, with b, d ∈ R

+ and let Mn be a k-automatic sequence

satisfying the rules

Mkn = q0(n)

Mkn+1 = q1(n)

...

Mkn+k−2 = qk−2(n)

Mkn+k−1 = Mn.

Assume there is an even integer L such that each sequence qi(n) is a periodic sequence of

period length Li = Lαi some power of L. In addition, assume that |q+i | = |q−i | for all

0 ≤ i ≤ k − 2. Then

P(R,M) =
∞
∏

n=0

R(n)Mn (96)
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converges. Moreover, if d =
b+ k − 1

k
the product in (96) can be evaluated as

∞
∏

n=0

R(n)Mn =
k−2
∏

i=0



L
1−b
k

i

Γ( b+i
k
)

Γ( i+1
k
)

∏

j∈q+i

Γ2
(

i+1
Lik

+ j
Li

)

Γ2
(

b+i
Lik

+ j
Li

)



 . (97)

Note that the paperfolding sequence satisfies the hypothesis of the theorem. In this case
k = 2 and q0(n) = (−1)n, and L = 2. The rational function is

R(n) =
n+ b

n+ b+1
2

and (97) reduces to the result of Allouche. The idea of the proof is the argument presented
in the case of the 3-automatic sequence above. Complete details may be found in [8].
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