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Abstract

In a recent paper, Guo, Mez6, and Qi proved an identity representing the Bernoulli
polynomials at non-negative integer points m in terms of the m-Stirling numbers of
the second kind. In this note, using a new representation of the Bernoulli polynomials
in the context of the Zeon algebra, we give an alternative proof of the aforementioned
identity.

1 Introduction
In an interesting recent paper 9], Guo, Mez6, and Qi found the following identity

By(m) = Z(—l)lli—!lsm(n+m,l+m) (1)

=0

relating the Bernoulli polynomials B,,(m) at non-negative integer points m with m-Stirling
numbers of the second kind S,,(n 4+ m,l +m). Eq. (1) is a generalization of the identity [8,
p. 560]
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Note that B, = B,(0) and S = Sy are the usual Bernoulli numbers [16, Chap. 2| and Stirling
numbers of the second kind [16, Chap. 1], respectively.

In this work, we will give another proof of (1) by showing that (1) is a straightforward
consequence of a new Zeon representation [7, 11], [10, Chap. 5] of the Bernoulli polynomials.

We believe the approach here is of interest because it gives a straightforward demonstra-
tion of Guo, Mez6, and Qi result, and, as a consequence, it provides another instance where
computations involving Zeons and/or Grassmann variables provide direct and interesting
results [1, 2, 5, 11, 12, 13, 15]. For more on Grassmann variables we refer the reader to the
books of Berezin [3, Chap. 1], DeWitt [6, Chap. 1], and Rogers [14, Chap. 3].

For completeness, we recall some basic definitions and results already stated in previous
work [11]. Throughout this work we let R denote the real numbers, N the positive integers,
and Ny = {0} UN the non-negative integers.

2 Zeon Algebra and Grassmann-Berezin Integral

Definition 1. The Zeon algebra Z, D R is defined as the associative algebra generated by
the collection {¢;}!" ; (n < co) and the scalar 1 € R, such that le; = ¢; = ¢;1, g;6; = €6, V
i,jand e =0V i.

For {i,j,...,k} C {1,2,...,n} and .., = €;&;-- €} the most general element with n
generators €; can be written as (with the convention of sum over repeated indices implicit)

On = a+ a;g; + g + -+ A12..0E12.n = Z aici, (2)
ic2ln]
with a, a;, a;j, ..., a12., € R, 2I"l being the power set of [n] := {1,2,...,n}, and 1 <i <

j < --- <n. We define the soul of ¢,, by s (¢n) := ¢, — a [6, Chap. 1].

Definition 2. The Grassmann-Berezin integral on Z,, denoted by [, is the linear functional
f : Z, — R such that (we use throughout this work the compact notation dv,, := de,, - - - dey)

déid€j = d€jd€i, /¢n (él)d& =0 and/qbn (éz)ézd& = gbn (éz),

where ¢, (éz) means any element of Z, with no dependence on ¢;. Multiple integrals are
iterated integrals, i.e.,

[ 1t = [ ([ ([ oo )aenms) e

Many functions of ordinary calculus admit extensions to the realm of Zeon algebra [11].
For instance, if ¢,, = a + s (¢,) in Eq. (2), we have

e = e? Z 5" (9n) (3)

m)!

m=0
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and only a finite number of terms is present in the sum on the right-hand side of Eq. (3),
since s™ (¢,,) = 0 for m > n.
Likewise, we have

3 Proof of Eq. (1)

We are now ready to prove Eq. (1). We take ¢, :=¢; + -+ + ¢, € Z, from now on. We

start with

— (="
m+1

m=0

Bn(x) =

/ e™n (e — 1)™ du,. (5)

We will proceed by showing that

By(z) = zn: (;) Bz ™. (7)

Egs. (6) and (7) can be regarded as the definitions of the Bernoulli numbers [8, Eq. (6.79)]
and the Bernoulli polynomials [8, Eq. (7.80)], respectively.
We will first show by induction on n that

5~ (=)

m—+ 1

3

(7 =1 ®

(]

Pn =
=0
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Indeed, it is easy to see that both sides of Eq. (8) give ¢3 = &1 for n = 1. Next, using



Egs. (3) and (4), we have

Pnrl = ©ntEnt1
ern
= Pnten Yy (Z1)Te (e —1)"
n—1 ( 1)mm=0 n
= _ @n_lm"’_l " _1m<pn <Pn_1m
3 T 0 e Y 1)
n—1 m n
(D" (m+1\ m+1 (=)™ (m+1 m
= n_ 1 n Pn (pPn 1
2omril o )Y +8“;)m+1 )=l
& (_1)m ® 7z m+1
— n n n __ 1
T;) m1 (" + entie )
— (_l)m (€<Pn+1 1)m+1 ’
= m+ 1

and the result follows, i.e., Eq. (8) is true for all n > 1.
Now we can prove Eq. (6). Starting with Eq. (8) and using Eq. (3) we have

Integrating, we get (n > 2)

n n—1 m
0= /gpndun = Z Z Z <n;}|—)1 /Ekl;@...kl (e — )™ du,

=1 1§k1,k2,.“,kl§n m=0
n—1

- il (7) n; (T;i)? / (ert — 1) dvyy
- (7;’) By

=1

and making the change of variables n — [ — [ we obtain Eq. (6).



We will now show Eq. (7). Indeed, from Eq. (5) we have

Bua) = SN e [enten -1,

n n 1\
DRI I e e

(=0 m=1 lgll,lz,...,lmgn

0 =0

S (e
0 m

m=

=1

and making the change of variables n —m — m we obtain Eq. (7).
We recall the generating function for the m-Stirling numbers [4, Thm. 16]

[e.9] n 1
ZSm(n+m,l+m)% = l—'emx (e — 1) (9)
n=l ’ ’

with m € Ny. The Zeon representation of S,,(n + m,l + m) comes from the generating

function in Eq. (9) taking, as in previous work [11], z — ¢, € Z,, and doing a Grassmann-

Berezin integration over the Zeon algebra to get the representation

Sm(n+m,l+m) = ZSm(k +m,l+m) / %dun = ﬁ/em”" (e — 1) du, (10)
- ! !

5k,n
with 0y, meaning the Kronecker delta. We note that the representation in Eq. (10) is a

generalization of the representation of the usual Stirling numbers of the second kind [15,
Prop. 2.1] obtained by setting m = 0 in Eq. (10). Therefore, by setting z = m in Eq. (5),

we conclude that z
" (=1
B,(m) = E (=1) /em‘P" (e — 1) du,,

— [+1

which is equivalent to Eq. (1) using the Zeon representation of the numbers S,,(n+m,l+m)
in Eq. (10).
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