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Abstract

In this paper, we give a short new proof of a recent result due to Schumacher con-
cerning an extension of Faulhaber’s identity for the Bernoulli numbers. Our approach
follows from basic manipulations involving the ordinary generating function for the
Bernoulli polynomials in the context of the Zeon algebra.

1 Introduction

Zeon algebra [20, Chap. 5], [27, Chap. 2] and Grassmann algebra [5, Chap. 1], [10, Chap. 1],
[26, Chap. 3], [27, Chap. 2] are efficient tools towards proving combinatorial identities. In the
context of the Zeon algebra, examples include a criterion for ergodicity of Markov chains [13],
alternative proofs of Spivey’s identity for Bell numbers [22], the one-variable Faà di Bruno
formula [22], identities involving Stirling numbers of the second kind, Bernoulli numbers, and
Bernoulli polynomials [23, 24, 25]. Building on ideas from Grassmann algebra we mention,
e.g., proofs of theorems of the matrix-tree type [1], representation of the generating function
for hyperforests in hypergraphs [4], Cayley-type identities [6], Lindström-Gessel-Viennot
lemma, and Schur functions [7].

In this paper, we will give yet another example of the utility of the Zeon algebra by
giving a new, simple, and short proof of an extension of Faulhaber’s identity for the Bernoulli
numbers [14, Chap. 6] obtained recently by Schumacher [28]. Another compelling feature of
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our proof is that it does not assume the usual Faulhaber formula a priori, as in the proof
given by Schumacher. More precisely, we will show that

⌊x⌋
∑

i=0

in =
xn+1

n+ 1
+ (−1)n

Bn+1

n+ 1
+

1

n+ 1

n+1
∑

j=1

(−1)j
(

n+ 1

j

)

Bj({x})x
n−j+1, (1)

using the Zeon algebra [20, 22]. Throughout this work, we let N, Q, and R denote the natural,
rational, and real numbers, respectively. We define N0 := {0}∪N and R+

0 := {x ∈ R : x ≥ 0}.
For x ∈ R+

0 , we write ⌊x⌋ for the floor of x and {x} for the fractional part of x. In Eq. (1)
we take x ∈ R+

0 and n ∈ N0.
We remark that there are other examples concerning extensions of Faulhaber’s identity

in different contexts [2, 3, 8, 9, 11, 12, 15, 16, 17, 18, 19, 21].
Before we continue, we establish the basic underlying algebraic setup needed to give the

proof of Eq. (1).

2 Basic definitions: Zeon algebra and the Grassmann-

Berezin integral

Definition 1. The Zeon algebra Zn ⊃ R is defined as the associative algebra generated by
the collection {εi}

n
i=1 (n < ∞) and the scalar 1 ∈ R, such that 1εi = εi = εi1, εiεj = εjεi ∀

i, j and ε2i = 0 ∀ i.

For {i, j, . . . , k} ⊂ {1, 2, . . . , n} and εij···k ≡ εiεj · · · εk the most general element with n

generators εi can be written as (with the convention of sum over repeated indices implicit)

φn = a+ aiεi + aijεij + · · ·+ a12···nε12···n =
∑

i∈2[n]

aiεi,

with a, ai, aij, . . ., a12···n ∈ R, 2[n] being the power set of [n] := {1, 2, . . . , n}, and 1 ≤ i <

j < · · · ≤ n. We refer to a as the body of φn and write b(φn) = a and to φn − a as the soul
such that s(φn) = φn−a. This terminology is borrowed from the literature on superanalysis
[10, Chap. 1].

Definition 2. The Grassmann-Berezin integral on Zn, denoted by
∫

, is the linear functional
∫

: Zn → R such that (we use throughout this work the compact notation dνn := dεn · · · dε1)

dεidεj = dεjdεi,

∫

φn

(

ε̂i
)

dεi = 0, and

∫

φn

(

ε̂i
)

εidεi = φn

(

ε̂i
)

,

where φn

(

ε̂i
)

means any element of Zn with no dependence on εi. Multiple integrals are
iterated integrals, i.e.,

∫

f(φn)dνn =

∫

· · ·

(
∫
(
∫

f(φn)dεn

)

dεn−1

)

· · · dε1.
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We now extend some of the constructions of previous work on Zeons and Bernoulli num-
bers [24] to the context of Bernoulli polynomials [14, Chap. 7], [29, Chap. 4]. Let us write
Q[[x, z]] for the ring of formal power series in the variables x and z over Q. We recall the
generating function for the Bernoulli polynomials Bj(x) in Q[[x, z]], i.e.,

exz
∑∞

i=0
zi

(i+1)!

=
zexz

ez − 1
=

∞
∑

j=0

Bj(x)
zj

j!
(2)

and, making the change z 7→ −z in Eq. (2), we get

e(1−x)z

∑∞
i=0

zi

(i+1)!

=
ze(1−x)z

ez − 1
=

∞
∑

j=0

Bj(x)
(−z)j

j!
. (3)

Note that Bj(0) ≡ Bj are the Bernoulli numbers.
Following the strategy of our previous work [22, 24], we consider Eqs. (2) and (3) in the

context of the Zeon algebra with the replacement z → φk ≡ ϕk := ε1 + · · · + εk. Therefore,
we get

exϕk

∑k

i=0

ϕi
k

(i+1)!

=
k
∑

j=0

Bj(x)
ϕ
j
k

j!
(4)

and
e(1−x)ϕk

∑k

i=0

ϕi
k

(i+1)!

=
k
∑

j=0

Bj(x)
(−ϕk)

j

j!
, (5)

using that ϕk+1
k = 0 ∀ k ≥ 1. We observe that

b

(

k
∑

i=0

ϕi
k

(i+ 1)!

)

= 1 6= 0 (6)

and, hence,
∑k

i=0

ϕi
k

(i+1)!
is invertible in Zk.

Now, integrating Eq. (4) in the Zeon algebra and using Definition 2, we get the repre-
sentation of the Bernoulli polynomials

∫

exϕk

∑k

i=0

ϕi
k

(i+1)!

dνk =
k
∑

j=0

Bj(x)

j!

∫

ϕ
j
kdνk = Bk(x)

∀ k ≥ 1.
Similarly, integrating Eq. (5) in the Zeon algebra, we get

∫

e(1−x)ϕk

∑k

i=0

ϕi
k

(i+1)!

dνk =
k
∑

j=0

(−1)j
Bj(x)

j!

∫

ϕ
j
kdνk = (−1)kBk(x) (7)

∀ k ≥ 1.
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3 Proof of Eq. (1)

We are now ready to prove Eq. (1). We start with the following identity

e(⌊x⌋+1)ϕn+1 − eϕn+1 =

⌊x⌋
∑

i=1

eiϕn+1 (eϕn+1 − 1) = ϕn+1

⌊x⌋
∑

i=1

eiϕn+1

(

n+1
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j=0

ϕ
j
n+1

(j + 1)!

)

.

Note that Eq. (6) can be used and we can write

e(⌊x⌋+1)ϕn+1 − eϕn+1

∑n+1
j=0

ϕ
j
n+1

(j+1)!

= ϕn+1

⌊x⌋
∑

i=1

eiϕn+1 .

Next, using the Grassmann-Berezin integration of Definition 2, we have

∫

e(⌊x⌋+1)ϕn+1 − eϕn+1

∑n+1
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∫
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⌊x⌋
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We observe that

∫
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∑

i=1

∫
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⌊x⌋
∑

i=1

in. (9)

Using Eq. (7) and x = ⌊x⌋+ {x}, we obtain
∫
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making the change of variables n − k + 1 7→ k to obtain the last equality. Finally, taking
x = 0 in Eq. (7), we get

∫

eϕn+1

∑n+1
j=0

ϕ
j
n+1

(j+1)!

dνn+1 = (−1)n+1Bn+1. (11)
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Collecting the results in Eqs. (9), (10), (11), and going back to Eq. (8), we arrive at the
desired result, i.e., Eq. (1).
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