
23 11

Article 16.4.5
Journal of Integer Sequences, Vol. 19 (2016),2

3

6

1

47

Additive Functions on the
Greedy and Lazy Fibonacci Expansions

Kalyan Chakraborty
Harish-Chandra Research Institute

Chhatnag Road, Jhunsi
Allahabad, UP 211019

India
kalyan@hri.res.in
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Abstract

We find all complex-valued functions that are additive with respect to both the

greedy and the lazy Fibonacci expansions. We take it a little further by considering

the subsets of these functions that are also multiplicative. In the final section we extend

these ideas to Tribonacci expansions.

1 Introduction

The purpose of this paper is to study complex-valued functions that are additive with respect
to (both greedy and lazy) Fibonacci and Tribonacci expansions. We begin by studying the
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functions with respect to Fibonacci expansions. The greedy Fibonacci expansion of a natural
number was studied by Ostrowski [4], Zeckendorf [7], and Lekkerkerker [3], among many
others. These days, authors call this greedy Fibonacci expansion the “Zeckendorf expansion”,
but Ostrowski [4] introduced it much earlier and in a more general setup. In the later sections
we study a subset of the above set of functions, which is also multiplicative in nature. The
lazy and greedy Tribonacci expansion of a natural number are defined analogously, and
in the final section we extend our study of these functions to the Tribonacci expansions.
We refer to the work of Carlitz, Scoville, and Hoggatt [2] for generalizations of Fibonacci
representations.

2 F-additive and F-lazy additive functions

2.1 Fibonacci sequence

Let, as usual, N, R, C be the set of positive integers, real and complex numbers, respectively.
Let N0 = N ∪ {0} be the set of non-negative integers and F = (Fn)n≥0 be the sequence of
Fibonacci numbers defined as follows:

F1 = 1, F2 = 2 and Fm+2 = Fm+1 + Fm (m ∈ N).

Every natural number n has at least one expansion of the form

n =
k

∑

ν=1

ǫνFν (1)

where the coefficients ǫν ∈ {0, 1}. The expansion (1) is called the greedy or regular expansion
of n and is characterized by the property that

ǫlǫl+1 = 0 (l = 1, . . . , k − 1).

Similarly, the lazy expansion

n =
h

∑

µ=1

δµFµ, δµ ∈ {0, 1}, δh = 1 (2)

is characterized by the property that no two consecutive zeros are preceded by a one. Noting
that 0Fµ+0Fµ+1+1Fµ+2 can be replaced by 1Fµ+1Fµ+1+0Fµ+2. It is known that every such
sequence is the lazy expansion of some integer (cf. Steiner [5, Lemma 1]). Let f : N −→ C

be a function and we say that f is F -additive for the regular expansion (1) if

f(n) =
k

∑

ν=1

ǫνf(Fν).

2



Let A(1)
F be the set of such F -additive functions. If g : N −→ C is such that

g(n) =
h

∑

µ=1

δµg(Fµ)

with expansion of n as in (2), then we say that g is F -lazy additive. We denote the set of

these functions by A(2)
F and set B = A(1)

F ∩ A(2)
F .

Remark 1. We denote an element of B by f for notational convenience even though we have
already written f ∈ A(1)

F .

Theorem 2. Let α = 1+
√
5

2
and β = 1−

√
5

2
. If f ∈ B, then

f(Fm) = d1α
m + d2β

m, (m = 1, 2, . . .) (3)

where di(i = 1, 2) are constants.
Conversely, if (3) holds, then f ∈ B. Also for an arbitrary expansion

n =
k

∑

ν=1

eνFν , eν ∈ {0, 1},

one has

f(n) =
k

∑

ν=1

eνf(Fν).

Proof. Let us assume that f ∈ B and xk = f(Fk). The lazy expansions of Fi(i = 1, 2, 3) are

Fi = Fi(i = 1, 2) and F3 = F1 + F2.

Let k ≥ 4 and that Sk =
∑k

n=1 Fn. Now it is easy to see

Fk+2 = Sk + 2 (k = 1, 2, . . .).

Thus the largest component in the lazy expansion of Fk+2 is Fk+1. Hence:

(lazy expansion of Fk+2) = Fk+1 + (lazy expansion of Fk) k ≥ 4.

Thus,
xk+2 = xk+1 + xk (k = 1, 2, . . .). (4)

Let us consider a sequence {xk}k≥1 so that (4) holds for its terms. Let

n = e1F1 + · · ·+ ekFk, n ≥ 3, ei ∈ {0, 1} (5)

and

σ (n|e1, . . . , ek) =
k

∑

ν=1

eνxν . (6)
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We shall prove that σ (as defined in (6)) does not depend on e1, . . . , ek. This can be verified
directly for small values of n (e.g., up to n = 6), but for large n we can proceed as follows.
Let us consider the largest ν, if there is any, for which eν = eν+1 = 1. In such a situation we
change

1Fν + 1Fν+1 → 1Fν+2

in the representation (5). In the case when ν = k − 1, we have

n = e1F1 + · · ·+ ek−2Fk−2 + 0Fk−1 + 0Fk−2 + 1Fk+1

=
k+1
∑

ν=1

e′νxν .

In case when ν < k − 1 it is clear that eν+2 = 0. After these substitutions we get

n =
k

∑

ν=1

e′νFν

with e′h = eh if h 6= ν, ν + 1, ν + 2. Also e′ν = e′ν+1 = 0 and e′ν+2 = 1.
Thus in both the cases

σ (n|e′1, . . . , e′k) or σ
(

n|e′1, . . . , e′k+1

)

= σ (n|e1, . . . , ek) .

On repeating this algorithm, after some steps we arrive at the greedy expansion. This
completes the proof of Theorem 2.

2.2 Modified Fibonacci sequence

Let F∗ = (F ∗
n)n≥0 be the modified Fibonacci sequence defined as follows:

F ∗
0 = 0, F ∗

1 = 1 and F ∗
m+2 = F ∗

m+1 + F ∗
m (m = 0, 1, . . .).

Then
F ∗
m+1 = Fm (m = 1, 2, . . .).

The greedy and lazy expansions of positive integers can be defined analogously and Theorem
2 remains true with the condition that f(F ∗

1 ) = f(F ∗
2 ). We give an outline of the proof for

the sake of completeness.

Theorem 3. Let f be F∗-greedy and F∗-lazy additive. Then

f(n) = cn (n ∈ N0)

where c is an arbitrary constant.
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Proof. We have as before f(F ∗
m) = d1α

m + d2β
m. Taking into account that f(F ∗

1 ) = f(F ∗
2 ),

we have
d1α + d2β = d1α

2 + d2β
2,

and thus
d1α(α− 1) = −d2β(β − 1).

Clearly α(α − 1) = β(β − 1) = 1 and this holds if and only if d2 = −d1. Also using Binet’s
formula [6] we have

F ∗
m =

1√
5
αm − 1√

5
βm for m ∈ N.

Hence we obtain that

f(F ∗
m) = (d1

√
5)F ∗

m and f(n) = (d1
√
5)n.

Theorem 3 is now true with c = d1
√
5.

Remark 4. The function f(n) = cn is clearly additive for an arbitrary n =
∑k

ν=0 eνF
∗
ν , (eν ∈

{0, 1}) representation since

f(n) =
k

∑

ν=0

eνf(F
∗
ν )

holds.

3 F-greedy (F∗-greedy) additive and multiplicative func-

tions

Let M be the set of all complex-valued multiplicative functions. We shall determine the sets
M∩A(1)

F and M∩AF∗ , where AF∗ is the set of all F∗-greedy additive functions.

Theorem 5.
M∩AF∗ = M∩A(1)

F = {id},
where id(n) = n for every n ∈ N.

Proof. Let f ∈ M∩AF∗ and so f(1) = 1. First we show that

f(n) = n for n ≤ 11 and n = 144. (7)

We list some initial members of F∗ that will be of use.
F ∗
0 = 0, F ∗

1 = 1, F ∗
2 = 1, F ∗

3 = 2, F ∗
4 = 3, F ∗

5 = 5, F ∗
6 = 8, F ∗

7 = 13, F ∗
8 = 21, F ∗

9 = 34,
F ∗
10 = 55, F ∗

11 = 89 and F ∗
12 = 144.

Let us call f(2) = x and f(3) = y. We have the following greedy expansions:
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4 = 1 + 3 = F ∗
2 + F ∗

4 ,

6 = 1 + 5 = F ∗
2 + F ∗

5 ,

7 = 2 + 5 = F ∗
3 + F ∗

5 ,

9 = 1 + 8 = F ∗
2 + F ∗

6 ,

10 = 2 + 8 = F ∗
3 + F ∗

6 ,

14 = 1 + 13 = F ∗
2 + F ∗

7 .

Hence (utilizing f ∈ M∩AF∗),

f(4) = f(3) + 1 = y + 1,

f(5) = f(6)− 1 = f(2)f(3)− 1 = xy − 1,

f(7) = f(2) + f(5) = xy + x− 1,

f(8) = f(2)f(5)− f(2) = x2y − 2x,

f(9) = f(1) + f(8) = x2y − 2x+ 1,

f(13) = f(14)− 1 = f(2)f(7)− 1 = x2y + x2 − x− 1.

The expansions of 12, 15 and 18 are

12 = 1 + 3 + 8 = F ∗
2 + F ∗

4 + F ∗
6 ,

15 = 2 + 13 = F ∗
3 + F ∗

7 ,

18 = 5 + 13 = F ∗
5 + F ∗

7 .

These give us,

f(3)f(4) = f(12) = f(1) + f(3) + f(8),

f(3)f(5) = f(15) = f(2) + f(13),

f(2)f(3)2 = f(18) = f(5) + f(13),

and finally the following three relations:

y2 − 1− x2y + 2x = 0,

(x+ xy − 1)(−x+ y − 1) = 0,

xy2 − xy − x2y + 2− x2 + x = 0.

We can conclude from the last three equations that

x = f(2) = 2, y = f(3) = 3.

Thus
f(n) = n for n ≤ 10.
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Also, using

11 = 3 + 8 = F ∗
4 + F ∗

6

165 = 21 + 144 = F ∗
8 + F ∗

12,

we obtain

f(11) = f(3) + f(8) = 3 + 8 = 11,

f(144) = f(3)f(5)f(11)− f(3)f(7) = 165− 21 = 144.

Now we complete the proof of Theorem 5 by proving that if f(n) = n for every n < N

(where N > 11) then
f(N) = N.

This assertion clearly holds true in the following two cases:

(1) if N is not a prime-power; or

(2) if N 6∈ F∗.

Thus let us assume that N = F ∗
m and that N = pα for some α ∈ N. It follows from the

result of Bugeaud et al. [1] that if α ≥ 2, then N ∈ {1, 8, 144}. In all these Thus α = 1 and
N > 11 is a prime. Let

2e‖N + 1, 2ℓ‖N + 3, e, ℓ ∈ N.

Then min(e, ℓ) = 1. Assume that e = 1. Since 1 < N+1
2

< N , we have

f(N + 1) = f(2)f
(N + 1

2

)

= 2 · N + 1

2
= N + 1.

Now,

f(N + 1) = f(F ∗
m + F ∗

2 ) =

= f(F ∗
m) + f(F ∗

2 ) =

= f(F ∗
m) + f(1) =

= f(F ∗
m) + 1.

However, from above, we know that f(N + 1) = N + 1, so f(F ∗
m) + 1 = N + 1, from which

it follows that f(N) = f(F ∗
m) = N .

If ℓ = 1, then 1 < N+3
2

< N , and we have

f(N + 3) = f(2)f
(N + 3

2

)

= 2 · N + 3

2
= N + 3.
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Now,

f(N + 3) = f(F ∗
m + F ∗

4 ) =

= f(F ∗
m) + f(F ∗

4 ) =

= f(F ∗
m) + f(3) =

= f(F ∗
m) + 3,

from which it follows that f(N) = f(F ∗
m) = N .

Therefore, we have M ∩ AF∗ = {id}. The proof of the assertion M ∩ A(1)
F = {id} is

similar and we omit it.

4 A Tribonacci-type sequence

A Tribonacci-type sequence G = (Gn)n≥1, which is a generalization of the Fibonacci sequence,
is defined as follows:

Gi = i, for i = 1, 2, 3

Gm+3 = Gm+2 +Gm+1 +Gm (m = 1, 2, . . .). (8)

Remark 6. It is worth mentioning that a Tribonacci-type sequence (8) for us is 1, 2, 3, 6, 11, . . .
whereas 1, 1, 2, 4, 7, 13, 24, 44, . . . is more familiar.

We aim to prove similar results as in the previous sections for G. Every integer n ∈ N

can be written as

n =
ℓ

∑

k=1

ekGk, ek ∈ {0, 1}. (9)

In general n has more than one expansion. We can define the greedy and lazy expansion as
follows:

n =
ℓ

∑

k=1

ǫkGk (greedy)

and

n =
r

∑

µ=1

δµGµ, δr = 1 (lazy).

It is not hard to see that a sequence ǫ1, . . . , ǫk is a sequence of the digits for a greedy
expansion of some n ∈ N if ǫνǫν+1ǫν+2 6= 111 holds for every ν = 1, . . . , k − 2. Similarly,
δ1, . . . , δr (δr = 1) is a lazy expansion of some n ∈ N if δµδµ+1δµ+2 6= 000 holds for every
µ = 1, . . . , r − 2. We let lazyexp (Gh) denote the lazy expansion of Gh. Then

lazyexp(Gh) =

{

Gh, if h = 1, 2, 3;

Gh−1 +Gh−2 +Gh−3, if h = 4, 5.
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If we write Sk = G1 + · · ·+Gk, then

S1 = G1 = 1, S2 = 3, S3 = 6, S4 = 10

and
Sk+4 = 2Sk+3 − Sk for k ≥ 1.

If we set
Lk = Gk+1 − Sk−1 (k ≥ 2),

then
Lk+1 − Lk = Gk+2 − Sk − (Gk+1 − Sk−1) = Gk+2 −Gk −Gk+1 = Gk−1.

Thus Lk+1 − Lk > 0. Hence the largest component in the lazy expansion of Gk+1 is Gk and
therefore

lazyexp(Gk+1) = Gk + lazyexp(Gk−1 +Gk−2).

If Gk−1 +Gk−2 ≤ Sk−2, then Gk−1 ≤ Sk−3, which cannot occur if k ≥ 5. Thus

lazyexp(Gk−1 +Gk−2) = Gk−1 + lazyexp(Gk−2).

Let us assume now that g is G-additive for the greedy and lazy expansions, then with
xk = g(Gk), we obtain

xk+3 = xk+2 + xk+1 + xk (k = 1, 2, . . .).

Now repeating the argument used in the proof of Theorem 2, we obtain

Theorem 7. Let g be a G-additive function for the greedy and for lazy expansion of the
integers n ∈ N. Let

g(n) =
ℓ

∑

k=1

ǫkg(Gk)

and

g(n) =
r

∑

µ=1

δµg(Gµ).

Then xh = g(Gh) (h = 1, 2, . . .) satisfies

xh+3 = xh+2 + xh+1 + xh (h = 1, 2, . . .). (10)

On the other hand, if xh is such a sequence for which (10) holds, then

g(n) =
ℓ

∑

k=1

ekg(Gk)

holds for an arbitrary expansion (9) of n with ek ∈ {0, 1}.
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Finally we show that,

Theorem 8. Let g be G-additive for the greedy expansion and that g is also a multiplicative
function. Then g(n) = n for every n ∈ N.

Proof. The proof is a direct consequence of the following assertions:

(A) g(n) = n for n ≤ 6;

(B) If g(n) = n for every n < N , then g(N) = N .

Assuming that (A) is proved, assertion (B) is clearly true, if N ≤ 6, or if N 6∈ G, or if N 6=
prime power. Thus let us deal with the case when N = Gm = pα for some prime p and
N ≥ 7. If p = 2, then α ≥ 3, 2α−1 + 1 < 2α = N and

N + 2 = Gm +G2

= 2α + 2

= 2(2α−1 + 1),

which gives

g(N + 2) = g(Gm) + 2

= g(2)g(2α−1 + 1)

= 2(2α−1 + 1)

= N + 2.

Consequently,
g(N) = g(Gm) = N.

If p > 2, then 2e‖N + 1 = Gm +G1, where
N+1
2e

< N . If N+1
2e

> 1, then 2e < N and so

g(N + 1) = g(Gm) + 1

= g(2e)g
(N + 1

2e

)

= N + 1.

This implies that
g(N) = g(Gm) = N.

If N+1
2e

= 1, then N = Gm = 2e − 1 and 2e−1 + 1 < 2e − 1 = N . Consequently,

g(Gm) + 3 = g(Gm +G3)

= g(2e + 2)

= g(2)g(2e−1 + 1)

= Gm + 3.
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Thus g(N) = g(Gm) = N .
It remains to prove assertion (A). Let ξ = g(2), η = g(3). It follows from (8) that

G1 = 1, G2 = 2, G3 = 3, G4 = 6, G5 = 11 and G6 = 20.

Now we use the facts that g is a G-additive function for the greedy expansion and g is also
a multiplicative function and get

g(4) = g(G3) + g(G1) = η + 1,

g(5) = g(G3) + g(G2) = η + ξ,

g(7) = g(6) + g(1) = g(2)g(3) + 1 = ξη + 1,

and

g(11) = g(12)− g(1)

= g(3)g(4)− 1

= η2 + η − 1.

Again, using

10 = G4 +G3 +G1

= 6 + 3 + 1,

14 = G5 +G3

= 11 + 3,

and

28 = G6 +G4 +G2

= 20 + 6 + 2,

we get the following system of equations:

ξ2 − η − 1 = 0

ξ2η + ξ − η2 − 2η + 1 = 0

(η + 1)(ξη − 2ξ − η + 1) = 0.

The solutions of this system are ξ = 2 and η = 3. Therefore,

g(n) = n for n ∈ {1, 2, 3, 4, 5, 6, 7, 10, 11}.

This completes the proof of Theorem 8.
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