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Abstract

The Fibonacci sequence has been generalized in many ways. One of them is defined

by the relation tn = atn−1 + tn−2 if n is even, and tn = btn−1 + tn−2 if n is odd, with

initial values t0 = 0 and t1 = 1, where a and b are positive integers. This sequence

is called the bi-periodic Fibonacci sequence. In the present article, we introduce a

q-analog of the bi-periodic Fibonacci sequence, and prove several identities involving

this sequence. We also give a combinatorial interpretation of this q-analog bi-periodic

Fibonacci sequence in terms of weighted colored tilings.
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1 Introduction

The Fibonacci numbers A000045 Fn are defined by the recurrence relation

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n ≥ 1.

This sequence and its generalizations have many interesting combinatorial properties (cf.
[22]). Many kinds of generalizations of Fibonacci numbers have been presented in the liter-
ature. In particular, Edson and Yayenie [18] introduced the bi-periodic Fibonacci sequence.
For any two positive integers a and b, the bi-periodic Fibonacci sequence, say (tn)n≥0, is
determined by the following:

t0 = 0, t1 = 1, tn =

{
atn−1 + tn−2, if n ≡ 0 (mod 2);

btn−1 + tn−2, if n ≡ 1 (mod 2).
n ≥ 2.

The bi-periodic Fibonacci numbers and their generalizations have been studied in several
papers; among other references, see [1, 9, 17, 18, 21, 25, 26, 27, 30]. The bi-periodic Fibonacci
sequence is a particular case of the continuant polynomials; for more details see [19]. Yayenie
[30] found the following explicit formula to bi-periodic Fibonacci numbers

tn = aξ(n−1)

⌊n−1

2 ⌋∑

i=0

(
n− i− 1

i

)
(ab)⌊n−1

2 ⌋−i, (1)

where ξ(n) = n− 2⌊n/2⌋, i.e., ξ(n) = 0 when n is even and ξ(n) = 1 when n is odd.
There exist several slightly different q-analogues of the Fibonacci sequence. Among other

references, see [3, 5, 6, 11, 12, 13, 14, 15]. In particular, Schur [28] defined the following
polynomials:

D0(q) = 0, D1(q) = 1, Dn(q) = Dn−1(q) + qn−2Dn−2(q). (2)

It is clear that Dn(1) = Fn. In addition to the recurrence formula (2), Dn(q) can be
calculated directly by the following analytic formula (cf. [3, 13]):

Dn(q) =

⌊n−1

2 ⌋∑

j=0

[
n− j − 1

j

]
qj

2

,

where the q-binomial is [
n

k

]
:=

(q; q)n
(q; q)k(q; q)n−k

,

and

(a; q)n :=
n−1∏

j=0

(1− aqj).
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One of the main applications of the polynomial Dn(q) is giving alternative proofs of the
Rogers-Ramanujan identities; among other references, see [2, 3, 4, 16, 20].

There is a generalization of the polynomials Dn(q) called (Carlitz-) q-Fibonacci polyno-
mials [12]

fn(x, s) = xfn−1(x, s) + qn−2sfn−2(x, s), (3)

with the initial values f0(x, s) = 0 and f1(x, s) = 1. They can be calculated using the
formula

fn(x, s) =

⌊n−1

2 ⌋∑

l=0

[
n− l − 1

l

]
ql

2

slxn−2l−1. (4)

A natural question is: What is the q-analogue of the bi-periodic sequence? From (3), we
introduce a q-analogue of the bi-periodic Fibonacci sequence as follows:

F (a,b)
n (q, s) = χ(n)F

(a,b)
n−1 (q, s) + qn−2sF

(a,b)
n−2 (q, s), n ≥ 2, (5)

with the initial values F
(a,b)
0 (q, s) = 0 and F

(a,b)
1 (q, s) = 1, where χ(n) is defined by χ(2n) = a

and χ(2n+ 1) = b. The first few terms are

0, 1, a, ab+ sq, a2b+ asq + asq2, a2b2 + absq + absq2 + absq3 + s2q4, . . . .

We call this sequence the q-bi-periodic Fibonacci sequence. It is clear that if a = b = x
we obtain the polynomials fn(x, s).

In the present article, we study the q-bi-periodic Fibonacci sequence. We obtain new
recurrence relations, new combinatorial identities and the generating function of the q-bi-
periodic Fibonacci sequence. Finally, we introduce the tilings weighted by bi-colored squares,
then we give several combinatorial proof of some identities.

2 Some basic identities

In this section, we develop several identities of the q-bi-periodic Fibonacci sequence. We
give a q-analogue of the identity (1), which is a closed formula to evaluate the q-bi-periodic
Fibonacci sequence. Moreover, in Theorem 4 we give a q-analogue of a generalization of
Cassini’s identity.

Proposition 1. The following equality holds for any integer n ≥ 2:

F (a,b)
n (q, s) = χ(n)F

(a,b)
n−1 (q, qs) + qsF

(a,b)
n−2 (q, q

2s). (6)
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Proof. Let Gn(q, s) be the right side of (6). This sequence satisfies the recurrence (5) and
the same initial values. In fact,

χ(n)Gn−1(q, s) + qn−2sGn−2(q, s)

= χ(n)
(
χ(n− 1)F

(a,b)
n−2 (q, qs) + qsF

(a,b)
n−3 (q, q

2s)
)
+qn−2s

(
χ(n− 2)F

(a,b)
n−3 (q, qs) + qsF

(a,b)
n−4 (q, q

2s)
)

= χ(n)
(
χ(n− 1)F

(a,b)
n−2 (q, qs) + qn−3(qs)F

(a,b)
n−3 (q, qs)

)

+ qs
(
χ(n− 2)F

(a,b)
n−3 (q, q

2s) + qn−4(q2s)F
(a,b)
n−4 (q, q

2s)
)

= χ(n)F
(a,b)
n−1 (q, qs) + qsF

(a,b)
n−2 (q, q

2s) = Gn(q, s).

Then Equation (6) follows.

The following lemma shows how to write the q-bi-periodic Fibonacci sequence in terms
of the (Carlitz-) q-Fibonacci polynomials.

Lemma 2. The following equalities hold for any integer n ≥ 0:

F
(a,b)
2n (q, s) =

√
a

b
f2n(

√
ab, s), (7)

F
(a,b)
2n+1(q, s) = f2n+1(

√
ab, s). (8)

Proof. Let an be the right side of (7), then sequences (an)n≥0 and (F
(a,b)
2n (q, s))n≥0 satisfy the

same recurrence and the same initial conditions. In fact,

an =

√
a

b
f2n(

√
ab, s) =

√
a

b

(√
abf2n−1(

√
ab, s) + q2n−2sf2n−2(

√
ab, s)

)

= af2n−1(
√
ab, s) + q2n−2sf2n−2(

√
ab, s).

Similarly, we obtain Equation (8).

Theorem 3. The following equality holds for any integer n ≥ 0:

F (a,b)
n (q, s) = aξ(n−1)

⌊n−1

2 ⌋∑

l=0

[
n− l − 1

l

]
(ab)⌊n−1

2 ⌋−lql
2

sl.

Proof. If n is even (n = 2k), then from Lemma 2 and Equation (4), we get

F
(a,b)
2k (q, s) =

√
a

b
f2n(

√
ab, s) =

√
a

b

k−1∑

l=0

[
2k − l − 1

l

]
ql

2

sl(
√
ab)2k−2l−1

= a
k−1∑

l=0

[
2k − l − 1

l

]
(ab)k−l−1ql

2

sl.
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If n is odd then in analogy way we get

F
(a,b)
2k+1(q, s) =

k∑

l=0

[
2k − l

l

]
(ab)k−lql

2

sl.

Note that if we consider the limit when q tends to 1 in the above theorem and s = 1 we
obtain the identity (1).

Now, we are going to prove a q-analogue of this Fibonacci identity:

Fm−1Fm+k − Fm+k−1Fm = (−1)mFk.

We need the auxiliary sequence F̂
(a,b)
n (q, s) defined by

F̂
(a,b)
0 (q, s) = 1, F̂

(a,b)
1 (q, s) = 0, F̂ (a,b)

n (q, s) = χ(n− 1)F̂
(a,b)
n−1 (q, s) + qn−2sF̂

(a,b)
n−2 (q, s),

where n ≥ 2. The first few terms are

1, 0, s, as, abs+q2s2, a2bs+aq3s2+aq2s2, a2b2s+abq4s2+abq3s2+abq2s2+q6s3, . . .

Note that F̂
(a,b)
n (q, s) = sF

(a,b)
n−1 (q, qs). Moreover, if a = b = s = 1 we obtain the polynomials

En(q), which satisfy En(q) = En−1(q) + qn−2En−2(q) with initial values E0(q) = 1 and
E1(q) = 0. Schur [28] also studied this polynomial sequence.

From identities (7) and (8), and the q-Euler-Cassini formula for the (Carlitz-) q-Fibonacci
polynomials (see [14, Corollary 2.2]), we obtain the following identity:

Theorem 4. The following equality holds for integers n ≥ 0 and k ≥ 1:

λ(n, k)F (a,b)
n (q, s)F̂

(a,b)
n+k (q, s)− λ(n+ 1, k)F

(a,b)
n+k (q, s)F̂

(a,b)
n (q, s) = (−1)n+1q(

n

2)snF
(a,b)
k (q, qns),

where λ(n, k) = b
a
if n is even and k is odd and λ(n, k) = 1 else.

Proof. If n and k are even integers, then from Lemma 2 and [14, Corollary 2.2] we get

F
(a,b)
n−1 (q, qs)

√
b

a
F

(a,b)
n+k (q, s)−

√
b

a
F (a,b)
n (q, s)F

(a,b)
n+k−1(q, qs)

=

√
b

a

1

s
F̂ (a,b)
n (q, s)F

(a,b)
n+k (q, s)−

√
b

a

1

s
F (a,b)
n (q, s)F̂

(a,b)
n+k (q, s)

= (−1)nq(
n

2)sn−1

√
b

a
F

(a,b)
k (q, qns),

Then

F (a,b)
n (q, s)F̂

(a,b)
n+k (q, s)− F

(a,b)
n+k (q, s)F̂

(a,b)
n (q, s) = (−1)n+1q(

n

2)snF
(a,b)
k (q, qns).

The other cases are analogous.
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In particular, if k = 1, then

(
b

a

)ξ(n)

F (a,b)
n (q, s)F̂

(a,b)
n+1 (q, s)−

(
b

a

)ξ(n+1)

F
(a,b)
n+1 (q, s)F̂

(a,b)
n (q, s) = (−1)n−1q(

n

2).

It is possible give a direct proof of Theorem 4 following the ideas of Andrews et al. [4].
Andrews [3] obtained the following generating function for the q-Fibonacci polynomials:

∞∑

n=0

Dn(q)x
n =

∞∑

j=0

qj
2

x2j+1

(x; q)j+1

.

From (4) it is possible to find the generating function for the (Carlitz-) q-Fibonacci
polynomials.

Lemma 5. The generating function for the (Carlitz-) q-Fibonacci polynomials is

Φ(x, z) :=
∞∑

n=0

fn(q, s)z
n =

∞∑

j=0

qj
2

sjz2j+1

(xz; q)j+1

.

Proof. From Equation (4) we get

Φ(x, z) =
∞∑

n=0

fn(q, s)z
n =

∞∑

n=0

zn
∑

n−1−k≥0

qk
2

[
n− k − 1

k

]
skxn−2k−1

=
∞∑

k=0

qk
2

sk
∑

n−1≥k

qk
2

[
n− k − 1

k

]
xn−2k−1zn =

∞∑

k=0

qk
2

sk
∞∑

m=0

[
m

k

]
xm−kzm+k+1

=
∞∑

k=0

qk
2

skz2k+1

∞∑

m=0

[
m+ k

k

]
xmzm =

∞∑

k=0

qk
2

skz2k+1

(xz; q)k+1

.

Theorem 6. The generating function for the q-bi-periodic Fibonacci sequence is

W(x) :=
∞∑

n=0

F (a,b)
n (q, s)xn =

1

2

(√
a

b
+ 1

)
Φ(

√
ab, x) +

1

2

(√
a

b
− 1

)
Φ(

√
ab,−x). (9)

Proof. From Identities (7) and (8) we get

F (a,b)
n (q, s) =

1

2

(√
a

b
+ 1

)
fn(

√
ab, s) + (−1)n

1

2

(√
a

b
− 1

)
fn(

√
ab, s).

Then Equation (9) follows.
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3 Combinatorial interpretation

The Fibonacci numbers Fn+1 can be interpreted as the number of tilings of a board of length
n (n-board) with cells labelled 1 to n from left to right, using only squares and dominoes
(cf. [8]). This interpretation has been used to give a combinatorial interpretation of the
q-Fibonacci polynomials and similar recurrent polynomials, see, for instance [7, 10, 23, 24,
29]. In this section, we use tilings weighted by bi-colored squares to give a combinatorial
interpretation of the q-bi-periodic Fibonacci sequence. We define a tiling weighted by bi-
colored squares as a tiling of a n-board by colored squares and non-colored dominoes, such
that if the square has an odd position then there are a different colors to choose for the
square. If the square has an even position then there are b different colors to choose for
the square. Moreover, if a domino covering the i-th boundary receives weight sqi (by ith
boundary, we mean the boundary between cells i and i + 1, 1 6 i 6 n − 1). Let Tn denote
the set of all n-tilings, we shall show in Theorem 7 that the bi-periodic Fibonacci sequence
(F

(a,b)
n+1 (q, s))n≥0 counts the number of tilings weighted by bi-colored squares of a n-board.

Specifically, we have

F
(a,b)
n+1 (q, s) =

∑

T∈Tn

a|T |ab|T |bs|T |sq|T |,

where |T |a (|T |b) is the sum of all i such that T has a square in an odd position i (even
position i), |T |s is the sum of all dominoes in T and |T | is the sum of all i such that T has
a domino in position (i, i+ 1).

For example, in Figure 1 we show the different ways to tiling a 4-board. Then it is clear
that F

(a,b)
5 (q, s) = a2b2 + absq + absq2 + absq3 + s2q4.

a b a b a2b2 a b absq3

a

q2

b absq2

q

a b absq

q

s2q4

q3

q3

s s

s

s s

Different ways to tile 4-boards.

Theorem 7. For n ≥ 0, F
(a,b)
n+1 (q, s) counts the number of tilings weighted by bi-colored

squares of a n-board.

Proof. Given T ∈ Tn. If n is even and T ends with a domino, there are qn−1sF
(a,b)
n−1 (q, s) ways

to tile the board, and if T ends with a square, there are bF
(a,b)
n (q, s) ways to tile the n-board.

Analogously, if n is odd we get F
(a,b)
n+1 (q, s) = aF

(a,b)
n (q, s) + qn−1sF

(a,b)
n−1 (q, s). Moreover, it is

clear that the initial values are 1 and a.
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Let g(n, k) be the number of tilings weighted by bi-colored squares having n tiles and k
dominoes. Then

g(n, k) = qn+k−1sg(n− 1, k − 1) + aξ(n+k)b1−ξ(n+k)g(n− 1, k).

In fact, if the (n + k)-board ends in a domino, the domino contributes sqn+k−1 to the
weight. Then, there are qn+k−1sg(n − 1, k − 1) ways to tile the board. If the last tile is a
square there are aξ(n+k)b1−ξ(n+k)g(n− 1, k) ways to tile the board. Let

h(n, k) = aξ(n+k)qk
2

sk
[
n

k

]
(ab)⌊n−k

2 ⌋.

The sequence h(n, k) satisfies the same recurrence of g(n, k). In fact,

qn+k−1sh(n− 1, k − 1) + aξ(n+k)b1−ξ(n+k)h(n− 1, k)

= qn+k−1s

(
aξ(n+k)q(k−1)2sk−1

[
n− 1

k − 1

]
(ab)⌊n−k

2 ⌋
)

+ aξ(n+k)b1−ξ(n+k)aξ(n+k−1)qk
2

sk
[
n− 1

k

]
(ab)⌊n−k−1

2 ⌋

= qk
2+n−kskaξ(n+k)

[
n− 1

k − 1

]
(ab)⌊n−k

2 ⌋ + aξ(n+k)qk
2

sk
[
n− 1

k

]
(ab)⌊n−k

2 ⌋

= aξ(n+k)qk
2

sk
(
qn−k

[
n− 1

k − 1

]
+

[
n− 1

k

])
(ab)⌊n−k

2 ⌋

= aξ(n+k)qk
2

sk
[
n

k

]
(ab)⌊n−k

2 ⌋ = h(n, k).

Moreover, they satisfy the same initial conditions. Therefore, we have the following lemma.

Lemma 8. The number of tilings weighted by bi-colored squares having n tiles and k domi-
noes is

aξ(n+k)qk
2

sk
[
n

k

]
(ab)⌊n−k

2 ⌋.

Now, we will give a combinatorial proof of Theorem 3, i.e.,

F
(a,b)
n+1 (q, s) = aξ(n)

⌊n
2 ⌋∑

l=0

[
n− l

l

]
(ab)⌊n

2 ⌋−lql
2

.

Combinatorial Proof of Theorem 3. From Theorem 7, F
(a,b)
n+1 (q, s) counts the number of

tilings weighted by bi-colored squares of a n-board. On the other hand, let l be the number
of dominoes in the tiling of a n-board. Then there are n − 2l squares. Such a tiling with
n− l tiles, exactly l of which are dominoes is

aξ(n)ql
2

sl
[
n− l

l

]
(ab)⌊n

2 ⌋−l.

Summing over all possible l gives the identity.
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4 Some additional identities

In this section, we prove several q-analogues of Fibonacci identities using tilings weighted by
bi-colored squares.

Theorem 9. The following equality holds for any integer n ≥ 0 :

n+1∑

k=1

sqkF
(a,b)
k (q, s)aξ(n)ξ(k)bξ(k+1)−ξ(n)ξ(k+1)(ab)⌊n−k+1

2 ⌋ = F
(a,b)
n+3 (q, s)− aξ(n)(ab)⌊n+2

2 ⌋. (10)

Proof. There exist F
(a,b)
n+3 (q, s) − aξ(n)(ab)⌊n+2

2 ⌋ tilings weighted by bi-colored squares of a
(n+2)-board with at least one domino. On the other hand, consider the location of the last
domino, say position (k, k + 1). This domino contributes a sqk to the weight, while all tiles
to the right are squares and contribute (depending on the parity of the numbers k and n)

aξ(n)ξ(k)bξ(k+1)(1−ξ(n))(ab)⌊n−k+1

2 ⌋ to the weight. Moreover, there are F
(a,b)
k (q, s) ways to tile

the left side ((k−1)-board). The equality (10) follows after summing over all possible k.

Note that if we consider the limit when q tends to 1 and s = 1 in above theorem, we
obtain the new identity

n+1∑

k=1

tka
ξ(n)ξ(k)bξ(k+1)−ξ(n)ξ(k+1)(ab)⌊n−k+1

2 ⌋ = tn+3 − aξ(n)(ab)⌊n+2

2 ⌋.

Equation (10) is a q-analogue of the following Fibonacci identity [22]:

n∑

k=0

Fk = Fn+2 − 1.

The following theorem is a q-analogue of the Fibonacci identity [22]:

n∑

k=0

F2k = F2n+1.

Theorem 10. The following equality holds for any integer n ≥ 0:

a
n∑

k=0

F
(a,b)
2k+1(q, s)q

n2+n−(k2+k)sn−k = F
(a,b)
2n+2(q, s).

Proof. There exists F
(a,b)
2n+2(q, s) tilings weighted by bi-colored squares of a (2n + 1)-board.

On the other hand, consider the location of the last square, say position k. Since the length
of the board is odd, we know k is odd, and it contributes an a to the weight. The dominoes
to the right contribute q(k+1)+(k+3)+···+(2n)sn−k = qn

2+n−(k2−1)/4sn−k to the weight. Moreover,
there are F

(a,b)
k (q, s) ways to tile the left side ((k−1)-board). Summing over all possible odd

k gives the identity.
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If we consider the limit when q tends to 1 and s = 1 in the above theorem we obtain the
expression

a
n∑

k=0

t2k+1 = t2n+2.

We need the following shifted q-bi-periodic Fibonacci sequence:

F
(h)
0 (q, s) = 0, F

(h)
1 (q, s) = 1,

F (h)
n (q, s) =

{
aξ(h+1)b1−ξ(h+1)F

(h)
n−1(q, s) + qn−2+hsF

(h)
n−2(q, s), if n ≡ 0 (mod 2);

a1−ξ(h+1)bξ(h+1)F
(h)
n−1(q, s) + qn−2+hsF

(h)
n−2(q, s), if n ≡ 1 (mod 2);

n ≥ 2.

A tiling of a n-board is breakable at cell k if the tiling can be decomposed into two tilings,
one covering cells 1 through k and the other covering cells k + 1 through n. Moreover, a
tiling of a n-board is unbreakable at cell k if a domino occupies cell k and k + 1 (cf. [8]).

It is not difficult to show that F
(h)
n+1(q, s) counts the latter position of the tilings weighted

by bi-colored squares of a (n+ h− 1)-board that can be breakable at cell h.

Theorem 11. The following equality holds for any integers n,m ≥ 0:

F
(a,b)
n+m+1(q, s) = F

(a,b)
m+1(q, s)F

(m)
n+1(q, s) + qmsF (a,b)

m (q, s)F (m+1)
n (q, s).

Proof. There exists F
(a,b)
n+m+1(q, s) tilings weighted by bi-colored squares of a (n +m)-board.

On the other hand, we will consider two cases. If a (n+m)-tiling is breakable at cell m, we

have F
(a,b)
m+1(q, s) ways to tile a m-board (left side) and F

(m)
n+1(q, s) ways to tile the n-board

(right side). If a (n +m)-tiling is unbreakable at cell m then there is a domino in position

(m,m + 1). It contributes qms to the weight. Moreover, there are F
(a,b)
m (q, s) ways to tile a

(m− 1)-board (left side) and F
(m+1)
n (q, s) ways to tile the (n− 1)-board (right side).

The above theorem is a q-analogue of the Fibonacci identity:

Fm+n = FmFn + Fm−1Fn−1.

The following theorem is a q-analogue of the bi-periodic Fibonacci identity (see [18, Theorem
7]):

n∑

k=0

(
n

k

)
aξ(k)(ab)⌊ k

2⌋tk = t2n.

Theorem 12. The following equality holds for any integer n ≥ 0:

F
(a,b)
2n (q, s) =

n∑

k=1

aξ(k)q(n−k)2sn−k

[
n

k

]
(ab)⌊ k

2⌋F (2n−k)
k (q, s).

10



Proof. There exists F
(a,b)
2n (q, s) tilings weighted by bi-colored squares of a (2n−1)-board. On

the other hand, note that a (2n− 1)-tiling has to include at least n tiles, and one of them if
a square. If a (2n− 1)-tiling has k squares and n− k dominoes among the first n tiles, then
by Lemma 8 there are

aξ(2n−k)q(n−k)2sn−k

[
n

n− k

]
(ab)⌊ k

2⌋ = aξ(k)q(n−k)2sn−k

[
n

k

]
(ab)⌊ k

2⌋

ways to tile this board. The remaining right board has length k − 1 and can be tiled in
F

(2n−k)
k (q, s) ways.

Theorem 13. The following equality holds for any integer n ≥ 0:

F
(a,b)
2n+2(q, s) = a

n∑

i=0

n∑

j=0

(ab)ξ(n−i−j)qi
2+(n+i+j)jsi+j

[
n− j

i

][
n− i

j

]
(ab)2⌊n−i−j

2 ⌋.

Proof. There exist F
(a,b)
2n+2(q, s) tilings weighted by bi-colored squares of a (2n+1)-board. On

the other hand, note that if a (2n + 1)-tiling has an odd number of squares, then there is
a square such that the number of squares to the left side of it is equal to the number of
squares of the right side. This square is called median square, and it contributes an a to
the weight. We will count the number of tilings containing exactly i dominoes to the left
of the median square and exactly j dominoes to the right of the median square. A tiling of
a (2n + 1)-board with i + j dominoes has 2n + 1 − 2i − 2j squares, so there are n − i − j
squares on each side of the median square. Since the left side has n− j tiles i of which are
dominoes, then there are

aξ(n−j+i)qi
2

si
[
n− j

i

]
(ab)⌊n−i−j

2 ⌋

ways to tile this board. Analogously, the right side can be tiled by

bξ(n−j+i)q(n+i+1)jsj
[
n− i

j

]
(ab)⌊n−i−j

2 ⌋

ways.

The above theorem is a q-analogue of the Fibonacci identity (cf. [22]):

n∑

i=0

n∑

j=0

(
n− i

j

)(
n− j

i

)
= F2n+1.
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