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Abstract

In this paper, we consider a (p, ¢)-generalization of the r-Whitney-Lah numbers
that reduces to these recently introduced numbers when p = ¢ = 1. We develop a
combinatorial interpretation for our generalized numbers in terms of a pair of statistics
on an extension of the set of r-Lah distributions wherein certain elements are assigned a
color. We obtain generalizations of some earlier results for the r-Whitney-Lah sequence,
including explicit formulas and various recurrences, as well as ascertain some new
results for this sequence. We provide combinatorial proofs of some additional formulas
in the case when ¢ = 1, among them one that generalizes an identity expressing the
r-Whitney-Lah numbers in terms of the r-Lah numbers. Finally, we introduce the
(p, ¢)-Whitney-Lah matrix and study some of its properties.
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1 Introduction

Given variables # and m and a positive integer k, define the generalized rising and falling
factorials of order k£ by

[z|m], = x(x+m) - (x + (k= 1)m),

(@lm)y = 2(x —m)--- (= (k= 1)m),

with [z|m]o = (x|m)o = 1. The r-Whitney-Lah numbers, which we denote by L(n,k) =
L(n, k;r,m), were introduced by Cheon and Jung [3] and are connection constants in the
polynomial identities

[z + 2r|m], = Z L(n, k)(xz|m)y, n > 0. (1)
k=0

In the m = 1 case, the numbers L(n, k;r, 1) coincide with the r-Lah numbers [16, 18], which
are also known as unsigned r-restricted Lah numbers; see sequence A143497 in OEIS [21].
These numbers enumerate partitions of the set [n + r] into k + r ordered lists in which the
members of [r] belong to different lists. When r» = 0 and m = 1, the L(n, k;r, m) reduce to
the classical Lah numbers [8], which occur as A008297 in OEIS [21].
The r-Whitney-Lah numbers may also be defined, equivalently, as
L(n,k)=> wn, ))W(j k), 0<k<n, (2)

j=k

where w(n, j) and W (j, k) are the r-Whitney numbers of the first and second kind, respec-
tively (see, e.g., [1, 3, 13, 14]). This generalizes a well-known formula for the classical Lah
numbers in terms of the Stirling numbers of the first and second kind. See [18, Theorem
3.11] for the comparable relation involving r-Lah numbers. Here, we consider a two-variable
polynomial generalization L, ,(n, k) of the r~-Whitney-Lah sequence which reduces to it when
p = q = 1. Starting with an extension of formula (2), we derive the recurrence for L, ,(n, k)
and other properties that generalize results from [3] for L(n, k). Note that when r = 0 and
m =p =1, the L, ,(n, k) coincide with previously studied ¢-Lah numbers [9]. See also [4, 5]
for related generalized Stirling polynomials.

We develop a combinatorial interpretation of our L, ,(n,k) in terms of two statistics
defined on extended r-Lah distributions in which certain elements are assigned a color. This
allows one to ascertain further identities satisfied by L,,(n,k) and to supply them with
combinatorial explanations. When p = ¢ = 1, our proofs specialize to provide counting
arguments of various identities involving L(n, k) which were shown [3] by algebraic methods
using the Riordan group. In particular, we find a combinatorial proof of a generalization of
the identity

n

Ln, k;r,m) = Z (”;) 2r(1 — m)|mlim™ L@, k;r, 1), nk >0, (3)
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see [3, Theorem 4.2]. Note that formula (3) expresses the r~-Whitney-Lah numbers in terms
of the r-Lah numbers. Due to the negative terms occurring in the sum (once its summands
are expanded), to explain (3), we make use of a sign-changing involution defined on a certain
extension of the set of r-Lah distributions whose set of survivors has cardinality given by
L(n, k;r,m).

The organization of this paper is as follows. In the next section, we define L, ,(n, k) as a
convolution of generalized r-Whitney numbers and determine its defining recurrence. In the
third section, we develop a combinatorial interpretation for L, ,(n, k) and prove additional
properties of these polynomials. Further attention is paid to the special cases ¢ = 0 and
g = —1. In the fourth section, additional identities are proven for L, ,(n, k) by combinatorial
arguments in the case when ¢ = 1, including a generalization of (3). In the final section, we
introduce the (p, ¢)-Whitney-Lah matrix and study some of its properties.

We make use of the following terminology and notation. A block within a partition
of a finite set in which the elements may be written in any order is described as contents-
ordered. An element that is the smallest within a content-ordered block is said to be minimal;
all other elements are non-minimal. If m and n are positive integers, then let [m,n] =
{m,m +1,...,n} if m < n, with [m,n] = @ if m > n. The special case [1,n] is denoted
by [n], with [0] = @. Throughout, we let I stand for the set [r + 1,7 + n|. Given a variable
q, let [i], =1+ q+ -+ ¢! for a positive integer i and [0], = 0. Finally, the g-binomial

= % for 0 < k < n and is zero otherwise, where

coefficient (Z is defined as (Z)
q q
k]! = [T, i, if k > 1 and [0],! = 1.

2 Definition and recurrence

The (p, q)-Whitney numbers of the first and second kind (see [12, 20], where they were
introduced) are connection constants in the identities

i TIe+ ) = 3wl o = B, n20, ()
and -
(ma + [r],)" = Z Woq(n, k)m* H(z — [i]q). n = 0. (5)

Note that when p = ¢ = 1, the w,,(n, k) and W, ,(n, k) reduce, respectively, to the -
Whitney numbers of the first and second kind. See [10] for a related g-analogue studied from
an algebraic standpoint.

In analogy to (2), define L, ,(n, k) = L, ,(n, k;r,m) by

Lyq(n, k) := pr,q(n,j)wp,q(j, k), 0<k<n. (6)
j=k
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Note that the L, ,(n, k) reduce to L(n,k) when p = ¢ = 1. Thus, one may refer to these
numbers as generalized r- Whitney-Lah numbers. The L, ,(n, k) satisfy the following two-term
recurrence.

Theorem 1. Ifn,k > 1, then
Lypg(n, k) = Lyg(n— 1,k = 1) + 2[r], + m([n — 1] + [k]g)) Lpe(n — 1, k), (7)
with Lyq(n,0) = [y 2lr], +mli],) and L,,(0,k) = 6o for all n,k > 0.

Proof. The initial condition L, ,(0,k) = g0 is clear. Replacing = with HQM” in (4), and
using (5), gives

il_!(:chQ[ prqnj (@ +[r],)
- ;wpq n, j kigwpq E (x — mli])
- ZH( il ﬁ;wp,qmmwpqo, b
- kijp,qm,k) < ~ il )
For n > 1, we then have : i
;L’”("’ b < ~ mlil,) = < +2[r], + miil)

= (& + 2l mf - 11q>j_:<a: + 207, + mil)

= (w2 + mln— 1)) Lyaln—1,5) < — mll,)

- Lpa(n —1,1) H< — mfil,

4 :_;@mp +m([n— 1], + [k]g) Lpq(n —1,k) :(w — mfi]y)
_ k;u:pqm 1k = 1) + 2l & (= 1)y + (Hg)) Lpa( — 1, ) < — mlly),



upon replacing k by k — 1 in the first sum. Equating coefficients of [[\_, (x — mli],) gives
(7). Taking x = 0 in (8) gives the formula for L, ,(n,0). O

Let [elm, ql = w(a+m[1],) - (@ +mlk—1],) and (zlm, ) = a(e —m(1],) - (@ —mk -
1],) denote the generalized g-rising and g¢-falling factorials of order k. Then the proof of the
prior theorem shows the following result, which generalizes (1).

Corollary 2. The L, ,(n,k) are connection constants in the polynomial identities

[+ 2[r]plm, qln = Y Lyg(n k) (@lm @), n >0, (9)

3 Combinatorial interpretation and properties

We now provide a combinatorial interpretation for the array L, ,(n,k). To do so, we first
need to define a property possessed by certain elements within a contents-ordered block.

Definition 3. Suppose that a contents-ordered block contains a single element s € [r] along
with some members of I. Then = € [ is said to satisfy the nearness property if there exists
no y € I with y < x lying between x and s within the block. Such an z is said to be near s.

For example, if n =7, 7 =3, and B = {6,8,4,2,9,7}, then s = 2 and 4, 9 and 7 are near
2. Given 0 < r < m, by an r-partition of [m], we mean a partition of the set [m] in which
the elements of [r] belong to distinct blocks. We now define a set enumerated by L, ,(n, k)
in the case when p = ¢ = 1.

Definition 4. Given r > 0 and m > 1, let L(n, k) = L, ,,(n, k) denote the set of r-partitions
of [n + r] into k 4 r contents-ordered blocks in which non-minimal elements not satisfying
the nearness property are assigned one of m colors.

That |L(n,k)| = L(n, k) follows from comparing recurrences. Members of L(n,k) are
referred to as (r,m)-Lah distributions. Within a member of L(n, k), we refer to the blocks
containing an element of [r| as special and to the remaining blocks comprised exclusively of
elements of I as non-special. (The members of [r] themselves will also at times be described
as special.) Note that by definition all non-minimal elements within non-special blocks are
assigned one of m colors, since only elements belonging to special blocks can satisfy the
nearness property. We now define a couple of statistics on L(n, k).

Definition 5. Given 1 < ¢ < r, let s; denote the number of elements of [ satisfying the
nearness property within the special block of A € L(n,k) containing i. Define a(\) =

Yo (i —1)s;.

We now define a property of certain elements within non-special blocks.



Definition 6. Suppose A € L(n, k) and that x € I belongs to a non-special block B of A,
with x not the first element of B. Then the predecessor of z is the first element of I to the
left of x within B and smaller than x, provided such an element exists.

We must change the definition somewhat when discussing special blocks.

Definition 7. Suppose = € I belongs to a special block containing s € [r] and that z is not
near s. We define the predecessor of z as we have already if x lies to the right of s within
the block. Otherwise, the predecessor of x is obtained by applying the previous definition to
the word obtained by writing all elements to the left of s within the block in reverse order.

For example, if n = 10, »r = 2, and B = {8,6,9,12,7,1,4,5,10} is the special block
containing 1, then the elements 8, 9, 12, 5 and 10 do not satisfy the nearness property
and have predecessors 6, 7, 7, 4 and 5, respectively. Note that within special blocks, only
elements not satisfying the nearness property have predecessors, while within non-special
blocks, only elements not corresponding to left-to-right minima have them.

Definition 8. Given A € L(n, k), let Sy be the set of elements of I that have predecessors,
and given x € S, let pred(z) denote its predecessor. Let ¢; be the number of left-to-right
minima within the i-th non-special block of A, where non-special blocks are arranged in
ascending order of their minimal elements. Let

Bi(A) = (pred(z) —r —1)

€S

and

and define S(A\) = B1(\) + Ba(N).
We consider the joint distribution of the o and § statistics on L(n, k).

Definition 9. If n, k£ > 0, then let

M, (n, k) := Z PN B,
AeL(n,k)

It is seen that M, ,(n, k) satisfies the same recurrence as the one given above for L, ,(n, k)
in (7), upon considering whether or not the element n+r when added to a prior block satisfies
the nearness property, and if not, the value of its predecessor (if it exists). Since the initial
values are the same, we obtain the following combinatorial interpretation for L, ,(n, k).

Theorem 10. Ifn.k >0, then L, ,(n, k) = M, ,(n, k).



We now describe a second combinatorial interpretation for L, ,(n, k). Given 0 < k <
J < n, consider ordered pairs (7, d) such that v € €2, ,,(n,j) and ¢ is an arrangement of the
cycles of v according to some member of 11, ,,,(j, k), where the sets Q, ,,,(n, j) and 1L, ,,,(j, k)
are as previously defined [20, Definitions 3.3 and 3.9]. Let U (n, k) denote the set of all
such ordered pairs (v,0) and let U(n, k) = U"_ U (n, k). As in the combinatorial proof of
[20, Theorem 3.11], let (7,6) € U(n, k) have weight p*1(NFw1(0)gr2()+w2(0) where the v; and
w; statistics for ¢ = 1,2 are as defined in [20, Definitions 3.5 and 3.10]. By formula (6),
we have that L, ,(n, k) is the sum of the weights of all members of U(n, k). Indeed, this
combinatorial interpretation for L, ,(n, k) is equivalent to the one given in Theorem 10.

Proposition 11. There is a weight-preserving bijection between U(n, k) and L(n, k).

Proof. Given A = (v,0) € U(n, k), write each cycle of v belonging to a non-special block of §
with the smallest element first and arrange cycles left-to-right in descending order of smallest
elements. On the other hand, we write each non-special cycle of v belonging to a special
block of § with the smallest element last and arrange the non-special cycles left-to-right in
ascending order of smallest elements, followed by the special cycle, written with its smallest
element first. We then erase the parentheses enclosing the cycles of v within all blocks of §
and let A" denote the resulting member of L(n, k). Note that the number of objects within A
assigned one of m possible colors is the same as the number of letters assigned a color within
N. Thus, the mapping A — X is seen to be bijection between U(n, k) and L(n, k). Assume
that members of L(n, k) are weighted according to Definition 9 above. One may verify that
A has the same p- and ¢-weights as X for all A, as required. O

We have the following further recurrence relations for L, ,(n, k).

Theorem 12. Ifn >k > 0, then

Lyan k)= S [T @+ m([Hy + [10) gk — 1) (10)
j=k—1i=j+1
and .
Lp,q(nv k) = Z(Q[T]p + m([]]q + [n —k+j- 1]q))Lp,q(n —k+j— 1,j>- (11)

Proof. To show (10), consider the size 7+ j +1 of the smallest element of the last non-special
block within a member of L(n, k), where k —1 < j < n — 1. Then there are L, ,(j,k — 1)
possibilities concerning the placement of the elements of [r + j|, with r + j + 1 starting a
new block. For each i € [j + 2,n], there are 2[r], +m([k], + [¢ — 1],) possibilities concerning
placement of the element r + ¢, whence there are H;:J.IJFI(Q[T]I, + m([k], + [i],)) possibilities
for all such elements. Summing over j gives (10).

To show (11), consider the size, r+n —k+ j, of the largest element of I not occupying its
own block. Note that we must have 0 < j < k. Then each element of [r+n—k+j+1,r+n]
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within a member of £(n, k) must belong to its own block, leaving k — (k — j) = j non-special
blocks. Thus, there are L, ,(n — k + j — 1,j) possibilities concerning arrangement of the
elements of [r+n —k+j—1]. At the time that the element r +n — k + j is placed, there are
j non-special blocks currently occupied. Since this element is not to be the smallest within
its block, there are 2[r], + m([j], + [n — k + j — 1];) possibilities concerning its placement.
Summing over all j gives (11). O

Note that the p = ¢ = m = 1 case of (10) occurs as [18, Theorem 3.3]. Let (a;);>0 and
(b;)i>0 be sequences of complex numbers (or indeterminates), with the b; distinct. Let the
array {u(n, k)}, x>0 be defined by the recurrence

u(n, k) =u(n—1,k —1) + (an—1 + bp)u(n — 1, k), nk>1,

with boundary conditions u(n, 0) = [[/=, (a; + by) and u(0, k) = &y for all n, k > 0. By [11,
Theorem 1.1], we have the formula

Mmm:Z:LEﬁiﬂ@ . nk>0. (12)

From this, one can obtain an explicit formula for L, ,(n, k).

Theorem 13. Ifn,k > 0, then

1 k n—1
Lyan, k) = q<—)mz<—1> () [[or L), (3)

Proof. Taking a; = mli], + 2[r], and b; = m[i], in (12) implies

N [T, (mlil, + mljl, + 207],)
- ]Z:; H =0 [j]q = [tlg) - Hf:j-i—l m([lg — [ilq)
! [1:=) (mli]y + m[j], + 2[r],)

1,
= mig® [P — i)y - (—m)agi=D TTE [ — 4l

— i o s (o) TLmil+ bl + 201,

1=0

which gives (13), by the fact (§) = () + (*;7) + j(k — j). O
Formula (13) may be simplified further when ¢ = 1.
Corollary 14. Ifn,k > 0, then

n—k

mhRnl n+m—1
L,i(n, k)= ( m ) (14)




Proof. Letting ¢ = 1 in (13) gives

k n—1
1 k
Ly(n,k) = — jo(—1) (j) H mi +mj + 2[r],)
n—k k n—1
m 2[r],
_ ()H( )
Jj= 0 =0
B mFkn) k ] +n+ 2[772? 1 B mkn! /'n + 2[7”} -1
K T n—k )
j= O
where we have made use of the binomial identity [7, Identity 5.24]. O]

Remark 15. If myn > 1 and p,r > 0, one can show using (14) that the sequence L, 1(n, k)
for 0 < k < n is strictly log-concave (and therefore unimodal). Taking p = m = 1 in (14)
yields [18, Theorem 3.7], which was given a bijective proof.

Using (14), one can obtain the following exponential generating function formula.

Corollary 16. If k > 0, then

ZLpln [ = (1_xmx>k(1_1mx) " (15)

We have the following explicit expression in the case when ¢ = 0.

Proposition 17. Ifn > k > 1, then

n—1

ool k) = (7 ) 2Bl 2my=* 201 Z (1,2 ) @llyr2m) =l )= (10

Proof. Taking ¢ = 0 in (7), and noting [i], |,—0= [¢ > 0], gives the recurrence
Lyo(n, k)= Lyon—1,k—1)+2([r], + m)L,o(n —1,k), n>k>1, (17)

with L, o(n,0) = 2[r],(2[r],+m)" " for n > 0 and L,o(n,n) = 1 for n > 0. If k > 0, then let
fi(@) =32, ok Lpo(n, k)a™. Note that fo(z) = 1(1[11%7 by the initial values. Multiplying

both sides of (17) by 2", and summing over n > k, yields

fi(@) = a* = 2(fir(z) — 2"70) + 2([r), + m)z fi(2),

whence
T

1—2([r], + m)x

fr(x) = Je—1(z), k> 1.



This implies
1—mx ¥

filw) = 1= 2[r], +m)z (1 —2([r], + m)a)k
1_m$ Z—l i—k z
- 1—(2{r]p+m>xz(k—1)(2” o

l—mx; ;(2_1) rl, + 2m) =k (2[r], + m)" .

Extracting the coefficient of x™ gives

as desired. ]

It is possible to give a bijective proof of the prior result using our combinatorial inter-
pretation for L, ,(n, k).

Combinatorial proof of Proposition 17.

We argue directly that the right-hand side of (16) gives the weight of all members of
L(n, k) having /3 statistic value zero. In order for a member of L(n, k) to have zero [ value,
both its 8; and By values must be zero. For that to occur, each element of I either (i) is
minimal, (ii) satisfies the nearness property, (iii) has r + 1 as its predecessor, or (iv) is non-
minimal, but is a left-to-right minimum in the leftmost non-special block. Note that exactly
k elements of I must satisfy condition (i) within any member of L£(n, k). First suppose that
the element r + 1 is among them. In that case, there are (Zj) ways in which to choose
the other elements that satisfy (i). For each of the remaining n — k elements = of I, there
are 2[r], possibilities if (ii) is to be satisfied, since in this case x comes either directly after
or before some member of [r] at the time it is placed (we assume elements are arranged
one-by-one in ascending order). If (iii) is to be satisfied, the element z at the time it is
placed must directly follow r + 1 within its block. In order for (iv) to hold, the element x
must be inserted at the very beginning of the leftmost non-special block (which in this case
contains r + 1). Note that the last two options entail that = be assigned one of m possible
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colors. Thus, there are 2[r], + 2m ways to place each = and hence (2[r], + 2m)" % ways in
all to position the remaining n — k unchosen members of [.

Now assume that r+1 is not minimal and suppose that all elements of J = [r+1,r+n—i]
for some 7 belong to special blocks, with » +n — i 4+ 1 being the smallest minimal element of
I. Note that k& <i < n—1 since r+1 is not minimal. There are 2[r], choices concerning the
placement of  + 1 since it may directly follow or precede any member of [r] and 2[r], + m
choices for each of the other members of J since they may also directly follow r + 1, whence
there are 2[r],(2[r], +m)"~"~! possibilities in all for the members of .J. Concerning the other
k — 1 minimal elements, they can be picked arbitrarily from the set [r +n — i + 2,7 + n,
which can be done in (]:11) ways. For each of the remaining i — k£ elements belonging to this
set, there are 2[r], + 2m possibilities since each one may satisfy conditions (ii), (iii) or (iv),
whence there are (2[r], + 2m)"~* possibilities concerning their arrangement. Summing over
i gives the weight of all members of £(n, k) having [ value zero in which the element r + 1
is not minimal. This yields the second term on the right-hand side of (16) and completes
the proof. m

Note that (16) does not follow from (12) since the b; = [i], terms are not distinct when
g = 0. Formula (12) also does not apply in the case when ¢ = —1 for the same reason,
which we now consider. Note that the sign-balance of the 3 statistic on £,, ;, can be obtained
by evaluating L,,(n, k) at ¢ = —1. Let H(x,y) = Y., 150 Lp—1(n, k)a"y". There is the
following explicit formula for H(x,y). o

Proposition 18. We have

_ l+z(y+c—m)—2*((y —c)* + em) — 2*(y — c — m)(y* — ¢ + cm)

H
(z.9) 1—222(y? 4+ ) + 24 (y?> — 2 —em)(y? — 2 + em)

, (1)

where ¢ = 2[r], + m.
Proof. Note that H(xz,y) = >, -oa(n;y)z", where a(n;y) = Yo Ly _1(n, k)y*. We first
write a recurrence for a(n;y). Letting ¢ = —1 in (7), and observing [i], |,=—1= [¢ is odd],
yields for n > 1 the formulas

L, 1(2n,k) =L, _1(2n — 1,k — 1)+ (2[r], + m)Ly_1(2n — 1, k), k even,
and

L, 1(2n,k) =L, 1(2n— 1,k — 1)+ (2[r], + 2m)L, 1 (2n — 1, k), k odd.

Multiplying the last two recurrences by 4*, summing over even and odd values of k, respec-
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tively, and adding the resulting equations implies

a(2n;y) = (y + 2[r], + m)a(2n — 1;y) +m Z Ly 1(2n —1,k)y*
k=0
k odd

= (y+2[r], + m)a(2n — 1;y) + %(a@n —Ly)—a2n—1;—y))

3
= (y +2[r], + Tm) a2n —1;y) — %a@n —1;—y), n > 1. (19)
By similar reasoning, we also have

m
- —a

a(2n —1;y) = <y+2[r]p—|— %) a(2n — 2;y) (2n — 2; —y), n > 1. (20)

Multiplying (19) and (20) by 22" and z**~!, respectively, and summing over all n > 1,
implies

Hiz,y) = 1= alnsy)e"

n>1

=z (y +2[r], + @> H(z,y) — %H(x, —y) + mx Z a(2n — 1;y)2*"

2
n>1

= (y+20rl, + 5 ) Hley) = o Hz.—y) + 5 (H(e,y) - H(=z.y)).

which gives the functional equation
(1 - 2y — ca)H(x,y) + - H(—,y) + = H(z,—y) = L (21)

Replacing (z,y) by (—z,y), (z,—y), and (—z, —y) in (21), and solving the resulting linear
system in four unknowns using Cramer’s rule, yields (18). [

Remark 19. Note that H(z, 1) is the generating function for w, :=>"}_; L, _1(n, k), which
gives the sign balance of the 3 statistic over all (r, m)-Lah distributions of size n + r. From
(18) when y = 1, this quantity is seen to satisfy the fourth-order recurrence

Uy = 2(¢% + Dty o — (A +em — 1) (¢ — em — 1)uy,_y, n > 4.
Similarly, using (18), one may deduce a more complicated linear recurrence satisfied by the
array L, _1(n, k).
4 Further formulas in the case ¢ = 1

We have the following further results for L, ,(n, k) when ¢ = 1. The first formula in the next
theorem generalizes [3, Corollary 4.3] and reduces to this result when p = 1.
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Theorem 20. Ifn,k >0 andr > s > 0, then

Lyatonsbiram) =3 ()20l = syl s (22
i=k

and

Los(n irm) = (7) (52l = sl 2~ sl 2 k0.1, (29

i=k j

Proof. We argue that the right-hand side of (22) gives the sum of the p-weights of all members
of L, ,(n, k) according to the number, n—1, of elements of I belonging to the last r—s special
blocks. Once these elements have been chosen in (7;) ways, there are 2(p® + -+ +p" 1) =
2p®[r—s]|, possibilities concerning the choice of position for the smallest chosen element. After
this smallest element is positioned, it is seen that there are 2p®[r — s], +m possibilities for the
position of the second smallest chosen element. Continuing in this manner, it follows that
there are [2p°[r — s|,|m],,—; possibilities concerning the positions of the elements in the final
r — s special blocks. The remaining unselected ¢ members of I, together with the elements
of [s], then constitute a configuration in Ls,,(i,k), whence the factor of L, (i, k;s, m).
Summing over all i gives (22).

To show (23), we consider instead the number, n — i, of members of I belonging to the
first r — s special blocks. Note that there are (7)[2[r — s,|m],—; ways in which to choose
and arrange these elements. Concerning the remaining ¢ members of I, we must specify how
many of them belong to the final s special blocks, say i — j. There are (;) 12p"%[s]p|m]i—j
ways in which to choose and arrange these elements. The remaining j members of [ then
go in the non-special blocks and constitute a Lah distribution having k& blocks, wherein the
7 — k non-minimal elements are each assigned one of m possible colors. Summing over all
possible i and j gives (23). O

The p = 1 case of formula (23) does not seem to have been previously noted. On the
other hand, the p = 1 case of the next result occurs as [3, Theorem 4.2] and was shown by
algebraic methods using the Riordan group. Here, we provide a combinatorial proof using
the interpretation developed above for L, ,(n, k).

Theorem 21. Ifn,k >0, then

Lya(n,k;rym) =Y (”) 2[r],(1 — m)|m]p_ym "L, (i, k;r, 1). (24)

- 1
i=k

Proof. To give a bijective proof of this result, within each (r, m)-Lah distribution, we distin-
guish further certain elements, assigning some of these elements different weights. We then
consider the sum of the weights of configurations containing three types of elements defined
as follows. A critical element (ce) is one that satisfies the nearness property and is either

13



underlined (type 1) or overlined (type 2). A sub-critical element (sce) is a member of I hav-
ing a predecessor that is either a ce or another sce. Critical elements of type 1 are assigned
no color, whereas ce’s of type 2 and sce’s are assigned one of m colors. Finally, a non-critical
element (nce) is a member of [ that is neither critical nor sub-critical. By a distinguished
non-critical element (dcne), we mean an nce that satisfies the nearness property. Note that
a dnce is to be neither underlined nor overlined. All nce’s except those that are the smallest
within their block are assigned one of m colors (including dnce’s, which did not receive a
color in the definition of £(n, k) above). Let us refer to members of L, ,,(n, k) marked and
colored as described above as extended (r,m)-Lah distributions.

Given i > 0, let RW(n, k) = R&%(n, k) denote the set of all extended (r,m)-Lah
distributions containing exactly i nce’s (including dnce’s). Note that R™(n, k) is empty
unless £ < 7 < n since ce’s and sce’s must belong to special blocks, by definition. Let
R(n, k) = U, RD(n, k). We define the p-weight of A\ € R(n, k) just as we did above for
L(n, k) (that is, per Definitions 5 and 9), with all elements satisfying the nearness property
contributing (namely, the dnce’s and ce’s). Define the sign of A\ € R(n, k) to be (—1)*V,
where () denotes the number of ce’s of type 2.

We now argue that the i-th term on the right-hand side of (24) gives the (signed) weight
of all members of RW(n, k). Let S = {s; < sy < --- < 5,,_;} be a subset of I of size n—i. We
show that the weight of all members of R (n, k) whose set of ce’s and sce’s is precisely S is
given by [2[r],(1 —m)|m],_;m' %L, (i, k;r,1) for all S. First consider placing the elements
of [s; — 1]. We arrange these elements in contents-ordered blocks such that the members of
[r] lie in different blocks and assign colors as described above for nce’s. We next choose the
position of the element s;. Note that s; must be a ce (by the definitions), being the smallest
element of S, and thus must be positioned directly adjacent to some member of [r| within a
special block. Thus, there are 2[r], possibilities for s; if it is of type 1, and —2m]r], if it is
of type 2, which implies that there are 2[r],(1 — m) possibilities in all.

Having positioned all elements of [s1], we next arrange members of [s; + 1, s5 — 1], doing
so one at a time, starting with s; + 1. Since each j € [s1 + 1,5 — 1] is to be an nce, there
are four disjoint possibilities concerning the position of each j: (i) 7 satisfies the nearness
property (in which case, j is a dnce), (ii) j has an nce as predecessor, (iii) j is a left-to-right
minimum that is not minimal within some non-special block (i.e., j is the first but not the
smallest letter in its block at the time it is positioned), or (iv) j is the smallest letter of
its block (i.e., 7 goes in its own block when its position is chosen). Note in all cases except
(iv) that j is assigned one of m colors. We next place the element s,. For this, there are
2[r],(1 — m) possibilities for s, as before if s, is a ce, and m possibilities if so is to be an
sce (note in the latter case that sy would directly follow s; in its block), whence there are
2[r],(1 — m) + m possibilities for s, in all.

We continue to add elements of I to a growing extended Lah distribution as described
above until all elements have been added (lastly, choosing the positions of the elements of
[sn—i +1,n+r]). Reasoning as above, one sees that there are 2[r|,(1 —m) + tm possibilities
regarding the choice of the position of the (¢+1)-st element of S for 0 < ¢ < n—i—1. As these
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choices are in essence independent of one another, we get [2[r],(1 — m)|m],—; possibilities
concerning the placement of the elements of S within a member of R (n, k). Since members
of I — S are never positioned directly after either a ce or an sce when placed and since these
elements comprise all of the elements within the non-special blocks (as members of S must all
go in special blocks, by definition), choosing the positions for members of I — S is essentially
the same as arranging the elements of [r], together with i elements of I, according to some
member of L4, (4, k) (with all non-minimal elements assigned one of m colors). Thus, there
are m' "L, (n, k;r, 1) possibilities concerning the placement of the elements of [ — S. It
follows that the weight of all members of R (n, k) is given by the i-th term of the sum on
the right side of (24), as desired. Allowing i to vary, we have that the right side of (24) gives
the signed weight of all members of R(n, k).

To complete the proof, we define an involution of R(n, k). Given A € R(n, k), let ¢y be
the largest ¢ (if it exists) satisfying either (i) ¢ is a ce of type 2, or (ii) ¢ is a dnce. If (i)
occurs for ¢y, then erase the overlining, which makes ¢, a dnce, whereas if (ii) occurs, then
designate ¢y a ce and overline it. In either case, note that the element ¢, is among those
assigned one of m colors, which remains the same. Let \" denote the resulting configuration.
For example, if n =21, k=2, r =3, m =1 and A € R(21,2) is given by

A= {20,16,1,11,22}, {21,24,18,2,9,8,23,4,13}, {17,3,10,5,15}, {7,19,6}, {12,14},

then the elements 4, 8 and 18 meet either (i) or (ii) in the second special block, while 10
and 17 do so in the third, whence £, = 18. Then ) is obtained from X by replacing 18
with 18, keeping all other elements the same. Observe that we have A € R®)(21,2), whereas
N € RU(21,2), since the elements 21 and 24 are sub-critical in A but are non-critical in \'.

The mapping A — X is well-defined since both ce’s and dnce’s satisfy the nearness
property. Furthermore, if ¢, is changed from a ce to a dnce, then all letters within the block
between ¢, and the closest element of I that is strictly smaller than ¢; and on the same side
of the special element s as ¢, (or all letters beyond ¢, when moving away from s if no such
element of I exists) would go from being sce’s to nce’s, and conversely, if ¢ is changed from
a dnce to a ce. Since sce’s and nce’s are assigned one of m colors, the weight is preserved
in both cases. Thus, the mapping A — X' is seen to be a sign-changing, weight-preserving
involution of R(n, k) where it is defined. It is not defined for those configurations p € R(n, k)
containing no dnce’s and in which all ce’s are of type 1. Note that all of these p have positive
sign and that any elements contained within them that satisfy the nearness property are ce’s
of type 1 and hence are not assigned a color, though they do contribute to the p-weight. It
is then seen that the total weight of all such p is given by L, 1(n, k;r,m), which completes
the proof. m

Our final result in this section generalizes [18, Theorem 3.11], reducing to it when p =
m = 1.

Theorem 22. Ifn >k >0, then

S0 Lya o)y ikisom) = ()Rl - 2l (29

i=k
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Proof. By Corollary 2, we have

[z + 2[r], — 2[s],|m ZLPl n,i;r,m)(x — 2[s],|m);

=0

— ZLPl (n,i;7r,m) Z(_l)i_j[/p,l(iaj;Sam)[‘r|m]j
7=0

= ZZ Z JLpl n, Z T, m)Lp7l(i7j;Sam)[$‘m]j‘

Jj=0 i=j

On the other hand, by the binomial theorem for the rising factorial (see, e.g., [7, p. 245]),
which also applies for an arbitrary increment m, we have

n

2+ 20, — 2slylml, = 3 (j) 20l — 20sllmlalm).

=0
Equating coefficients of [z|m] gives (25). O

Taking r = s in (25) gives the orthogonality relation

n

S (1) Ly (n,i)Lpa (k) = 0pp, 0< k<. (26)
i=k

5 (p,q)-Whitney-Lah matrix

In this section, we introduce the (p, ¢)-Whitney-Lah matrix and determine various properties.

Definition 23. The (p, ¢)-Whitney-Lah matrix is the n x n matrix defined by

LP(n) = [Lpg(i, 5)o<ij<n—1-

For example when n = 4, the matrix LP?(n) is given by

1 0 0 0
2[r], 1 0 0
A[r]2 4 2m]r], A[r], +2m 1 0]"
8[rl; +4m[rl3(q +2) + 2m2[rlp(g + 1) 12[r]) + 4mr]p(g+4) +2m* (g +2) 6rl, +2m(g+2) 1

In particular, note that L”9(n) reduces to the r-Whitney-Lah matrix [15] when p = ¢ = 1,

the r = 0, m = 1 case of which is referred to simply as the Lah matrix (see, e.g., [17]).
Before giving a factorization of L»4(n), we need to recall some previously studied matri-

ces. The (p, q)-Whitney matrices [20, 12] of the first and second kind are defined as follows:

nglq) (n) [wp q(Z Jir, m)]ogi,jgn_1 )
WPSQCI) (TL) - = [Wp,q(la ]7 T, m)]0§i7j§n—1 .
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In particular, when p = ¢ = 1, these matrices reduce to the r~-Whitney matrices [15] of the
first and second kind. Whenm =p =1and r = 0, the Wi(,,lq) (n) coincide with the z = —1 case
of ¢-Stirling matrices of the first kind defined by S\)[z] := [s,(3, )2 ]o<i j<n_1, whereas
the W,§?q) (n) coincide with the z = 1 case of the ¢-Stirling matrices of the second kind
SEa] == [S,(i, /)" )ocs jen—1 (see, e.g., [6, 19]).

It follows from the definition of the (p, ¢)-Whitney-Lah numbers that

P (n) = WD (n)W@ (n).

p,q p.q

Recall now the generalized n x n Pascal matrix P, [z] (see [2]) defined as

ri= (),

which reduces to the Pascal matrix P, of order n when z = 1.
It was shown [20, 12] for n > 1 that

Wia(n) = Si=m]Pa[[r],], (27)
Wi (n) = Pallr,] S lm] (28)

Therefore, we have
LP(n) = Syol=m|Pa 20| SEm],  n>1, (29)

which implies the following formula:

Lyq(i,J) ZZ() Y Em s (1 8) S (1, ) (2r),)F T, 0<j<i (30)

I=j k=l
Given n > 1, let S,[2] be the n x n matrix defined by S,[z] := [+ 7];c,c;, ;- Recall
the factorization of the generalized Pascal matrix due to Zhang [22, Theorem 1] given by
P,[z] = G,[z]Gp—4 2] - - - Gy 2], n>1, (31)

where G, [x] = S, [z] and Gy[x] = I,,_ ® Sk[x] for 1 <k < n—1, with @ denoting the matrix
direct sum.

Proposition 24. Ifn > 2, then
LP(n) = Pi[mq""?|Po[mq"°] - - - P 1 [m] Po[2[r],| P[] Ppolmg] - - Pi[mg" ™% (32)
= Pi[mg"*|Pa[mq" ] - - Pyt [m]G[2[r],] - - G1[2[r]] P [m] Pry—2[mg] - - - Pa[mg" ],



Proof. The matrix P,[[r],] can be factorized by means of (31). The matrices Sim) and
552 [m] have the factorizations (see [6, 19]):

Stg,l% [m] = Fl[_mqn_Q] o I_Dn—Q[_mQ]Fn—l[_m]a
Sc(fn [m] = P,,_1[m|P,_s[mq] - - P1[mq"?].
Therefore, formulas (32) and (33) follow from (29). O

When ¢ = 1, one may also express LP4(n) as follows.
Theorem 25. Ifn > 1, then

1 1
M e M (34)

Pln) = I, + M + M?
L' (n) + MMt T

where
: 2y TR .
m<z+——1>, if j=1—1;
(M)i; = " .
0, otherwise.

Proof. From Corollary 14, we have

(@)~
k! k+1,1 k

1 ( 1 kl)
=2 (=M (M)
>k+l,z k\ (k—1)! k141 e

(=
(m (k+1)! +2@) (k+z+2%—1)>
m k—1

1
Tk
k [ 2[7"]17 -1
(m " +k‘ )) = L,1(k+1,1).
This implies
l( k) _ Lp,1(i,z'—k‘), if j:i—k;
k! 0, otherwise,
for i =k,...,n — 1, which gives (34). 0

In particular, taking m = p = 1 and » = 0 in (34), we obtain [17, Equation 2.4]. Let us
define the generalized p-Whitney-Lah matrix L?[x] as

Ly (2] := [Lpa (i, )2 ] oy oy s
the # = 1 case of which coincides with LP'(n).

Theorem 26. Ifn > 1, then

Lile +y] = Ly[=] L7 [y (35)
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Proof. By multiplication of matrices and Corollary 14, we have

(LP[x] Zaﬂ L (i, k)Y 7 Lyq (k. 7)

20y | /g 2 g
_ i—k, k—j,  i— g i+ —1 k*j& + m
Zm " k!( ik )™ Il kD

|
=j J:

St (4 ) ()
p— N iy k—J
i—j . .

=S ot
k=0

= (@ + )" Lypa(i,j) = (Lh[z +y)), ;-

]

The m = p = 1,7 = 0 case of (35) occurs as [17, Theorem 7]. Taking y = —z in (35),

and noting LP2[0] = I,,, gives the following result.

Corollary 27. Ifn > 1, then

(Lnlz]) ™! = Ly[-a]. (36)

In particular, (LPY(n))~! = LE[-1].
We also have the following formula for powers of LP(n).

Corollary 28. Ifn > 1 and s are integers, then

(L (n))* = Lyls]- (37)
Proof. Applying (35) repeatedly implies

LPlxy +xo+ -+ + xp] = LE[2q | LB [xs] - - - LP[24,],

for indeterminates x1,zs,...,2,. Taking m = s and x; = 29 = -+ = x5, = 1 gives (37)
when s is non-negative. The case when s is negative in (37) follows from the positive case
and (36). O
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