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CNRS, 1 Ave de la Terrasse
91198 Gif-sur-Yvette

France
rudolph@unic.cnrs-gif.fr

Abstract

We investigate general properties of number sequences which allow explicit rep-

resentation in terms of products. We find that such sequences form whole families of

number sequences sharing similar recursive identities. Applying the proposed identities

to power sequences and the sequence of Pochhammer numbers, we recover and gener-

alize known recursive relations. Restricting to the cosine of fractional angles, we then

study the special case of the family of k-generalized Fibonacci numbers, and present

general recursions and identities which link these sequences.

1 Introduction

It has long been known that Fibonacci (A000045) and Pell (A000129) numbers, defined by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (1)

and
P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 (2)
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with n ≥ 2, respectively, can be represented in product form (see, e.g., [1, 2, 3, 4, 5]),
specifically

Fn =

⌊n−1

2
⌋

∏

l=1

(

3 + 2 cos

(

2lπ

n

))

=
n−1
∏

l=1

(

1− 2i cos

(

lπ

n

))

(3)

and

Pn = 2⌊
n

2
⌋

⌊n−1

2
⌋

∏

l=1

(

3 + cos

(

2lπ

n

))

=
n−1
∏

l=1

(

2− 2i cos

[

lπ

n

])

, (4)

where n ∈ N, n ≥ 2. The above sequences Fn and Pn are specific examples of general Lucas
sequences, the latter being defined by the recursive relation

L
(m,p)
0 = 0, L

(m,p)
1 = 1, L(m,p)

n = mL
(m,p)
n−1 − pL

(m,p)
n−2 (5)

for n ≥ 2 [4]. Already Zeitlin [3] showed that

L(m,p)
n = p

n−1

2

n−1
∏

l=1

(

m√
p
− 2 cos

(

lπ

n

))

, (6)

m, p ∈ R, provides a valid product representation of all members in general Lucas sequences.
Later, expressions of the form (6) were used to obtain other explicit representations of the
corresponding number sequences in terms of finite power series in the sequence parameters
(see, e.g., [6, 7, 8, 9]), thus highlighting the importance and usefulness of such product
representations for the investigation of number sequences.

In this contribution, we will show that product representations of number sequences
can also be utilized to establish direct links between different sequences. To that end, we
formulate

Definition 1. (family of number sequences) Let {xn,l} with xn,l ∈ C and n, l ∈ N be
an arbitrary two-parameter set of numbers. The corresponding family of number sequences
{Xn,m} is defined by the set of all Xn,m with

Xn,m =
n
∏

l=1

(m+ xn,l), (7)

where m ∈ C labels the individual number sequences within the family, and n the members
of each sequence.

In what follows, we will restrict to the subset of families which are constructed by m ∈ Z.
A concrete example of such a family is given if we set xn,l = −2i cos

(

lπ
n+1

)

. In this case,
using (6) with p = −1 and m ∈ Z, we have

Xn,m =
n
∏

l=1

(

m− 2i cos
(

lπ
n+1

))

= L
(m,−1)
n+1 , (8)
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thus Xn,m defines the family of generalized Fibonacci sequences F
(m)
n := L

(m,−1)
n , n ≥ 2

obeying the recursive relation

F
(m)
0 = 0, F

(m)
1 = 1, F (m)

n = mF
(m)
n−1 + F

(m)
n−2. (9)

We will call this family the Fibonacci family, and explore some of its properties in Section 4.
The paper is organized as follows. In Section 2, we will prove various general properties

of the number sequences Xn,m within a given family, with focus on linear recursive relations
between the individual sequences. Two simple examples will be investigated in Section 3,
and Section 4 will focus on the Fibonacci family defined in (8). Some generalizations will be
discussed at the end.

2 Product representation of certain number sequences

For any given set of numbers {xn,l}, we define

Xn :=
n
∑

l=1

xn,l. (10)

We will first express Xn in terms of the associated number sequences Xn,m defined in (7).

Lemma 2. For any given set of numbers {xn,l} with xn,l ∈ C, n, l ∈ N, the sum over xn,l is
given by

Xn =
(−1)n

n!

n
∑

l=1

(−1)l
(

n

l

)

l Xn,l −
1

2
n(n+ 1), (11)

where Xn,m,m ∈ Z denotes the number sequences associated with {xn,l}.
Proof. We first construct a system of equations by explicitly factorizing (7) for successive
m ∈ [1, n]. To that end, we define for p ∈ [1, n]

X (p)
n :=

n−p+1
∑

l1=1

n−p+2
∑

l2=1

· · ·
n
∑

lp=1

xn,l1xn,l2 · · · xn,lp ,

where the summation is subject to the constraints li+1 > li for all li, i ∈ [1, p]. Specifically,
for p = 1, we have

X (1)
n =

n
∑

l1=1

xn,l1 = xn,1 + xn,2 + · · ·+ xn,n,

for p = 2

X (2)
n =

n−1
∑

l1=1

n
∑

l2=1
l2>l1

xn,l1xn,l2

= xn,1xn,2 + xn,1xn,3 + · · ·+ xn,n−1xn,n,
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and for p = 3

X (3)
n =

n−2
∑

l1=1

n−1
∑

l2=1
l2>l1

n
∑

l3=1
l3>l2

xn,l1xn,l2xn,l3

= xn,1xn,2xn,3 + xn,1xn,2xn,4 + · · ·+ xn,n−2xn,n−1xn,n.

With this, the product in (7) yields

Xn,m = (m+ xn,1)(m+ xn,2)(m+ xn,3) · · · (m+ xn,n)

= m(m+ xn,2)(m+ xn,3) · · · (m+ xn,n) + xn,1(m+ xn,2)(m+ xn,3) · · · (m+ xn,n)

= m2(m+ xn,3) · · · (m+ xn,n) + m(xn,1 + xn,2)(m+ xn,3) · · · (m+ xn,n)

+ xn,1xn,2(m+ xn,3) · · · (m+ xn,n)

= mn +mn−1(xn,1 + xn,2 + xn,3 + · · ·+ xn,n) + · · ·+ xn,1xn,2xn,3 · · · xn,n

= mn +mn−1X (1)
n + · · ·+ X (n)

n ,

from which we obtain form ∈ [1, n] the following system of linear equations in X (p)
n , p ∈ [1, n]:

Xn,1 = 1n + 1(n−1)X (1)
n + 1(n−1)X (2)

n + · · ·+ X (n)
n

Xn,2 = 2n + 2(n−1)X (1)
n + 2(n−2)X (2)

n + · · ·+ X (n)
n

Xn,3 = 3n + 3(n−1)X (1)
n + 3(n−2)X (2)

n + · · ·+ X (n)
n

...

Xn,n = nn + n(n−1)X (1)
n + n(n−2)X (2)

n + · · ·+ X (n)
n .

This system can be written in more compact form as

Xn,i − in =
n
∑

j=1

aijX (j)
n , (12)

where aij = in−j, i, j ∈ [1, n]. What remains is to solve (12) for X (1)
n = Xn. To that end, we

note that ain = 1, ∀i ∈ [1, n], which allows us to construct a new system of n− 1 equations
by subtracting successive equations in (12). We obtain

Xn,i+1 −Xn,i − ((i+ 1)n − in) =
n−1
∑

j=1

a
(1)
ij X (j)

n , (13)

where

a
(1)
ij = ai+1,j − aij =

(

(i+ 1)n−j − in−j
)

=
1
∑

l=0

(−1)l+1

(

1

l

)

(i+ l)n−j
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for i, j ∈ [1, n − 1]. Again, a
(1)
i,n−1 = 1, ∀i ∈ [1, n − 1], and we can further reduce the system

(13) by subtracting successive equations. After m repetitions, we have

(−1)m
m
∑

l=0

(−1)l
(

m

l

)

Xn,i+l − (−1)m
m
∑

l=0

(−1)l
(

m

l

)

(i+ l)n =
n−m
∑

j=1

a
(m)
ij X (j)

n (14)

for i, j ∈ [1, n−m], where

a
(m)
ij = (−1)m

m
∑

l=0

(−1)l
(

m

l

)

(i+ l)n−j

with a
(m)
i,n−m = m! for all i ∈ [1, n−m]. For m = n− 1, we finally obtain

(−1)n−1

n−1
∑

l=0

(−1)l
(

n− 1

l

)

Xn,1+l − (−1)n−1

n−1
∑

l=0

(−1)l
(

n− 1

l

)

(1 + l)n = (n− 1)!X (1)
n .

Changing the summation variable l → l + 1 in both sums, and observing that
(

n−1
l−1

)

= l
n

(

n

l

)

and
(−1)n

n!

n
∑

l=1

(−1)l
(

n

l

)

ln+1 =
1

2
n(n+ 1)

[10, Equation (1.14)], we finally arrive at (11).

Lemma 2 provides, for any given n ≥ 1, an explicit representation of the sum over xn,l,
Equation (11), in terms of a finite linear combination of the number sequences Xn,m. With
this, we can immediately formulate

Lemma 3. For any given set of numbers {xn,l} with xn,l ∈ C, l ∈ N and associated family of
number sequences {Xn,m},m ∈ Z, the sum over xn,l obeys for any given n ∈ N the identities

Xn =
(−1)n

n!

n
∑

l=1

(−1)l
(

n

l

)

l Xn,l+m − 1

2
n(n+ 1)− nm (15)

and, for m 6= 0,

Xn =
(−1)n

n!mn−1

n
∑

l=1

(−1)l
(

n

l

)

l Xn,lm − 1

2
n(n+ 1)m. (16)

Proof. We first prove (15). Let us define Xn,m and Xn for the set of numbers (m′ + xn,l) as
follows:

X(m′)
n,m :=

n
∏

l=1

(m+ (m′ + xn,l))

X
(m′)
n :=

n
∑

l=1

(m′ + xn,l)
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for arbitrary m′ ∈ Z. From the first equation and definition (7), it follows immediately that

X
(m′)
n,m = Xn,m+m′ and X

(m′)
n = nm′ + Xn, which together with (11) yield (15).

The second relation (16) can be shown in a similar fashion. We define Xn,m and Xn for
the set of numbers xn,l/m

′,m′ ∈ Z,m 6= 0 as follows:

X̃(m′)
n,m :=

n
∏

l=1

(

m+
xn,l

m′

)

X̃
(m′)
n :=

n
∑

l=1

xn,l

m′
,

from which follows that

X̃(m′)
n,m =

1

m′n

n
∏

l=1

(mm′ + xn,l) =
1

m′n
Xn,mm′ (17)

and X̃
(m′)
n = Xn/m

′. Using again (11), we obtain (16).

Lemma 3 is interesting in various respects. It not just generalizes (11), but also shows
that, for an given n ∈ N, various combinations of Xn,m within a given family of number se-
quences must yield the same result Xn. This, in turn, allows us to construct general relations
between Xn,m, which will hold for all families of number sequences {Xn,m} representable in
product form (7), and constitutes the main result of this contribution. We can formulate

Proposition 4. The members Xn,m of a given family of number sequences {Xn,m},m ∈ Z

and n ∈ N, obey the general recursive relation

Xn,m+1 = (−1)n
n
∑

l=1

(−1)l
(

n

l − 1

)

Xn,l+m−n + n! (18)

and are subject to the identity

1

mn−1

n
∑

l=1

(−1)l
(

n

l

)

l Xn,lm =
n
∑

l=1

(−1)l
(

n

l

)

l Xn,l +
(−1)n−1

2
(1−m)n(n+ 1)! (19)

for m 6= 0.

Proof. The proof of (18) utilizes (15) for m → m− n+ 1 and m → m− n, yielding

Xn =
(−1)n

n!

n
∑

l=1

(−1)l
(

n

l

)

l Xn,l+m−n+1 −
1

2
n(n+ 1)− n(m− n+ 1)

=
(−1)n

n!

n−1
∑

l=1

(−1)l
(

n

l

)

l Xn,l+m−n+1 +
1

(n− 1)!
Xn,m+1 −

1

2
n(n+ 1)− n(m− n+ 1)
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and

Xn =
(−1)n

n!

n
∑

l=1

(−1)l
(

n

l

)

l Xn,l+m−n −
1

2
n(n+ 1)− n(m− n)

=
(−1)n

n!

n−1
∑

l=1

(−1)l+1

(

n

l + 1

)

(l + 1)Xn,l+m−n+1 +
(−1)n+1

(n− 1)!
Xn,m−n+1

−1

2
n(n+ 1)− n(m− n),

respectively, where in the last step l → l − 1 was used. Subtracting both identities and
observing that (l + 1)

(

n

l+1

)

+ l
(

n

l

)

= n
(

n

l

)

, we obtain

(−1)n+1

(n− 1)!

n−1
∑

l=1

(−1)l
(

n

l

)

Xn,l+m−n+1 +
(−1)n+1

(n− 1)!
Xn,m−n+1 −

1

(n− 1)!
Xn,m+1 + n = 0,

from which

(−1)n+1

(n− 1)!

n−1
∑

l=0

(−1)l
(

n

l

)

Xn,l+m−n+1 −
1

(n− 1)!
Xn,m+1 + n = 0

follows. After a change of the summation variable l → l + 1, the last relation yields (18).
In a similar fashion, (16) yields together with (11)

(−1)n

n!

n
∑

l=1

(−1)l
(

n

l

)

l Xn,l −
1

2
n(n+ 1) =

(−1)n

n!mn−1

n
∑

l=1

(−1)l
(

n

l

)

l Xn,lm − 1

2
n(n+ 1)m,

from which (19) follows.

Equation (18) in Proposition 4 provides general linear recursions in m ∈ Z for Xn,m.
The form of these recursions depends on n, and contains an increasing number of terms
for increasing n. Specifically, for any given n, (18) expresses Xn,m in terms of Xn,m′ with
m′ ∈ [m− n,m− 1]. Based on these recursions, using the generating function approach, we
can deduce explicit identities which express Xn,m and Xn,−m for m ≥ n, in terms of Xn,m′

with m′ ∈ [0, n− 1] and m′ ∈ [−n+ 1, 0], respectively.

Corollary 5. For any given family of number sequences {Xn,m}, the following identities
hold

Xn,m =
n−1
∑

l=0

(−1)n+l n− l

l −m

(

m

n

)(

n

l

)

Xn,l +
m!

(m− n)!
(20)

Xn,−m =
n−1
∑

l=0

(−1)n+l n− l

l −m

(

m

n

)(

n

l

)

Xn,−l + (−1)n
m!

(m− n)!
(21)

for all n ∈ N and m ∈ Z with m ≥ n.
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Proof. We start with (18) for m+ 1 → m, i.e.,

Xn,m =
n
∑

l=1

(−1)n+l

(

n

l − 1

)

Xn,l+m−n−1 + n!,

and define the general generating function

A(z) :=
∑

m≥0

Xn,mz
m (22)

for arbitrary z ∈ R, |z| < 1, z 6= 0. Multiplication of Xn,m with zm and summation over
m ≥ n yields

∑

m≥n

Xn,mz
m =

∑

m≥n

n
∑

l=1

(−1)n+l

(

n

l − 1

)

Xn,l+m−n−1z
m + n!

∑

m≥n

zm. (23)

For any given n ∈ N, the term on the left-hand side equals

∑

m≥n

Xn,mz
m = Xn,nz

n +Xn,n+1z
n+1 + · · · = A(z)−

n−1
∑

l=0

Xn,lz
l,

and the second term on the right-hand side simplifies to

n!
∑

m≥n

zm = n! (zn + zn+1 + · · · ) = n!
zn

1− z
.

To treat the first term on the right-hand side, we first exchange the order of both sums, and
observe that

∑

m≥n

Xn,l+m−n−1z
m = Xn,l−1z

n +Xn,lz
n+1 + · · · =

(

A(z)−
l−2
∑

m=0

Xn,mz
m

)

zn−l+1,

which can easily be shown by generalizing the result for consecutive l ≥ 2. For instance, for
l = 1, we have

∑

m≥n

Xn,m−nz
m = Xn,0z

n +Xn,1z
n+1 + · · · = A(z)zn,

and for l = 2
∑

m≥n

Xn,m−n+1z
m = Xn,1z

n +Xn,2z
n+1 + · · · = (A(z)−Xn,0) z

n−1.

With this, (23) takes the form

A(z)−
n−1
∑

l=0

Xn,lz
l

= (−1)nA(z)zn +
n
∑

l=2

(−1)n+l

(

n

l − 1

)

(

A(z)−
l−2
∑

m=0

Xn,mz
m

)

zn−l+1 + n!
zn

1− z
,

8



from which we obtain

A(z)

(

1− (−1)nzn −
n
∑

l=2

(−1)n+l

(

n

l − 1

)

zn−l+1

)

=
n−1
∑

l=0

Xn,lz
l −

n
∑

l=2

l−2
∑

m=0

(−1)n+l

(

n

l − 1

)

Xn,mz
m+n−l+1 + n!

zn

1− z
. (24)

The term on the left-hand side in the last equation can be further simplified by observing
that

1− (−1)nzn −
n
∑

l=2

(−1)n+l

(

n

l − 1

)

zn−l+1

= 1−
n
∑

l=1

(−1)n+l

(

n

l − 1

)

zn−l+1

= 1−
(

(−1)n+1

(

n

0

)

zn + (−1)n+2

(

n

1

)

zn−1 + · · ·+ (−1)2n
(

n

n− 1

)

z

)

= 1− (−1)2n
((

n

n− 1

)

z + (−1)−1

(

n

n− 2

)

z2 + · · ·+ (−1)−(n−1)

(

n

0

)

zn
)

= 1−
n−1
∑

l=0

(−1)−l

(

n

n− 1− l

)

zl+1

=
n
∑

l=0

(−1)l
(

n

l

)

zl

= (1− z)n,

where in the third step we reversed the order of the terms in the sum. Inserting the last
relation back into (24) yields

A(z) =
n−1
∑

l=0

Xn,l

zl

(1− z)n
−

n
∑

l=2

l−2
∑

m=0

(−1)n+l

(

n

l − 1

)

Xn,m

zm+n−l+1

(1− z)n
+ n!

zn

(1− z)n+1
. (25)

We now develop the z-terms in a power series around z = 0. Specifically, for the first term

9



in (25), we have

zl

(1− z)n
=

1

(n− 1)!
zl

dn−1

dzn−1

1

1− z

=
1

(n− 1)!
zl

dn−1

dzn−1

∑

m≥0

zm

=
∑

m≥n−1

m!

(m− n+ 1)!

1

(n− 1)!
zm−n+l+1

=
∑

q≥l

(

q − l + n− 1

n− 1

)

zq.

In a similar fashion, one obtains

zm+n−l+1

(1− z)n
=

∑

q≥m+n−l+1

(

q −m+ l − 2

n− 1

)

zq

and
zn

(1− z)n+1
=
∑

q≥n

(

q

n

)

zq.

With this, (25) takes the form

A(z) =
n−1
∑

l=0

∑

q≥l

(

q − l + n− 1

n− 1

)

Xn,l z
q (26)

−
n
∑

l=2

l−2
∑

m=0

∑

q≥m+n−l+1

(−1)n+l

(

n

l − 1

)(

q −m+ l − 2

n− 1

)

Xn,m zq + n!
∑

q≥n

(

q

n

)

zq,

which, we recall, holds for any n ∈ N, n > 0. What remains is to reorder the terms in the
above sums, and collect all terms of equal power in z. The first term in (26) yields

n−1
∑

l=0

∑

q≥l

(

q − l + n− 1

n− 1

)

Xn,l z
q

=
n−1
∑

q=0

(

q
∑

l=0

(

q − l + n− 1

n− 1

)

Xn,l

)

zq +
∑

q≥n

(

n−1
∑

l=0

(

q − l + n− 1

n− 1

)

Xn,l

)

zq.

Similarly, observing that the second term in (26) vanishes for n = 1 and yields a power series
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with minimum degree of 1 for n ≥ 2, we obtain

n
∑

l=2

l−2
∑

m=0

∑

q≥m+n−l+1

(−1)n+l

(

n

l − 1

)(

q −m+ l − 2

n− 1

)

Xn,m zq

=
n−1
∑

q=1

(

n
∑

m=n−q+1

q−n+m−1
∑

l=0

(−1)n+m

(

n

m− 1

)(

q − l +m− 2

n− 1

)

Xn,l

)

zq

+
∑

q≥n

(

n
∑

m=2

m−2
∑

l=0

(−1)n+m

(

n

m− 1

)(

q − l +m− 2

n− 1

)

Xn,l

)

zq

The first term in the last relation can further be simplified by changing the summation
variable m → m− n+ q − 1 and collecting all terms Xn,l for a given l:

n
∑

m=n−q+1

q−n+m−1
∑

l=0

(−1)n+m

(

n

m− 1

)(

q − l +m− 2

n− 1

)

Xn,l

= −
q−1
∑

m=0

m
∑

l=0

(−1)m−q

(

n

m+ n− q

)(

m+ n− l − 1

n− 1

)

Xn,l

= −
q−1
∑

l=0

Xn,l

q−1
∑

m=l

(−1)m−q

(

n

m+ n− q

)(

m+ n− l − 1

n− 1

)

=

q−1
∑

l=0

(

q − l + n− 1

n− 1

)

Xn,l.

Here, we utilized in the last step the binomial identity

n
∑

k=0

(−1)k
(

x

n− k

)(

k + x− 1

x− 1

)

= 0, (27)

which can easily be shown by induction in the upper summation limit and using Brill’s sum
formula [10, Equation (3.181)].

11



Now, collecting all terms for q < n and q ≥ n, we can then rewrite (26) as

A(z)

= Xn,0 +
n−1
∑

q=1

(

q
∑

l=0

(

q − l + n− 1

n− 1

)

−
q−1
∑

l=0

(

q − l + n− 1

n− 1

)

)

Xn,l z
q +

∑

q≥n

(

q

n

)

n! zq

+
∑

q≥n

(

n−1
∑

l=0

(

q − l + n− 1

n− 1

)

−
n
∑

m=2

m−2
∑

l=0

(−1)n+m

(

n

m− 1

)(

q − l +m− 2

n− 1

)

)

Xn,l z
q

=
n−1
∑

q=0

Xn,q z
q +

∑

q≥n

(

q

n

)

n! zq

+
∑

q≥n

(

n−1
∑

l=0

(

q − l + n− 1

n− 1

)

Xn,l −
n−2
∑

l=0

Xn,l

n−2
∑

m=l

(−1)n+m

(

n

m+ 1

)(

q +m− l

n− 1

)

)

zq

=
n−1
∑

q=0

Xn,q z
q +

∑

q≥n

(

q

n

)

n! zq

−
∑

q≥n

(

(

q

n− 1

)

Xn,n−1 −
n−2
∑

l=0

(−1)n+l n− l

l − q

(

q

n

)(

n

l

)

Xn,l

)

zq, (28)

where in the penultimate step we, again, collected terms Xn,l for any given l by reordering
the sum, and in the last step we utilized the binomial relation

n−2
∑

m=l

(−1)n+m

(

n

m+ 1

)(

q +m− l

n− 1

)

=

(

q − l + n− 1

n− 1

)

− (−1)n+ln− l

l − q

(

q

n

)(

n

l

)

.

Noting that q = n+a with a ∈ N, a ≥ 0, this relation is a direct consequence of the binomial
identity

n
∑

k=0

(−1)k
(

x

n− k

)(

k + x− 1 + a

x− 1

)

= −a(n− x)

x(n+ a)

(

x

n

)(

x− 1 + a

x− 1

)

, (29)

which itself is a generalization of (27) and can be shown by induction in the upper summation
limit using again Brill’s sum formula [10, Equation (3.181)] and the binomial identities

(

n

k

)

=
n+ 1− k

k

(

n

k − 1

)

(

n

k

)

=
n+ 1− k

n+ 1

(

n+ 1

k

)

.

From (28), we finally obtain

A(z) =
n−1
∑

q=0

Xn,q z
q +

∑

q≥n

(

n−1
∑

l=0

(−1)n+l n− l

l − q

(

q

n

)(

n

l

)

Xn,l +

(

q

n

)

n!

)

zq,

12



which, after comparison with (22), yields (20). Equation (21) can be shown in a similar
fashion.

Equation (18) also allows to deduce a number of general identities the number sequences
Xn,m of any given family must obey. Specifically, we have

Corollary 6. For n, p, q ∈ N, n ≥ p + 1 with p ≥ 1, 0 ≤ q < p and m ∈ Z, the sequences
Xn,m of any given family of number sequences {Xn,m} are subject to the following identities:

n
∑

l=0

(−1)l
(

n

l

)

lq Xn−p,m−n+l = 0 (30)

n
∑

l=0

(−1)l
(

n

l

)

lp Xn−p,m−n+l − (−1)nn! = 0. (31)

Proof. We first show that (30) is valid for the special case q = 0 by induction in p. From
(18), after change of the summation variable l → l + 1, we have for n → n − 1 ≥ 1 and
arbitrary m

(−1)n
n−1
∑

l=0

(−1)l
(

n− 1

l

)

Xn−1,m−n+l+1 + (n− 1)! = 0,

and for m → m− 1

(−1)n
n−1
∑

l=0

(−1)l
(

n− 1

l

)

Xn−1,m−n+l + (n− 1)! = 0.

Subtracting the last two identities yields

(−1)n
n−2
∑

l=0

(−1)l
(

n−1
l

)

Xn−1,m−n+l+1 −Xn−1,m

−(−1)nXn−1,m−n − (−1)n
n−1
∑

l=1

(−1)l
(

n−1
l

)

Xn−1,m−n+l = 0.

Using
(

n−1
l−1

)

+
(

n−1
l

)

=
(

n

l

)

, we obtain

(−1)n+1

n
∑

l=0

(−1)l
(

n

l

)

Xn−1,m−n+l = 0,

which proves (30) for the special case q = 0 for p = 1. In a similar fashion, assuming (30)
is true for q = 0 and a given p ≥ 1, we subtract the resulting relations for n → n − 1, m
arbitrary, and m → m− 1, and obtain

−(−1)nXn−(p+1),m−n + (−1)n+1

n−1
∑

l=1

(−1)l
(

n

l

)

Xn−(p+1),m−n+l −Xn−(p+1),m = 0,

13



which yields

(−1)n+1

n
∑

l=0

(−1)l
(

n

l

)

Xn−(p+1),m−n+l = 0

and, thus, proves (30) for q = 0 and p+ 1.
Identity (30) for 0 < q < p can be shown by induction in q. Assuming that (30) is true

for a given q ≥ 0 and all p ≥ q + 1, we obtain for n → n− 1 and m → m− 1

n−1
∑

l=0

(−1)l
(

n− 1

l

)

lq Xn−p,m−n+l = 0.

Using the binomial identity
(

n−1
l

)

= n−l
n

(

n

l

)

, the last relation can be rewritten as

n−1
∑

l=0

(−1)l
(

n

l

)

lq Xn−p,m−n+l −
1

n

n−1
∑

l=0

(−1)l
(

n

l

)

lq+1 Xn−p,m−n+l = 0

and further simplified to

−(−1)nnqXn−p,m − 1

n

n−1
∑

l=0

(−1)l
(

n

l

)

lq+1 Xn−p,m−n+l = 0,

from which finally
n
∑

l=0

(−1)l
(

n

l

)

lq+1 Xn−p,m−n+l = 0

follows, thus proving (30) for q < p.
Identity (31) can be shown in an equivalent fashion through induction in p, utilizing (18)

and (30).

We finally note that the recursive relation (18) and identities listed in Corollaries 5 and
6 are general and hold for each family of number sequences {Xn,m}, thus suggesting that
all families constructed from number sequences of the form (11) are governed by identical
relationships between their members. In the next section, we will elaborate on this property,
and briefly consider two simple examples, before illustrating the application to Fibonacci
numbers in Section 4.

14



Table 1: The first members of the family of power sequences Xn,m = mn, n ∈ N and m ∈ Z,
Equation (32) with c = 0.

n
m

0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7
2 0 1 4 9 16 25 36 49
3 0 1 8 27 64 125 216 343
4 0 1 16 81 256 625 1296 2401
5 0 1 32 243 1024 3125 7776 16807
6 0 1 64 729 4096 15625 46656 117649
7 0 1 128 2187 16384 78125 279936 823543
...

3 Two simple examples of families of number sequences

3.1 The family of power sequences

Let xn,l = c =∈ C. In this case, we have

Xn,m =
n
∏

l=1

(m+ c) = (m+ c)n (32)

Xn =
n
∑

l=1

c = nc. (33)

The first few members of this family, for c = 0, are listed in Table 1. With the results
presented in the previous section, we can immediately formulate

Corollary 7. The family of power sequences Xn,m = (m+ c)n obeys for all c ∈ C

n
∑

l=1

(−1)l
(

n

l

)

l(l +m+ c)n =
1

2
(−1)n(2m+ 2c+ n+ 1)nn!

n
∑

l=1

(−1)l
(

n

l

)

l(lm+ c)n =
1

2
(−1)nmn−1 (2c+m(n+ 1))nn!

n
∑

l=0

(−1)l
(

n

l

)

(m+ c+ 1− l)n = n!

n
∑

l=1

(−1)l
(

n

l

)

l
(

(lm+ c)n −mn−1(l + c)n
)

=
1

2
(−1)n−1mn−1(1−m)n(n+ 1)!
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for all n ∈ N and m ∈ Z,

n−1
∑

l=0

(−1)l
(

n

l

)

n− l

l −m
(c+ l)n = (−1)n

(

(m− n)!

m!
(c+m)n − 1

)

n!

n−1
∑

l=0

(−1)l
(

n

l

)

n− l

l −m
(c− l)n = (−1)n

(

(m− n)!

m!
(c−m)n − (−1)n

)

n!

for all n,m ∈ N with m ≥ n, and

n
∑

l=0

(−1)l
(

n

l

)

(n− l)q(m+ c− l)n−p = 0 for 0 ≤ q < p

n
∑

l=0

(−1)l
(

n

l

)

(n− l)p(m+ c− l)n−p = n!

for all n, p ∈ N with n ≥ p+ 1, p ≥ 1 and m ∈ Z.

Proof. All identities in Corollary 7 are a direct consequence of Lemmata 2 and 3, Proposition
4 and Corollaries 5 and 6, using (32) and (33).

We note that Corollary 7 yields a number of interesting combinatorial, in particular
binomial, identities and their generalizations. Specifically, for c = 0, Gould (1.13), (1.14)
and (1.47) are recovered [10]. Furthermore, for any fixed n, Xn,m yields the sequence of
nth powers of subsequent integers m. The third relation in Corollary 7, for c = 0, provides
then the general form of the nth-order linear homogeneous recursions in m with constant
coefficients for such sequences:

(m+ 1)n =
n−1
∑

l=0

(−1)l
(

n

l + 1

)

(m− l)n + n! (34)

∀m ∈ Z. For example, restricting to m ≥ 0, we obtain for n = 2 the sequence of square
numbers am = m2, obeying the known linear recursion

a0 = 0, a1 = 1, am+1 = 2am − am−1 + 2,m ≥ 1

(A000290, M. Kristof, 2005), for n = 3 the sequence of cubes am = m3, obeying

a0 = 0, a1 = 1, a2 = 23, am+1 = 3am − 3am−1 + am−2 + 6,m ≥ 2

(A000578, A. King, 2013), and for n = 4 the sequence am = m4, subject to the 4th-order
linear recursion

a0 = 0, a1 = 1, a2 = 24, a3 = 34, am+1 = 4am − 6am−1 + 4am−2 − am−3 + 24,m ≥ 3

(A000583, A. King, 2013).
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3.2 The family of Pochhammer numbers

Let xn,l = l ∈ N. In this case, we have

Xn,m =
n
∏

l=1

(m+ l) = (m+ 1)n (35)

Xn =
n
∑

l=1

l =
1

2
n(n+ 1), (36)

where (a)n = Γ(a + n)/Γ(a) denotes the Pochhammer symbol. The first members of this
family of sequences are visualized in Table 2. With the results presented in the last section,
we can immediately formulate

Corollary 8. The family of Pochhammer sequences Xn,m = (m+ 1)n obeys

n
∑

l=1

(−1)l
(

n

l

)

l(l +m)n = (−1)n(m+ n)nn!

n
∑

l=1

(−1)l
(

n

l

)

(lm)n+1 =
1

2
(−1)nmn(1 +m)n(n+ 1)!

n
∑

l=0

(−1)l
(

n

l

)

(l +m− n+ 1)n = (−1)nn!

n
∑

l=1

(−1)l
(

n

l

)

((lm)n+1 −mn(l)n+1) =
1

2
(−1)n+1mn(1−m)n(n+ 1)!

for all n ∈ N and m ∈ Z,

n−1
∑

l=0

(−1)l
(

n

l

)

n− l

l −m
(1 + l)n = (−1)n

(

(m− n)!

m!
(1 +m)n − 1

)

n!

n−1
∑

l=0

(−1)l
(

n

l

)

n− l

l −m
(1− l)n = (−1)n

(

(m− n)!

m!
(1−m)n − (−1)n

)

n!

for all n,m ∈ N with m ≥ n, and

n
∑

l=0

(−1)l
(

n

l

)

lq(m− n+ l + 1)n−p = 0 for 0 ≤ q < p

n
∑

l=0

(−1)l
(

n

l

)

lp(m− n+ l + 1)n−p = n!

for all n, p ∈ N with n ≥ p+ 1, p ≥ 1 and m ∈ Z.
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Table 2: The first members of the family of Pochhammer sequences Xn,m = (m + 1)n, n ∈
N,m ∈ Z, Equation (35).

n
m

0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8
2 2 6 12 20 30 42 56 72
3 6 24 60 120 210 336 504 720
4 24 120 360 840 1680 3024 5040 7920
5 120 720 2520 6720 15120 30240 55440 95040
6 720 5040 20160 60480 151200 332640 665280 1235520
7 5040 40320 181440 604800 1663200 3991680 8648640 17297280
...

Proof. All identities in Corollary 8 are a direct consequence of Lemmata 2 and 3, Proposition
4 and Corollaries 5 and 6, using (32) and (33) and the Pochhammer identity l(lm + 1)n =
(lm)n+1/m, valid ∀m ∈ Z.

As in the case of the family of power sequences, for any given n, the relations listed in
Corollary 8 provide links between Pochhammer numbers (m)n for different m. Specifically,
the third identity yields the general linear recursive rule for sequences defined by (m + 1)n
for any fixed n, namely

(m+ 1)n =
n−1
∑

l=0

(−1)l
(

n

l + 1

)

(m− l)n + n!, (37)

which is valid ∀m ∈ Z. Restricting again to m ≥ 0, n = 2 yields the sequence of Oblong
numbers am = m(m+ 1) (A002378), subject to the recursion

a0 = 0, a1 = 2, am+1 = 2am − am−1 + 2,m ≥ 1,

for n = 3 we obtain the sequence am = m(m+ 1)(m+ 2), obeying

a0 = 0, a1 = 3!, a2 = 4!, am+1 = 3am − 3am−1 + am−2 + 6,m ≥ 2

(A007531, Z. Seidov, 2006), and for n = 4 the sequence of products of four consecutive
integers am = m(m+ 1)(m+ 2)(m+ 3) (A052762) with

a0 = 0, a1 = 4!, a2 = 5!, a3 =
1

2
6!, am+1 = 4am − 6am−1 + 4am−2 − am−3 + 24,m ≥ 3.

We note that already for n = 2 and n = 4, the recursions obtained here differ in form from
those provided in OEIS [11] for the corresponding sequences.
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4 The family of k-generalized Fibonacci numbers

In the remainder of this contribution, we will apply the general results presented in Section
2 to a less trivial case, namely the generalized Fibonacci sequences defined in (9). To that
end, we set

xn,l = −2i cos

(

lπ

n+ 1

)

, (38)

from which, using (8), immediately follows that

Xn,m =
n
∏

l=1

(

m− 2i cos

(

lπ

n+ 1

))

= F
(m)
n+1. (39)

Furthermore, noting that cos
(

lπ
n+1

)

, l ∈ [0, n] are the zeros of Chebyshev polynomials of the
second kind

Un(x) =
1

2
√
x2 − 1

(

(

x+
√
x2 − 1

)n+1

−
(

x−
√
x2 − 1

)n+1
)

(see, e.g., [13, Chapter 22], [14, §8.94]), we have

Xn = −2i
n
∑

l=1

cos

(

lπ

n+ 1

)

= 0, (40)

where the orthogonality relations for Chebyshev polynomials were used. The first members
of the family of sequences formed by (39) are visualized in Table 3. Specifically, the second
column m = 1 contains the original Fibonacci sequence Fn (A000045), Equation (1), and the
third column m = 2 the sequence of Pell numbers Pn (A000129), Equation (2), for n ≥ 1.

While individual columns yield subsequent sequences of generalized Fibonacci numbers,
each row, for fixed n, generates new integer sequences whose elements are all generalized
Fibonacci numbers. Specifically, for n = 2, we obtain, for m ≥ 0, the sequence am = m2 + 1
(A002522), for n = 3 the sequence am = m3 + 2m (A054602) and for n = 4 the sequence
am = m4+3m2+1 (A057721). In general, for any given n ∈ N, integer sequences are obtained
whose explicit form is given in terms of Fibonacci polynomials (see, e.g., [6]), polynomials
of nth order in the sequence index m of the form

am =

⌊n

2
⌋

∑

l=0

(

n− l

l

)

mn−2l = F
(m)
n+1. (41)

From Lemmata 2 and 3, we can immediately formulate
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Table 3: The first members of the family of generalized Fibonacci numbers Xn,m = F
(m)
n+1, n ∈

N,m ∈ Z, defined explicitly in (39) and subject to the recursive relation (9).

n
m

0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7
2 1 2 5 10 17 26 37 50
3 0 3 12 33 72 135 228 357
4 1 5 29 109 305 701 1405 2549
5 0 8 70 360 1292 3640 8658 18200
6 1 13 169 1189 5473 18901 53353 129949
7 0 21 408 3927 23184 98145 328776 927843
...

Proposition 9. The family of generalized Fibonacci sequences {F (m)
n }, defined in (39), obeys

the following identities:

n
∑

l=1

(−1)l
(

n

l

)

lF
(l+m)
n+1 =

1

2
(−1)n(2m+ n+ 1)nn! (42)

n
∑

l=1

(−1)l
(

n

l

)

lF
(lm)
n+1 =

1

2
(−1)nmnn(n+ 1)! (43)

for all n ∈ N and m ∈ Z.

Proof. Both identities are a direct consequence of (15) and (16), using (39) and (40).

Equation (43) can be used to link generalized Fibonacci numbers F
(m)
n for positive and

negative m. Specifically, subtracting (43) for a given m and m → −m, we obtain

n
∑

l=1

(−1)l
(

n

l

)

l
(

F
(lm)
n+1 − F

(−lm)
n+1

)

=
1

2
mn ((−1)n − 1)n(n+ 1)! (44)

which, for m = 1, yields

n
∑

l=1

(−1)l
(

n

l

)

l
(

F
(−l)
n+1 − F

(l)
n+1

)

=
1

2
(1− (−1)n)n(n+1)! =

{

0, for n even;
n(n+ 1)!, for n odd.

(45)

Furthermore, application of Proposition 4 to the family of Fibonacci sequences leads to
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Proposition 10. The family of Fibonacci sequences F
(m)
n obeys ∀n ∈ N the following rela-

tions

n
∑

l=0

(−1)l
(

n

l

)

F
(l+m−n+1)
n+1 = (−1)nn! (46)

n
∑

l=1

(−1)l
(

n

l

)

l
(

F
(lm)
n+1 −mn−1F

(l)
n+1

)

=
1

2
(−1)n−1mn−1(1−m)n(n+ 1)! (47)

for all m ∈ Z.

Proof. Both identities are a consequence of (18) and (19), using (39) and (40). Relation (47)
can be directly obtained also from (43).

We note that equation (47) is a special application of (43), which for m = −1 yields

n
∑

l=1

(−1)l
(

n

l

)

l
(

F
(−l)
n+1 + (−1)nF

(l)
n+1

)

= n(n+ 1)! (48)

∀n ∈ N, complementing (45) above. Interestingly, (46) allows to construct, for any given n,

general recursive relations in m for generalized Fibonacci numbers F
(m)
n , namely

F (m+1)
n =

n−1
∑

l=0

(−1)l
(

n

l + 1

)

F (m−l)
n + n!, (49)

which is valid ∀m ∈ Z. Restricting to m ≥ 0, the resulting sequence am = F
(m+1)
2 = m2 + 1

obtained for n = 2 from (46), obeys

a0 = 1, a1 = 2, am+1 = 2am − am−1 + 2,m ≥ 1

(A002522, E. Werley, 2011). Similarly, for n = 3, the integer sequence given by the third-

order polynomial am = F
(m+1)
3 = m3 + 2m (A054602), obeys the recursive relation

a0 = 0, a1 = 3, a2 = 12, am+1 = 3am − 3am−1 + am−2 + 6,m ≥ 2,

and for n = 4, the sequence am = F
(m+1)
4 = m4 + 3m2 + 1 (A057721) is subject to the

recursion

a0 = 1, a1 = 5, a2 = 29, a2 = 109, am+1 = 4am − 6am−1 + 4am−2 − am−3 + 24,m ≥ 3.

Finally, Corollaries 5 and 6 provide explicit representations of generalized Fibonacci
numbers in terms of other members of the Fibonacci family:
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Proposition 11. Generalized Fibonacci numbers F
(m)
n obey

F
(m)
n+1 = (−1)n

(

m

n

) n−1
∑

l=0

(−1)l
(

n

l

)

n− l

l −m
F

(l)
n+1 +

m!

(m− n)!
(50)

F
(−m)
n+1 = (−1)n

(

m

n

) n−1
∑

l=0

(−1)l
(

n

l

)

n− l

l −m
F

(−l)
n+1 + (−1)n

m!

(m− n)!
(51)

∀n,m ∈ N with m ≥ n, and

F
(m)
n−p+1 = (−1)n+1n−q

n−1
∑

l=0

(−1)l
(

n

l

)

lqF
(m−n+l)
n−p+1 (52)

F
(m)
n−p+1 = (−1)n+1n−p

n−1
∑

l=0

(−1)l
(

n

l

)

lpF
(m−n+l)
n−p+1 + n−pn! (53)

for all n, p ∈ N with n ≥ p+ 1, p ≥ 1, 0 ≤ q < p and m ∈ Z.

Proof. The first two identities are a direct consequence of (20) and (20), the last two can be
shown with (30) and (31), using (39) and (40).

We note that Propositions 9 to 11 provide a number of identities which interlink the
set of generalized Fibonacci sequences defined in (39). Specifically, the defining recursive

relation in n, Equation (9), for generalized Fibonacci numbers allows to express each F
(m)
n in

terms of F
(m)
n′ , n′ < n for fixed m, whereas relations (42)–(43), (46)–(47) and (50)–(53) allow

to express each F
(m)
n in terms of F

(m′)
n , m′ 6= m for any given n. Combining both sets of

identities, we arrive at linking all members of the family of generalized Fibonacci numbers.

5 Concluding remarks

In this contribution, we investigated general properties of number sequences generated
through products of the form (7). We found several identities and recursive relations which
interlink such sequences and suggest their classification in terms of families (Definition 1).
Although the families studied here as examples describe different integer sequences, such as
Pochhammer numbers, powers of integers or generalized Fibonacci numbers, we find that
each of these families is subject to the same set of identities which, in some cases, generalize
interesting relations between these known sequences.

The examples presented here constitute but a small set of potential applications. For
instance, q-Pochhammer sequences and sequences produced by products of Pochhammer
numbers are obtained for xn,l = al, a ∈ R and xn,l = la, a ∈ Z, respectively. The general
relations listed in Section 2 apply in these cases, and provide a number of identities obeyed
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by the corresponding sequences. By setting

xn,l = −2
√
q cos

(

lπ

n+ 1

)

,

we obtain with (6) general Lucas sequences (A108299), i.e.,

Xn,m =
1√
q

n
∏

l=1

(

m− 2
√
q cos

(

lπ

n+ 1

))

= L
(m,q)
n+1 .

For appropriate m and q, interesting identities, such as grandma’s identity [12], signed bi-
sections of Fibonacci sequences and relations interlinking powers of Fibonacci numbers, are
obtained. The study of these relations, their potential generalization and application to
other families of number sequences might provide novel and potentially useful insights into
properties shared by qualitatively different number sequences.
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