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Abstract

Spiral knots are a generalization of the well-known class of torus knots indexed by

strand number and base word repetition. By fixing the strand number and varying

the repetition index, we obtain integer sequences of spiral knot determinants. In this

paper, we examine such sequences for spiral knots of up to four strands using a new

periodic crossing matrix method. Surprisingly, the resulting sequences vary widely in

character and, even more surprisingly, nearly every one of them is a known integer

sequence in the Online Encyclopedia of Integer Sequences. We also develop a general

form for these sequences in terms of recurrence relations that exhibits a pattern which

is potentially generalizable to all spiral knots.

1 Introduction

Torus knots are a well-understood infinite class of periodic knots that admit braid projections
whose base words involve the first strand passing over all other strands in order. Torus
knots constitute one of the most basic classes of knots, and much is known about them;
in particular, they have known determinant sequences. Spiral knots are a generalization of
torus knots that were developed recently in Brothers et al. [4], and differ from torus knots
in that the traveling strand may weave over and under in various patterns as it crosses each
of the other strands in order instead of always crossing over.
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Figure 1: The standard braid projection of the torus knot T (4, 3) = (σ1σ2σ3)
3.

Determinants of spiral knots have not yet been characterized, and this paper provides
an initial attempt to do so by providing a partial characterization. The determinant of a
knot is defined to be the determinant of any minor of its crossing matrix, and is known to
be a knot invariant, as described Livingston [9, Section 3.4]. This means that two knots
with different determinants must necessarily be different knots. Thus, the study of spiral
knot determinants provides a way to distinguish and characterize spiral knots. This paper
will focus on the determinant sequences themselves and not the classification of spiral knots
based on those sequences; however, the results in this paper do prove that infinitely many
spiral knots are nontrivial and distinct from each other.

Knot determinants are also related to the knot invariant of p-colorability, which we will
leverage in Section 2 to obtain a more streamlined method of determinant calculation for
the class of spiral knots. A knot is p-colorable if its strands can be labeled with numbers
0, 1, 2, . . . , p− 1 such that at least two distinct numbers are used in the labeling and, at each
crossing with understrands labeled a and b and overstrand labeled c, we have a + b ≡ 2c
(mod p). It follows directly from the definition of crossing matrices that a knot is p-colorable
if and only if its knot determinant is divisible by p. For more information, see Livingston [9,
Sections 3.3, 3.4].

The standard braid projection of the torus knot T (n, k) with n strands and k repetitions
has braid word (σ1σ2 · · · σn−1)

k and is shown in Figure 1. Torus knots have exceptionally
nice and well-understood properties. For example, the torus knot T (n, k) is equivalent
to the torus knot T (k, n), whose standard braid projection has k strands, n repetitions,
and braid word (σ1σ2 · · · σk−1)

n. The crossing number of the torus knot T (n, k) is always
realized by one of the standard torus braid projections; this crossing number is c(T (n, k)) =
min(k(n− 1), n(k − 1)). For more background on torus knots, see Adams [1, Section 5.1].

Determinants and p-colorability classes of torus knots are also known. Breiland et al. [3]
and Isidro et al. [7] independently show that, for n and k relatively prime, we have

det(T (n, k)) =











1, if n and k are both odd;

n, if n is odd and k is even;

k, if k is odd and n is even.

When n and k fail to be relatively prime, the torus link T (n, k) has more than one component;
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Figure 2: A braid projection of the spiral knot S(4, 3, (1, 1,−1)) = (σ1σ2σ
−1
3 )3.

however, it is still possible to calculate its determinant. By considering this additional data,
we can examine sequences of determinants of torus knots T (n, k) as n is fixed and k varies.

Example 1. Consider the 4-strand torus knots of the form T (4, k). If k is relatively prime
to 4, then k must be odd and, thus, the determinant of a torus knot of the form T (4, k) is
simply k [3]. In this paper, we will show that when k is not relatively prime to 4, that is,
when k = 2j is even, the determinant of T (4, k) is 2k when j is odd and 0 when j is even.
Taking these results together, we see that the determinants of 4-strand torus knots form the
following sequence, starting from k = 1:

1, 4, 3, 0, 5, 12, 7, 0, 9, 20, 11, 0, 13, 28, 15, 0, . . . .

Surprisingly, although torus knots are very well understood, this sequence had not yet been
recorded in the Online Encyclopedia of Integer Sequences (OEIS) until recently, when the
authors of this paper added it as A251610.

Spiral knots are a generalization of torus knots in which the base word is permitted to
have both overcrossings and undercrossings. For example, if we change the base word σ1σ2σ3

of the torus knot T (4, 3) to σ1σ2σ
−1
3 so that the last crossing in each segment of the standard

braid projection is an undercrossing, then we get the spiral knot S(4, 3, (1, 1,−1)) shown in
Figure 2.

In general, a spiral knot S(n, k, ǫ) is a knot that admits a braid projection of the periodic
form (σǫ1

1 σǫ2
2 · · · σǫn−1

n−1 )
k, where the vector ǫ = (ǫ1, ǫ2, . . . , ǫn−1) records the overcrossings and

undercrossings of each period, and each ǫi is either 1 or −1. Torus knots are a subclass of
spiral knots with T (n, k) = S(n, k, (1, 1, . . . , 1)).

Determinants of the general class of spiral knots are not yet well understood. Dowdall et
al. [6], Lopes and Matias [10], and Oesper [11] made discoveries about Turk’s Head knots and
weaving knots, both of which are subclasses of spiral knots, but no general formula for the
determinant of a spiral knot S(n, k, ǫ) is known. In specific examples, we can fix the strand
count n and pattern vector ǫ and calculate the resulting sequence of spiral knot determinants
as the repetition index k varies. For example, by fixing n = 4 and ǫ = (1, 1,−1), we could
calculate the sequence of determinants for the 4-strand “almost-torus” knots. As we will see
in Theorem 2, this particular sequence has a strikingly simple closed form.
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In Section 2, we give an overview of our streamlined method of finding determinants of
spiral knots. Determinants of spiral knots with n ≤ 4 strands and 1 ≤ k ≤ 16 repetitions are
given in Section 3. In Section 4, we derive formulae for determinant sequences of spiral knots
through n = 4 strands and all k using an extension of the methods used in DeLong et al. [5]
and Kauffman and Lopes [8]. Perhaps even more surprising than the fact that the sequence
of torus knot determinants from Example 1 was not a previously-listed sequence in the OEIS
is that every other sequence of spiral knot determinants for up to n = 4 strands was, although
not, until recent updates by the authors, in relation to knot theory. The information in the
existing OEIS listings provided clues as to how the varied patterns of spiral knot determinant
sequences might be related. In Section 5, we focus on those relationships and prove that,
for n ≤ 4, the sequences of spiral knot determinants can each be written in terms of one
particular type of linear homogeneous recurrence relation. This, in turn, hints at a possible
generalization to determinants of all spiral knots.

2 Finding determinants of periodic braids

Calculating the determinant of a spiral knot S(n, k, ǫ) from its standard spiral braid pro-
jection typically involves finding the determinant of a square matrix of size k(n − 1) − 1.
This calculation becomes cumbersome as k grows large. Moreover, it is difficult to identify
patterns by examining matrices of varying sizes. We will use the fact that spiral knots are
in periodic braid forms to streamline the process of calculating their determinants.

The relationship between determinants and colorability provides the key to our stream-
lined determinant method for spiral knots.

v1

v2

v3

v4

2v1 − v2

2v1 − v3

v4

2v4 − v1

Figure 3: Coloring-compatible labeling for S(4, 1, (1, 1,−1)).

For example, each period of the braid projection of S(4, 3, (1, 1,−1)), shown in Figure 2,
has the form shown in Figure 3. If the leftmost strands are colored top to bottom with
numbers v1, v2, v3, and v4, and if we want to preserve colorability rules as we pass from left
to right, then after passing through the crossings on the interior of the diagram the rightmost
strands must be colored top to bottom with 2v1 − v2, 2v1 − v3, v4, and 2v4 − v1. The base
word matrix that will take the leftmost vector of colors to the rightmost in this example is:
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M =









2 −1 0 0
2 0 −1 0
0 0 0 1

−1 0 0 2









.

If the pattern in Figure 3 repeats k times, it forms the braid projection of S(4, k, (1, 1,−1))
shown in Figure 4. Now the exponentiated matrix Mk takes the initial, leftmost coloring
vector to the final, rightmost coloring vector of the diagram. It is possible to close this braid
with a coherent p-coloring if and only if Mk(v) ≡ v (mod p), where v = (v1, v2, v3, v4) is the
leftmost coloring vector.

v1

v2

v3

v4

· · ·

(Mk(v))1

(Mk(v))2

(Mk(v))3

(Mk(v))4

Figure 4: Coloring-compatible labeling for S(4, k, (1, 1,−1)).

In general, for any spiral knot S(n, k, ǫ), we can use the one-period pattern of S(n, 1, ǫ)
to find a base word matrix M corresponding to the coloring rule a + b ≡ 2c (mod p) at
each crossing within the pattern, and then solve (Mk − In)v ≡ 0 (mod p) to determine if
S(n, k, ǫ) is p-colorable. The argument in Livingston [9, Section 3.4] then implies that the
determinant of the original spiral knot is equal to the determinant of any i, j minor of the
n× n matrix Mk − In:

det(S(n, k, ǫ)) = det((Mk − In)ij).

This method is equivalent to the process used by Delong et al. [5] for twisted torus knots,
as well as the “black-box” approach used in Kauffman and Lopes [8] for plat closures of
braids. Note that the usual method of computing the determinant of a spiral knot would
involve a matrix whose size depended on the repetition index k, but our new method involves
only matrices whose size depends on the number of strands n, regardless of the value of k.
The computational complexity will instead come from exponentiating the base word matrix
M ; in Section 4 we will use Jordan canonical forms to mitigate that complexity.

3 Spiral knot determinant sequences

With the new base word matrix method from Section 2, we used Mathematica [14] to generate
initial values of determinant sequences for spiral knots S(n, k, ǫ) as n and ǫ are fixed and
k varies. This data is the jumping-off point for the determinant formulas we will prove
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in Sections 4 and 5. Table 1 shows spiral knot determinants for all possible values of ǫ
corresponding to 2 ≤ n ≤ 4 strands, with repetition index through k = 16. Note that
reversing (reading backwards) or inverting (swapping the roles of +1 and −1) an ǫ-vector
preserves spiral knot type; see the inaugural paper on spiral knots from Brothers et al. [4].
Therefore, when n = 2, there is only one family of spiral knots up to equivalence: the
torus knots T (2, k) = S(2, k, (1)). When n = 3, the ǫ-vectors (1, 1) and (−1,−1) produce
equivalent knots, as do the ǫ-vectors (1,−1) and (−1, 1). Therefore, there are only two
n = 3 classes of spiral knots: the torus knots T (3, k) = S(3, k, (1, 1)) and the almost-torus
(or, equivalently in this case, “weaving”) knots S(3, k, (1,−1)). For n = 4, we have three
classes: the torus knots T (4, k) = S(4, k, (1, 1, 1)), the almost-torus knots S(4, k, (1, 1,−1)),
and the weaving knots S(4, k, (1,−1, 1)).

k (1) (1, 1) (1,−1) (1, 1, 1) (1, 1,−1) (1,−1, 1)

1 1 1 12 1 · 1 13 1 · 12

2 2 3 5 · 12 2 · 2 23 2 · 6 · 12

3 3 4 42 3 · 1 33 3 · 52

4 4 3 5 · 32 4 · 0 43 4 · 6 · 42

5 5 1 112 5 · 1 53 5 · 192

6 6 0 5 · 82 6 · 2 63 6 · 6 · 152

7 7 1 292 7 · 1 73 7 · 712

8 8 3 5 · 212 8 · 0 83 8 · 6 · 562

9 9 4 762 9 · 1 93 9 · 2652

10 10 3 5 · 552 10 · 2 103 10 · 6 · 2092

11 11 1 1992 11 · 1 113 11 · 9892

12 12 0 5 · 1442 12 · 0 123 12 · 6 · 7802

13 13 1 5212 13 · 1 133 13 · 36912

14 14 3 5 · 3772 14 · 2 143 14 · 6 · 29112

15 15 4 13642 15 · 1 153 15 · 137752

16 16 3 5 · 9872 16 · 0 163 16 · 6 · 108642

Table 1: Initial values of determinant sequences for spiral knots S(n, k, ǫ) with n ≤ 4 strands
and 1 ≤ k ≤ 16 repetitions, listed in columns according to ǫ-vectors.

The numbers in Table 1 are partially factored in order to make certain patterns evident.
For example, in the rightmost column, it is clear that each entry is divisible by k, alternate
entries are divisible by 6, and the remaining factor of each entry is a perfect square. In order
to better understand the initial spiral knot determinant data in this table, we searched for
each sequence—as well as what we will call embedded sequences, such as the pattern of the
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numbers being squared in the rightmost column—in the OEIS. Based on our experience using
the OEIS for other projects, we did not expect to find many known sequences associated
with these determinant patterns.

To our amazement, we found that, with only one exception (see Example 1), every
column in Table 1, as well as every embedded sequence, was part of an existing sequence in
the OEIS. Each of these existing OEIS sequences at the time had no recorded connection
to knot determinants, but provided clues that suggested formulas not only for individual
sequences, but possibly for spiral knot determinants in general. Some of the sequences
associated with the data in Table 1 are described below, with descriptions taken directly
from the OEIS [13]:

• A000027: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 . . .
The sequence of positive integers clearly matches the initial terms of the determinant
sequence for the torus knots T (2, k) = S(2, k, (1)).

• A131027: 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, 1, 0, 1, 3, 4, 3, . . .
This period 6 sequence is the third column of the triangular array in A131022, and
an index to sequences with linear recurrences with constant coefficients, signature
(2,−2, 1). It matches the initial terms of the determinant sequence for the torus knots
T (3, k) = S(3, k, (1, 1)).

• A004146: 1, 5, 16, 45, 121, 320, 841, 2205, 5776, 15125, 39601, 103680, 271441, . . .
The sequence of alternate Lucas numbers minus 2 matches the initial terms of the
determinant sequence for the almost-torus (and weaving) knots S(3, k, (1,−1)). This
connection is related to a result on weaving knots in Oesper [11]; see the proof at the
end of this section. This sequence also represents the number of spanning trees of the
wheel Wk on k + 1 vertices, as featured in Rebman [12].

• A098149: −1,−1, 4,−11, 29,−76, 199,−521, 1364,−3571, 9349,−24476, 64079, . . .
This sequence relates bisections of Lucas and Fibonacci numbers, and is defined by
the recursive formula ak = −3ak−1 − ak−2, with a0 = −1 and a1 = −1. After the first
term, the absolute values of the terms in this sequence match the initial odd terms
of the embedded sequence of numbers to be squared in the determinant sequence for
S(3, k, (1,−1)). The absolute values are also the sequence A002878, which is the L2k+1

bisection of the Lucas sequence.

• A001906: 0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, . . .
This sequence is the F2k bisection of the Fibonacci sequence, given by the recursive
formula ak = 3ak−1 − ak−2, with a0 = 0 and a1 = 1. After the first term, it matches
the initial even terms of the embedded sequence of numbers to be squared in the
determinant sequence for S(3, k, (1,−1)).

• A005013: 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199, 144, 521, 377, 1364, 987, 3571, 2584, . . .
Putting the previous two sequences together results, unsurprisingly, in a sequence
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that alternates Lucas and Fibonacci numbers. It is given by the recursive formula
ak = 3ak−2 − ak−4, with a0 = 0, a1 = 1, a2 = 1, and a3 = 4, and matches the initial
terms of the embedded sequence of numbers to be squared in the determinant sequence
for S(3, k, (1,−1)).

• A251610: 1, 4, 3, 0, 5, 12, 7, 0, 9, 20, 11, 0, 13, 28, 15, 0, . . .
This is the only sequence in this list that had not appeared in the OEIS before the
authors’ contribution, although it matches the initial terms of one of the most well-
known knot types in the table: the torus knots T (4, k) = S(4, k, (1, 1, 1)).

• A007877: 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, . . .
This period 4 repeating sequence is also an index to sequences with linear recurrences
with constant coefficients, signature (1,−1, 1). It matches the initial terms of the
embedded sequence of numbers that are multiplied by k in the determinant sequence
for S(4, k, (1, 1, 1)).

• A000578: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, . . .
The sequence of perfect cubes clearly matches the initial terms of the determinants of
the 4-strand almost-torus spiral knots S(4, k, (1, 1,−1)).

• A006235: 1, 12, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, . . .
This sequence for the complexity of a doubled cycle matches the initial terms of the
determinant sequence for the 4-strand weaving spiral knots S(4, k, (1,−1, 1)). This
sequence is described in the OEIS with the formula ak =

k
2
(−2+(2−

√
3)k+(2+

√
3)k),

which we will see in Section 4. It is also the number of spanning trees of the k-
prism graph; note that this is the second sequence in this list to involve spanning
trees. Although not pursued in this paper, spanning trees of checkerboard graphs may
provide a key to ultimately finding a unifying formula for all spiral knot determinants;
see Dowdall et al. [6] and Kauffman and Lopes [8].

• A001834: 1, 5, 19, 71, 265, 989, 3691, 13775, 51409, 191861, 716035, 2672279, . . .
This sequence is given by the recurrence relation ak = 4ak−1 − ak−2, with a0 = 1 and
a1 = 5, and matches the initial odd terms of the embedded sequence of squared numbers
in the determinant sequence for S(4, k, (1,−1, 1)). This sequence is also described in

the OEIS as ak =
((1+

√
3)2k+1+(1−

√
3)2k+1)

2k+1 , and as the index entries for sequences related
to linear recurrences with constant coefficients, signature (4,−1).

• A001353: 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, . . .
This sequence is given by the recurrence relation ak = 4ak−1 − ak−2 with a0 = 0 and
a1 = 1, the same formula as in the previous sequence with different initial conditions.
It matches the initial even terms of the embedded sequence of squared numbers in the
determinant sequence for S(4, k, (1,−1, 1)).
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• A108412: 1, 1, 5, 4, 19, 15, 71, 56, 265, 209, 989, 780, 3691, 2911, 13775, 10864, . . .
Combining the previous two sequences forms the sequence ak = 4ak−2 − ak−4, with
a0 = 1, a1 = 1, a2 = 5, and a3 = 4. It matches the initial terms of the embedded
sequence of squared numbers in the determinant sequence for S(4, k, (1,−1, 1)).

Although, of course, matching initial sequence terms does not prove anything about
the long-term behavior of these determinant sequences, the connections to so many OEIS
sequences encouraged us to seek formulas for all of them. As we will see in Section 4, this
is indeed possible. Moreover, the connections to sequences in the OEIS that involve linear
recurrences with constant coefficients suggested that, perhaps, we could recast all of these
formulas recursively. We will do this in Section 5, and we will see that every one of the spiral
knot determinant formulas for n ≤ 4 can be expressed in terms of the same linear recurrence
relation.

In the third item listed above, we mentioned that the initial terms of the sequence of
determinants for S(3, k, (1,−1)) matched sequence A004146, which can be expressed in terms
of alternate Lucas numbers as L2k − 2. The fact that this particular formula holds for all
values of k follows from a result on weaving knots in Oesper [11], in which the weaving knot
W (k, 3) is equal to S(3, k, (1,−1)).

Proof. Oesper [11] shows that we have det(W (k, 3)) = −(C2k−2 + 1)C2k + C2
2k−1, where

Cj =
∑j

i=1(−1)i+1fi, and fi is the ith Fibonacci number (with f1 = 1 and f2 = 1). Using
Fibonacci identities and the definition of the Lucas numbers, we can make the following
reduction of Oesper’s formula:

det(W (k, 3)) = −(C2k−2 + 1)C2k + C2
2k−1

= −(−f2k−3 + 2)(−f2k−1 + 1) + (f2k−2 + 1)(f2k−2 + 1)

= −f2k−3f2k−1 + f2k−3 + 2f2k−1 + f 2
2k−2 + 2f2k−2 − 1

= −f2k−3f2k−1 + f2k−1 + f2k+1 − 1 + f 2
2k−2

= (−f 2
2k−2 − 1) + L2k + (f 2

2k−2 − 1)

= L2k − 2.

In particular, the second, fourth and fifth equalities follow from identities 21, 8, and 32
in Benjamin and Quinn [2, Appendix], respectively.

4 Formulas for spiral knot determinants

We now state and prove formulas for all of the determinant sequences in Table 1 of Section 3.
According to the method described in Section 2, for each type of spiral knot S(n, k, ǫ), we
must compute a base word matrix M depending on n and ǫ, and then find a formula for
the determinant of any minor of the n× n matrix Mk − In. Our strategy will be to use the
Jordan decomposition of M to simplify the exponentiation.
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Theorem 2. The determinants of the spiral knots S(n, k, ǫ) with n ≤ 4 are given by the
following formulas:

(i) det(S(2, k, (1))) = k,

(ii) det(S(3, k, (1, 1))) = 2− (1−i
√
3)k+(1+i

√
3)k

2k
,

(iii) det(S(3, k, (1,−1))) = (3−
√
5)k+(3+

√
5)k

2k
− 2,

(iv) det(S(4, k, (1, 1, 1))) = k
(

1− ik+i−k

2

)

,

(v) det(S(4, k, (1, 1,−1))) = k3,

(vi) det(S(4, k, (1,−1, 1))) = k((2−
√
3)k+(2+

√
3)k−2)

2
.

Proof. We will sketch proofs of parts (iii) and (v) of Theorem 2; the remaining proofs are
entirely similar.

Part (iii) gives yet another formula for the determinant sequence of the 3-strand weaving
knots, which we proved at the end of Section 3 to be equal to L2k−2. We will use this simple
example to illustrate our general method of proof. By the method outlined in Section 2, the
base word matrix for S(3, k, (1,−1)) is

M =





2 −1 0
0 0 1

−1 0 2



 .

We are interested first in determining Mk, which we will do by finding the Jordan decom-
position QJQ−1 and then calculating QJkQ−1. The Jordan decomposition of M is

J =





1 0 0

0 3−
√
5

2
0

0 0 3+
√
5

2



 , Q =





1 1+
√
5

2
1−

√
5

2

1 3+
√
5

2
3−

√
5

2

1 1 1



 .

In this case, J is a diagonal matrix and, thus, Jk is easy to find:

Jk =





1 0 0

0 (3−
√
5

2
)k 0

0 0 (3+
√
5

2
)k



 .

The matrix Mk − I3 = QJkQ−1− I3 is unwieldy; however, it is a simple but tedious exercise
to calculate and simplify the determinant of any of its minors to obtain

det(S(3, k, (1,−1))) =
(3−

√
5)k + (3 +

√
5)k

2k
− 2,

10



as given in Theorem 2. Of course, if desired, we could also use algebra and the fact that

Lk =
(1 +

√
5)k + (1−

√
5)k

2k

to show that this expression for S(3, k, (1,−1)) is also equal to L2k − 2.
The proof of part (v) of Theorem 2 is similar. In this case, the base word matrix M for

the 4-strand almost-torus knots S(4, k, (1, 1,−1)) is

M =









2 −1 0 0
2 0 −1 0
0 0 0 1

−1 0 0 2









.

Again, we want to find the determinant of the minors of Mk−I4. The Jordan decomposition
of M is M = QJQ−1, where

J =









1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1









, Q =









1 −1 0 0
1 −2 1 0
1 −1 1 −1
1 0 0 0









.

It is a simple exercise to show by induction that

Jk =









1 k
k(k−1)

2
k(k−1)(k−2)

6

0 1 k
k(k−1)

2

0 0 1 k

0 0 0 1









.

A straightforward but tedious calculation shows that the matrix Mk − I4 = QJkQ−1 − I4 is
equal to

k

6









−k2 + 7 k2 − 3k − 4 −k2 + 6k − 5 k2 − 3k + 2
−k2 + 3k + 10 k2 − 6k − 1 −k2 + 9k − 14 k2 − 6k + 5

−k2 + 1 k2 − 3k + 2 −k2 + 6k − 11 k2 − 3k + 8
−k2 − 3k − 2 k2 − 1 −k2 + 3k − 2 k2 + 5









.

Remarkably, taking the determinant of any minor of this complicated matrix results in k3,
and we therefore conclude that

det(S(4, k, (1, 1,−1))) = k3.
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5 Recursive formulas for spiral knot determinants

One of the notable aspects of the formulas in Theorem 2 is that they differ widely in both
form and complexity. Although these formulas are interesting in their differences, what would
be more interesting is if we had some kind of overarching formula or consistent pattern that
depended on n, k, or ǫ in some obvious way. That is precisely what we will derive in the
remainder of this paper, rewriting the results of Section 4 into a common form. Theorem 3
shows that all of the determinant sequences from Table 1 and Theorem 2 are related to a
single recursive formula.

Theorem 3. The determinants of the spiral knots S(n, k, ǫ) with n ≤ 4 can be expressed in
terms of sequences defined by the single linear homogeneous recurrence relation

ck = c2 ck−1 − ck−2

with common initial condition c1 = 1 and initial condition c2 given in each case as follows:

(i) det(S(2, k, (1))) = k, with c2 =
√
4,

(ii) det(S(3, k, (1, 1))) = c2k, with c2 =
√
3,

(iii) det(S(3, k, (1,−1))) = c2k, with c2 =
√
5,

(iv) det(S(4, k, (1, 1, 1))) = kc2k, with c2 =
√
2,

(v) det(S(4, k, (1, 1,−1))) = kc2k, with c2 =
√
4,

(vi) det(S(4, k, (1,−1, 1))) = kc2k, with c2 =
√
6.

Proof. As in Theorem 2, we will prove parts (iii) and (v). Part (i) is trivial, and parts (ii),
(iv), and (vi) can be proven in a similar manner to part (iii).

To prove part (iii) of Theorem 3, we start with part (iii) of Theorem 2:

det(S(3, k, (1,−1))) =
(3−

√
5)k + (3 +

√
5)k

2k
− 2.

Since we already know that det(S(3, 1, (1,−1))) = 1, and det(S(3, 2, (1,−1))) = 5, it suffices
to show that, for c1 = 1 and c2 =

√
5, the recurrence relation ck =

√
5ck−1 − ck−2 satisfies

c2k =
(3−

√
5)k+(3+

√
5)k

2k
− 2.

First, suppose ck = rk for k ≥ 1. Then rk =
√
5rk−1 − rk−2, so rk−2(r2 −

√
5r + 1) = 0,

which implies r =
√
5±1
2

. These two solutions for r both satisfy the recurrence relation and,
thus, any linear combination of them does as well. Therefore, we have

ck = a

(√
5 + 1

2

)k

+ b

(√
5− 1

2

)k

.
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Using the fact that c1 = 1 and c2 =
√
5, we can easily find that a = 1 and b = −1. Therefore,

ck = (
√
5+1
2

)k−(
√
5−1
2

)k. Squaring both sides of the equation and simplifying yields the desired
result.

The remaining part (v) is an easier case. We already know from Theorem 2 that
det(S(4, k, (1, 1,−1))) = k3 and, clearly, we have k3 = k(k2), so it suffices to show that
ck = k can be written as a recurrence relation that abides by the form of Theorem 3. But if
ck = k, we have

ck = k = 2(k − 1)− (k − 2) = 2ck−1 − ck−2 =
√
4 ck−1 − ck−2,

with c1 = 1 and c2 = 2 =
√
4, as desired.

Looking forward to a more general formula, notice that, for a given n, the second initial
condition c2 in Theorem 3 seems to grow according to the number of changes in the ǫ-vector
from negative to positive or vice-versa. For example, the 3-strand formula in part (ii) of
Theorem 3 has ǫ = (1, 1) with no sign changes and c2 =

√
3, while the 3-strand formula in

part (iii) has ǫ = (1,−1) with one sign change and c2 =
√
5. Similarly, the 4-strand formulas

in the last three parts of Theorem 3 have zero, one, and two sign changes, respectively, and
their c2 values increase accordingly.

When examining spiral knots with n = 5 strands, we start to encounter more calculational
complexity, as well as base word matrices whose characteristic polynomials do not split over
the real numbers; however, we have some preliminary evidence that, for n = 5, we may be
able to write spiral knot determinants as a product c2k d

2
k of two squared terms of sequences

defined by recurrence relations. In future work, we hope to build on these results to extend
the patterns in Theorem 3 to obtain a general formula for the determinant of any spiral
knot.
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