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Abstract

We study the determinants of matrices whose entries are powers of the Fibonacci

numbers. We then extend the results to include entries that are powers of a second-

order linear recurrence relation. These results motivate a fundamental identity of

determinants whose entries are powers of linear polynomials. Finally, we discuss the

determinants of matrices whose entries are products of the general second-order linear

recurrence relations.

1 Introduction

In the first issue of the Fibonacci Quarterly, Alfred posed the following problem [1]:

Prove
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∣
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∣

∣

∣

F 2
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∣

∣

∣

= 2(−1)n+1,

where Fn is the nth Fibonacci number.
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In the second volume of the Fibonacci Quarterly, Parker [7] posed a similar problem with
the exponent of each entry changed to 4 and the dimension of the matrix changed to 5× 5.
These two results naturally suggest the following question: what would be the determinant
of an analogous form where the dimension of the matrix and the exponent of each entry are
arbitrary? Carlitz [4] answered this question by showing that the determinant of the form

D(r, n) =
∣

∣

∣F r
n+i+j

∣

∣

∣, where i, j = 0, 1, . . . , r, is given by

D(r, n) = (−1)(n+1)(r+1

2 )(F r
1F

r−1
2 · · ·Fr)

2 ·

r
∏

i=0

(

r

i

)

. (1)

In this paper we generalize the entries even further by considering the determinant of the

form D(r, s, k, n) =
∣

∣

∣F r
s+k(n+i+j)

∣

∣

∣, where i, j = 0, 1, . . . , r. We show that

D(r, s, k, n) = (−1)(s+kn+1)(r+1

2 )(F r
kF

r−1
2k · · ·Frk)

2 ·

r
∏

i=0

(

r

i

)

. (2)

Carlitz based his proof of formula (1) on the Binet form of the Fibonacci numbers; whereas
we employ the matrix methods, such as the factorization method of Krattenthaler, to prove
formula (2). In addition, we require a generalized form of the Catalan identity, proved by
Melham and Shannon [6]. In Section 2, we present an alternative proof of the generalized
Catalan identity using a matrix representation of the sequence and the properties of the
matrix multiplication. In Section 3, we then present the proof of formula (2) as a special
case of the determinant with entries involving the powers of the numbers in a second-order
linear recurrence with constant coefficients. In the last section, we present the determinant
whose entries are the products of the numbers defined as a second-order linear recurrence
with constant coefficients using the Desnanot-Jacobi identity. The methodology used for
this work relies on a computer programming developed by the second author [8].

2 Generalized Catalan identity

The well-known Catalan identity states that for all nonnegative integers s and i,

F 2
s+i − FsFs+2i = (−1)sF 2

i .

A generalization of this identity useful for this work is given by Melham and Shannon [6].
We shall, however, present an alternative proof of this generalization. For integers a, b, c1,
and c2 with c2 6= 0, let Wn = Wn(a, b; c1, c2) denote the second-order linear recurrence with
constant coefficients, defined by

W0 = a, W1 = b and Wn = c1Wn−1 + c2Wn−2 for n ≥ 2.

With this notation, the Fibonacci sequence (Fn) and the Lucas sequence (Un) correspond
to Fn = Wn(0, 1; 1, 1) and Un = Wn(0, 1; c1, c2), respectively. Moreover, we can use this
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recurrence to extend the definition of a sequence to the terms with negative indices. Usually,
we can explicitly find the relationship between the negative-indexed terms and the positive-
indexed terms. For example, for the Fibonacci sequence and the Lucas sequence, we have

F−n = (−1)n+1Fn and U−n = (−1)n+1c−n
2 Un for n ≥ 1.

Proposition 1 (Generalized Catalan Identity). Let Wn = Wn(a0, a1; c1, c2) and Yn =
Wn(b0, b1; c1, c2) be second-order linear recurrences. Then

Ws+iYs+j −WsYs+i+j = (−c2)
s(W1Yj −W0Yj+1) · Ui, (3)

for all integers s, j, and i.

Proof. The proof is by induction on i. For the case when i = 0, the identity is trivial. For
the case when i = 1, we have

(

Ws+1 Ys+j+1

Ws Ys+j

)

=

(

c1 c2
1 0

)(

Ws Ys+j

Ws−1 Ys+j−1

)

=

(

c1 c2
1 0

)s(

W1 Yj+1

W0 Yj

)

for s ≥ 0,

and

(

Ws+1 Ys+j+1

Ws Ys+j

)

=

(

c1 c2
1 0

)−1(

Ws+2 Ys+j+2

Ws+1 Ys+j+1

)

=

(

c1 c2
1 0

)s(

W1 Yj+1

W0 Yj

)

for s < 0,

where the second equality in both equations follows from repeated application of the matrix
representation in the first equality. Taking the determinant of both sides of any one equation
yields

Ws+1Ys+j −WsYs+j+1 = (−c2)
s(W1Yj −W0Yj+1). (4)

Now, consider two cases.

Case i > 1: Assume that the identity holds for some integers i− 1 and i− 2. Then

Ws+iYs+j −WsYs+i+j =

∣

∣

∣

∣

∣

Ws+i Ys+i+j

Ws Ys+j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c1Ws+(i−1) + c2Ws+(i−2) c1Ys+(i−1)+j + c2Ys+(i−2)+j

Ws Ys+j

∣

∣

∣

∣

∣

= c1

∣

∣

∣

∣

∣

Ws+(i−1) Ys+(i−1)+j

Ws Ys+j

∣

∣

∣

∣

∣

+ c2

∣

∣

∣

∣

∣

Ws+(i−2) Ys+(i−2)+j

Ws Ys+j

∣

∣

∣

∣

∣

= (−c2)
s(W1Yj −W0Yj+1)(c1Ui−1 + c2Ui−2)

= (−c2)
s(W1Yj −W0Yj+1)Ui,
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Case i < 0: Assume that the identity holds for some integers i+ 1 and i+ 2. Then

Ws+iYs+j −WsYs+i+j =

∣

∣

∣

∣

∣

Ws+i Ys+i+j

Ws Ys+j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−c1
c2

Ws+(i+1) +
1

c2
Ws+(i+2)

−c1
c2

Ys+(i+1)+j +
1

c2
Ys+(i+2)+j

Ws Ys+j

∣

∣

∣

∣

∣

∣

=
−c1
c2

∣

∣

∣

∣

∣

Ws+(i+1) Ys+(i+1)+j

Ws Ys+j

∣

∣

∣

∣

∣

+
1

c2

∣

∣

∣

∣

∣

Ws+(i+2) Ys+(i+2)+j

Ws Ys+j

∣

∣

∣

∣

∣

= (−c2)
s(W1Yj −W0Yj+1)(

−c1
c2

Ui+1 +
1

c2
Ui+2)

= (−c2)
s(W1Yj −W0Yj+1)Ui,

where we apply the induction hypothesis in the penultimate equality in both cases. Hence,
the proof is complete.

We note some special cases of Proposition 1 useful in later sections:

Us+iUs+j − UsUs+i+j = (−c2)
s · UiUj, (5)

Us+iWs+j − UsWs+i+j = (−c2)
s · UiWj, (6)

and

Ws+iWs+j −WsWs+i+j = (−c2)
s · (W1Wj −W0Wj+1)Ui = (−c2)

s ·∆ · UiUj, (7)

where ∆ =

∣

∣

∣

∣

∣

W1 W2

W0 W1

∣

∣

∣

∣

∣

= a21 − c1a0a1 − c2a
2
0.

We justify the second equality of (7) by applying Proposition 1 as follows: In (3), let
Yn = Wn, substitute j = 1 and s = 0, respectively, and rename the index i by j.

The identity (7) can be restated as follows:

Corollary 2. Let k, n, r, s, and t be integers. Then

Ws+k(n+t) = A(t)Ws+kn + B(t)Us+k(n+r), (8)

where A(t) =
Wk(t−r)

W−kr

and B(t) =
−(−c2)

−kr ·∆ · Ukt

W−kr

.

Proof. Let integers k′, n′, r′, s′, and t′ be given. Applying (7) with s = −k′r′, i = k′t′, and
j = s′ + k′(n′ + r′), we have

W−k′r′Ws′+k′(n′+t′) = Wk′(t′−r′)Ws′+k′n′ − (−c2)
−k′r′ ·∆ · Uk′t′Us′+k′(n′+r′).

Dividing by W−k′r′ on both sides and renaming the variables yield the identity (8), as re-
quired.
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3 Determinants involving powers of terms of second-

order recurrence

Our goal in this section is to give the closed form of the determinant of the (r+1)× (r+1)
matrix whose entries are W r

s+k(n+i+j), where i, j = 0, 1, . . . , r, and s and k are any integers.
This matrix is

A
s,k
n (r) =













W r
s+kn W r

s+k(n+1) · · · W r
s+k(n+r)

W r
s+k(n+1) W r

s+k(n+2) · · · W r
s+k(n+r+1)

...
...

. . .
...

W r
s+k(n+r) W r

s+k(n+r+1) · · · W r
s+k(n+2r)













. (9)

We begin with the following proposition on the determinant whose entries are some power
of linear polynomials.

Lemma 3. Let c0, . . . , cr and x0, . . . , xr be real numbers. Then

det((cjxi + 1)r)0≤i,j≤r =
∏

0≤i<j≤r

(xi − xj)
∏

0≤i<j≤r

(ci − cj)
r
∏

i=0

(

r

i

)

. (10)

Proof. We prove Lemma 3 by using the factorization method [5]. The determinant will be 0
if x0 is replaced by any xi for 0 < i ≤ r, since some two rows of the matrix would be equal.
This implies that (x0 − xi) is a factor of the determinant for each i = 1, 2, . . . , r. Similarly,
we have that (x1 − xi) is a factor of the determinant for each i = 2, . . . , r, and so on. In a
similar manner, we see that if c0 is replaced by any cj for 0 < j ≤ r, then two columns of
the matrix will be the same yielding the zero determinant. This implies that (c0 − cj) is a
factor of the determinant for each j = 1, 2, . . . , r. Similarly, we have that (c1− cj) is a factor
of the determinant for each j = 2, . . . , r, and so on. Therefore

∏

0≤i<j≤r

(xi − xj)
∏

0≤i<j≤r

(ci − cj) (11)

is a factor of this determinant. As a function of xi for some fixed i or a function of cj for some
fixed j the determinant is a polynomial of degree r. This implies that the factor (11) and
the required determinant have the same degree. Therefore, we can write the determinant as

det((cjxi + 1)r)0≤i,j≤r = C
∏

0≤i<j≤r

(xi − xj)
∏

0≤i<j≤r

(ci − cj),

for some constant C. To find C, we compare on both sides the coefficients of the monomial

(crxr)
r(cr−1xr−1)

r−1 · · · (c0x0)
0. (12)

5



On the right-hand side, the monomial (12) appears as

∏

0<i<j≤r

(−xj)(−cj) =
∏

0<i<j≤r

xjcj.

Hence, the coefficient of the monomial (12) on the right-hand side is just equal to C. We
see that for each 0 ≤ i ≤ r, the term (cixi)

i appears in (cixi + 1)r. Hence, on the left-hand
side, the monomial (12) appears as

±
∏

0≤i≤r

(cixi + 1)r.

By the definition of the determinant, the sign in front of the expression is determined by
the parity of the identity permutation (0)(1) · · · (r). Since (0)(1) · · · (r) = (01)(01), it follows
that the identity permutation is even. Hence, the sign is determined to be +. Since, for each
0 ≤ i ≤ r, the coefficient of (cixi)

i in (cixi + 1)r is
(

r

i

)

, it follows that

C =
r
∏

i=0

(

r

i

)

.

This completes the proof of Lemma 3.

Corollary 4. Let A(j), B(j), Xi, Yi be real numbers for 0 ≤ i, j ≤ r. Then

det((A(j)Xi + B(j)Yi)
r)0≤i,j≤r

=
∏

0≤i<j≤r

(XiYj −XjYi)
∏

0≤i<j≤r

(A(i)B(j)− A(j)B(i))
r
∏

i=0

(

r

i

)

. (13)

Proof. We prove in the case of B(j) 6= 0 and Yi 6= 0 for all 0 ≤ i, j ≤ r. Applying Lemma 3
with cj = A(j)/B(j) and xi = Xi/Yi for all 0 ≤ i, j ≤ r and clearing the denominators, we
obtain (13). The proof of the other case when some of B(j) or Yi are 0 follows from the fact
that the determinant with polynomial entries is a continuous function.

Thus, this allows us to prove one of the main results of this paper.

Theorem 5. The determinant of the matrix A
s,k
n (r) is given by

detAs,k
n (r) = (−1)(s+kn+1)(r+1

2 ) · c
(s+kn)(r+1

2 )+2k(r+1

3 )
2 ·∆(r+1

2 ) ·
r
∏

i=0

(

r

i

)

U
2(r−i)
(i+1)k .
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Proof. By (9), (8), (13), and (6) respectively, we have

detAs,k
n (r) = det(W r

s+k(n+i+j))0≤i,j≤r = det(
(

A(j)Ws+k(n+i) + B(j)Us+k(n+r+i)

)r
)0≤i,j≤r

=
∏

0≤i<j≤r

(Ws+k(n+i)Us+k(n+r+j) −Ws+k(n+j)Us+k(n+r+i))
∏

0≤i<j≤r

(

A(i)B(j)− A(j)B(i)
)

r
∏

i=0

(

r

i

)

=
∏

0≤i<j≤r

((−c2)
s+k(n+r+i)Uk(j−i)W−kr)

∏

0≤i<j≤r

(

−∆ · (−c2)
−kr

W 2
−kr

(−c2)
kiUk(j−i)W−kr

)

r
∏

i=0

(

r

i

)

=
∏

0≤i<j≤r

(

−∆ · (−c2)
s+k(n+2i)U2

k(j−i)

)

r
∏

i=0

(

r

i

)

,

Rearranging the last expression allows us to obtain the desired identity.

Remark 6. By letting Wn = Fn in Theorem 5 and noting that for the Fibonacci sequence
c2 = 1 and ∆ = 1, we then derive (2).

4 Determinants involving products of terms of second-

order recurrence

The following lemma was mentioned by Krattenthaler [5] as part of the factorization method.
We provide a different proof of this lemma using the Desnanot-Jacobi identity [3].

Lemma 7. Let X0, . . . , Xr, D1, . . . , Dr, and E1, . . . , Er be indeterminates. Then

det





r
∏

ℓ=j+1

(Xi +Dℓ) ·

j
∏

m=1

(Xi + Em)





0≤i,j≤r

=
∏

0≤i<j≤r

(Xj −Xi) ·
∏

1≤i≤j≤r

(Dj − Ei).

An alternative way of writing this identity would be

det





r
∏

ℓ=j+1

(A(dℓ)Xi + B(eℓ)Yi) ·

j
∏

m=1

(A(em)Xi +B(em)Yi)





0≤i,j≤r

=
∏

0≤i<j≤r

(XiYj −XjYi)
∏

1≤i≤j≤r

(B(ei)A(dj)− A(ei)B(dj)). (14)

The main result of this section is as follows:
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Theorem 8. Let d1, . . . , dr and e1, . . . , er be sequences of integers. Then

det





r
∏

ℓ=j+1

Ws+k(n+i+dℓ) ·

j
∏

m=1

Ws+k(n+i+em)





0≤i,j≤r

= (−∆)(
r+1

2 ) · (−c2)
(s+kn)(r+1

2 )+k(r+1

3 ) ·
r
∏

ℓ=1

U r+1−ℓ
kℓ

∏

1≤i≤j≤r

(−c2)
kdjUk(ei−dj).

Proof. We respectively apply the identities (8),(14), and (7), and the details of the proof are
similar to those of Theorem 5.

The following slight variation of the result by Alfred [2] called basic power determinant

is a special case of this theorem.

Corollary 9. Let r, s, and k be integers with r ≥ 0. Then

∣

∣

∣

∣

∣

∣

∣

∣

∣

F r
s F r−1

s Fs+k · · · F r
s+k

F r
s+k F r−1

s+kFs+2k · · · F r
s+2k

...
...

. . .
...

F r
s+rk F r−1

s+rkFs+(r+1)k · · · F r
s+(r+1)k

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(s+1)(r+1

2 )+k(r+1

3 )F
(r+1

2 )
k

r
∏

ℓ=1

F r+1−ℓ
kℓ .

Proof. This identity follows immediately from Theorem 8 by letting d1 = d2 = · · · = dr = 0,
e1 = e2 = · · · = er = 1, n = 0 together with the recurrence and the initial values of the
Fibonacci numbers.

Another interesting case arises when we let (dj) and (ej) in Theorem 8 be in some specific
forms.

Corollary 10. Let s, k, n, and p be integers. Let dj = p−1+ j and ej = j−1 for 1 ≤ j ≤ r.
Then

det





r
∏

ℓ=j+1

Ws+k(n+i+dℓ) ·

j
∏

m=1

Ws+k(n+i+em)





0≤i,j≤r

= ∆(r+1

2 )(−c2)
(s+kn)(r+1

2 )+2k(r+1

3 ) ·
r
∏

ℓ=1

U r+1−ℓ
ℓk ·

r−1
∏

ℓ=0

U r−ℓ
k(p+ℓ).
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