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Abstract

In this paper, we give some new sufficient conditions for log-balancedness of combi-

natorial sequences. In particular, we show that the product of two log-convex sequences

is log-balanced under a mild condition. Then, we apply this result to a series of special

combinatorial sequences. In addition, we show some results by using the definition of

log-balancedness directly.

1 Introduction

For convenience, we first recall some concepts that will be used later on. The following
definition is well known in combinatorics.
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Definition 1. (i) For a sequence of real numbers {zn}n≥0, we say that {zn}n≥0 is concave

(resp., convex) if 2zn ≥ zn−1 + zn+1 (resp., 2zn ≤ zn−1 + zn+1) for all n ≥ 1.
(ii) For a sequence of positive numbers {zn}n≥0, we say that {zn}n≥0 is log-concave (resp.,
log-convex) if z2n ≥ zn−1zn+1 (resp., z2n ≤ zn−1zn+1) for all n ≥ 1.

Došlić [2] gave the following definition.

Definition 2. Let {zn}n≥0 be a log-convex sequence. We say that {zn}n≥0 is log-balanced if
{ zn
n!
}n≥0 is log-concave.

Log-concavity and log-convexity play important roles in many subjects. For example, in
combinatorics, they are not only instrumental in obtaining the growth rate of a combinatorial
sequence, but also fertile sources of inequalities. See, e.g., [1, 6] for more applications of log-
concavity and log-convexity.

For a sequence of positive numbers, it is easy to see from the arithmetic-geometric mean
inequality that its concavity implies its log-concavity and its log-convexity implies its convex-
ity. Obviously, a sequence {zn}n≥0 is log-convex (resp., log-concave) if and only if its quotient
sequence { zn+1

zn
}n≥0 is nondecreasing (resp., nonincreasing). A log-balanced sequence is nat-

urally log-convex, but its quotient sequence does not grow too fast. Moreover, a sequence
{zn}n≥0 is log-balanced if and only if z2n ≤ zn−1zn+1 and (n + 1)z2n ≥ nzn−1zn+1 for every
n ≥ 1. Došlić [2] showed that many combinatorial sequences, including the Motzkin num-
bers, the Fine numbers, the Franel numbers of order 3 and 4, the Apéry numbers, the large
Schröder numbers, and the central Delannoy numbers, are log-balanced. Zhao [7, 8] proved
that the sequences of the exponential numbers and the Catalan-Larcombe-French numbers
are respectively log-balanced.

The main purpose of this paper is to discuss log-balancedness of some combinatorial se-
quences. In the next section, we present some new sufficient conditions for log-balancedness of
combinatorial sequences. In particular, we provide a sufficient condition for log-balancedness
of the product of two log-convex sequences. Then, based on this result, we obtain some sim-
ilar results for a series of special combinatorial sequences.

2 Main results

Zhao [7] gave a sufficient condition for log-balancedness of the product of a log-balanced
sequence and a log-concave sequence. Here, we consider log-balancedness of the product of
two log-convex sequences.

Theorem 3. Suppose that the sequences {xn}n≥0 and {yn}n≥0 are both log-convex. Let

sn = xn+1yn+1

(n+1)xnyn
for n ≥ 0. If {sn}n≥0 is decreasing, then {xnyn}n≥0 is log-balanced.

Proof. By the log-convexity of the sequences {xn}n≥0 and {yn}n≥0, we know that {xnyn}n≥0

is log-convex. Note that {sn}n≥0 is the quotient sequence of {xnyn
n!

}n≥0. Since {sn}n≥0 is
decreasing, {xnyn

n!
}n≥0 is log-concave. Hence, the sequence {xnyn}n≥0 is log-balanced.
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Next, we apply Theorem 3 to deduce log-balancedness of some combinatorial sequences.

Corollary 4. For the sequence {Cn}n≥1 of the Catalan numbers, we have that {C2
n}n≥3 is

log-balanced.

Proof. Since {Cn}n≥1 is log-convex, {C2
n}n≥1 is log-convex. For n ≥ 1, let sn =

C2
n+1

(n+1)C2
n

. It
is well known that

Cn =
1

n

(

2n− 2

n− 1

)

, n ≥ 1.

Then we have

sn =
4(2n− 1)2

(n+ 1)3
.

It is not difficult to verify that {sn}n≥3 is decreasing. By Theorem 3, the sequence {C2
n}n≥3

is log-balanced.

Corollary 5. For the sequence {Mn}n≥0 of the Motzkin numbers, we have that {M2
n}n≥1 is

log-balanced.

Proof. The Motzkin numbers satisfy the recurrence

(n+ 3)Mn+1 = (2n+ 3)Mn + 3nMn−1, M0 = M1 = 1. (1)

For n ≥ 0, let tn = Mn+1

Mn

and sn = t2
n

n+1
. It follows from (1) that

tn =
2n+ 3

n+ 3
+

3n

(n+ 3)tn−1

. (2)

Then we have

sn − sn+1 =
(n+ 2)t2n − (n+ 1)t2n+1

(n+ 1)(n+ 2)
.

It follows from (2) that

(n+ 2)t2n − (n+ 1)t2n+1

=
(n+ 2)(n+ 4)2t4n − (n+ 1)(2n+ 5)2t2n − 6(n+ 1)2(2n+ 5)tn − 9(n+ 1)3

(n+ 4)2t2n
.

For any real number x, we let

f(x) = (n+ 2)(n+ 4)2x4 − (n+ 1)(2n+ 5)2x2 − 6(n+ 1)2(2n+ 5)x− 9(n+ 1)3.

Then we have

f ′(x) = 4(n+ 2)(n+ 4)2x3 − 2(n+ 1)(2n+ 5)2x− 6(n+ 1)2(2n+ 5)
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and

f ′′(x) = 12(n+ 2)(n+ 4)2x2 − 2(n+ 1)(2n+ 5)2.

Since f ′′(x) > 0 when x ≥ 1, we know that f ′ is increasing over [1,∞). Došlić and Veljan
[3] showed that

tn ≥ qn,

where qn = 6(n+1)
2n+5

. Since

f ′(qn) =
18(n+ 1)2[48(n+ 1)(n+ 2)(n+ 4)2 − (2n+ 5)4]

(2n+ 5)3
> 0,

the function f is increasing over [qn,∞). Note that

f(qn) =
81(n+ 1)3(16n3 + 72n2 + 24n− 113)

(2n+ 5)4
> 0.

By the definition of f , we have

(n+ 2)t2n − (n+ 1)t2n+1 =
f(tn)

(n+ 4)2t2n
> 0

for each n. This means that {sn}n≥0 is decreasing. On the other hand, {Mn}n≥1 is log-
balanced. It follows from Theorem 3 that the sequence {M2

n}n≥1 is log-balanced.

Denote by An the number of directed animals of size n (see [5, Exercise 6.46]), which
satisfies the recurrence

(n+ 1)An+1 = 2(n+ 1)An + 3(n− 1)An−1 (3)

with A0 = 1, A1 = 1, and A2 = 2.

Corollary 6. Both {A2
n}n≥2 and {An

n
}n≥2 are log-balanced.

Proof. It is clear that the sequence { 1
n
}n≥1 is log-convex. Liu and Wang [4] proved that the

sequence {An}n≥0 is log-convex. For n ≥ 0, let tn = An+1

An

and sn = t2
n

n+1
. By (3), we have

tn = 2 +
3(n− 1)

(n+ 1)tn−1

, n ≥ 1. (4)

It follows from (4) that

(n+ 2)t2n − (n+ 1)t2n+1

=
(n+ 2)3t4n − 4(n+ 1)(n+ 2)2t2n − 12n(n+ 1)(n+ 2)tn − 9n2(n+ 1)

(n+ 2)2t2n
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and

n(n+ 2)2tn − (n+ 1)3tn+1

=
n(n+ 2)3t2n − 2(n+ 2)(n+ 1)3tn − 3n(n+ 1)3

(n+ 2)tn
.

For any real number x, let

f(x) = (n+ 2)3x4 − 4(n+ 1)(n+ 2)2x2 − 12n(n+ 1)(n+ 2)x− 9n2(n+ 1),

g(x) = n(n+ 2)3x2 − 2(n+ 2)(n+ 1)3x− 3n(n+ 1)3.

Then we have

f ′(x) = 4(n+ 2)3x3 − 8(n+ 1)(n+ 2)2x− 12n(n+ 1)(n+ 2),

f ′′(x) = 12(n+ 2)3x2 − 8(n+ 1)(n+ 2)2,

g′(x) = 2n(n+ 2)3x− 2(n+ 2)(n+ 1)3.

It is obvious that f ′′(x) > 0 when x ≥ 1 and hence f ′ is increasing over [1,+∞). Noting
that f ′(2) > 0, we have f ′(x) > 0 when x ≥ 2.

Liu and Wang [4] showed that
tn ≥ µn,

where µn = 6n
2n+1

. Since f ′(µn) > 0, f is increasing over [µn,∞). It is evident that g′(x) > 0
for x ≥ 1 and hence the function g is also increasing over [1,∞).

Note that

f(µn) =
9n2

(2n+ 1)4

[

144n2(n+ 2)3 − 16(n+ 1)(n+ 2)2(2n+ 1)2

−8(n+ 1)(n+ 2)(2n+ 1)3 − (n+ 1)92n+ 1)4
]

=
9n2

(2n+ 1)4

(

144n4 + 370n2 − 72n2 − 513n− 81

)

and

g(µn) =
3n

(2n+ 1)2

[

12n3(n+ 2)3 − 4(n+ 2)(2n+ 1)(n+ 1)3 − (2n+ 1)2(n+ 1)3
]

=
3n

(2n+ 1)2

(

12n4 + 27n3 − 15n2 − 51n− 9

)

.

Clearly, f(µn) > 0 and g(µn) > 0 for n ≥ 2. This implies that

(n+ 2)t2n − (n+ 1)t2n+1 > 0
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and

n(n+ 2)2tn − (n+ 1)3tn+1 > 0

for n ≥ 2. Then {sn}n≥2 and { ntn
(n+1)2

}n≥2 are both decreasing. It follows from Theorem 3

that the sequences {A2
n}n≥2 and {An

n
}n≥2 are both log-balanced.

Corollary 7. For the sequence {Bn}n≥0 of the Fine numbers, we have that {Bn

n
}n≥2 is

log-balanced.

Proof. The Fine numbers satisfy the recurrence

Bn+1 =
7n+ 2

2(n+ 2)
Bn +

2n+ 1

n+ 2
Bn−1, B0 = 1, B1 = 0. (5)

For n ≥ 2, let tn = Bn+1

Bn

. Došlić [2] showed that the sequence {Bn}n≥2 is log-balanced. We

next prove that { ntn
(n+1)2

}n≥2 is decreasing.

By (5), we have

tn =
7n+ 2

2(n+ 2)
+

2n+ 1

(n+ 2)tn−1

.

Then we have

n(n+ 2)2tn − (n+ 1)3tn+1

=
2n(n+ 3)(n+ 2)2t2n − (7n+ 9)(n+ 1)3tn − 2(n+ 1)3(2n+ 3)

2(n+ 3)tn
.

For any real number x, let

f(x) = 2n(n+ 3)(n+ 2)2x2 − (7n+ 9)(n+ 1)3x− 2(n+ 1)3(2n+ 3).

Then we obtain

f ′(x) = 4n(n+ 3)(n+ 2)2x− (7n+ 9)(n+ 1)3.

It is obvious that f ′(x) > 0 for x ≥ 3. Then f is increasing over [3,∞).
Liu and Wang [4] proved that

tn ≥ λn,

where λn = 2(2n+5)
n+4

. Since

f(λn) =
1

(n+ 4)2
[8n(n+ 3)(n+ 2)2(2n+ 5)2

−(7n+ 9)(2n+ 5)(n+ 4)(n+ 1)3 − 2(2n+ 3)(n+ 4)2(n+ 1)3]

=
14n6 + 185n5 + 968n4 + 458n3 + 4314n2 + 1023n− 596

(n+ 4)2

> 0,
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we have

2n(n+ 3)(n+ 2)2t2n − (7n+ 9)(n+ 1)3tn − 2(n+ 1)3(2n+ 3) > 0.

Then n(n+2)2tn− (n+1)3tn+1 > 0, and { ntn
(n+1)2

}n≥2 is decreasing. It follows from Theorem

3 that the sequence {Bn

n
}n≥2 is log-balanced.

Theorem 8. For a given sequence {zn}n≥0, if it is log-balanced, then {√zn}n≥0 is also

log-balanced.

Proof. Suppose that {zn}n≥0 is log-balanced, that is,

z2n ≤ zn−1zn+1, (n+ 1)z2n ≥ nzn−1zn+1, n ≥ 1.

For n ≥ 1, we immediately derive

zn ≤ √
zn−1zn+1

and

zn ≥
√

n

n+ 1
zn−1zn+1 >

n

n+ 1

√
zn−1zn+1.

This means that the sequence {√zn}n≥0 is log-convex and the sequence {
√
zn

n!
}n≥0 is log-

concave. As a result, the sequence {√zn}n≥0 is log-balanced.

Theorem 9. Suppose that the sequences {xn}n≥0 and {yn}n≥0 are both log-convex. If both

{xn

n!
}n≥0 and {yn

n!
}n≥0 are concave, then {xn + yn}n≥0 is log-balanced.

Proof. Since {xn}n≥0 and {yn}n≥0 are both log-convex, the sequence {xn + yn}n≥0 is log-
convex. We next prove that {xn+yn

n!
}n≥0 is log-concave.

It is well known that {xn}n≥0 is concave if and only if its difference sequence {xn+1 −
xn}n≥0 is decreasing. Therefore, by the concavity of {xn

n!
}n≥0 and {yn

n!
}n≥0, the sequence

{xn+1+yn+1

n!
− xn+yn

n!
}n≥0 is decreasing. Then the sequence {xn+yn

n!
}n≥0 is concave and it is also

log-concave. Hence, the sequence {xn + yn}n≥0 is log-balanced.

It follows from Theorem 9 that the sequence {n! + (n+ 1)!}n≥0 is log-balanced.
In the rest of this section, we devote to discuss the log-balancedness of some sequences

by means of Definition 2 directly. Our first example is to consider some sequences related to
harmonic numbers. Let Hn denote the nth harmonic number. Then we have the following
result.

Proposition 10. Both {Hn

n
}n≥1 and {Hn

n2 }n≥1 are log-balanced.
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Proof. In order to prove the log-balancedness of {Hn

n
}n≥1, it is sufficient to show that {Hn

n
}n≥1

is log-convex and the sequence {Hn

nn!
}n≥1 is log-concave. In fact, for n ≥ 2, we have

H2
n

n2
− Hn−1Hn+1

n2 − 1
=

1

n2(n2 − 1)

[

(n2 − 1)H2
n − n2

(

Hn −
1

n

)(

Hn +
1

n+ 1

)]

= −n(H2
n −Hn − 1) +H2

n

n2(n+ 1)2(n− 1)
.

Note that

2(H2
2 −H2 − 1) +H2

2 > 0, Hn > H2 > 2 (n ≥ 3).

Now we prove that n(H2
n −Hn − 1) +H2

n > 0 for n ≥ 3. For any real number x, let

f(x) = x2 − x− 1.

It is clear that f ′(x) = 2x − 1 > 0 for x ≥ 2. Then f is increasing over [2,∞) and
f(Hn) > f(H3) = 19

36
> 0 for n ≥ 3. Hence, the sequence {Hn

n
}n≥1 is log-convex. On the

other hand, for n ≥ 2, we have

H2
n

nn!
− Hn−1Hn+1

(n2 − 1)(n− 1)!(n+ 1)(n+ 1)!

=
1

n2(n2 − 1)n!(n+ 1)!

[

(n2 − n− 1)H2
n + n2

(

Hn

n+ 1
+

1

n+ 1

)]

> 0.

Hence the sequence {Hn

nn!
}n≥1 is log-concave. It follows from Definition 2 that the sequence

{Hn

n
}n≥1 is log-balanced.
Now we consider the sequence {Hn

n2 }n≥1. Since both {Hn

n
}n≥1 and { 1

n
}n≥1 are log-convex,

{Hn

n2 }n≥1 is log-convex. On the other hand, for n ≥ 2, we get

(

Hn

n2n!

)2

− Hn−1Hn+1

(n− 1)2(n− 1)!(n+ 1)2(n+ 1)!

=
1

n2(n− 1)2(n+ 1)2n!(n+ 1)!

[

(n4 − 2n3 − 2n2 + 3n+ 1)H2
n

+n4

(

Hn

n+ 1
+

1

n+ 1

)]

.

For n = 2,
(

Hn

n2n!

)2

− Hn−1Hn+1

(n− 1)2(n− 1)!(n+ 1)2(n+ 1)!
=

25

20736
.

We find that n4 − 2n3 − 2n2 + 3n + 1 > 0 for n ≥ 3. Thus the sequence { Hn

n2n!
}n≥1 is

log-concave. It follows from Definition 2 that the sequence {Hn

n2 }n≥1 is log-balanced.

8



Our second example is to consider some sequences related to the Fibonacci (Lucas) se-
quence. The Binet form of the Fibonacci sequence {Fn}n≥0 and the Lucas sequence {Ln}n≥0

are

Fn =
αn − (−1)nα−n

√
5

, Ln = αn + (−1)nα−n,

where α = 1+
√
5

2
. It is well known that log-convexity and log-concavity of {Fn}n≥0 and

{Ln}n≥0 depend on the parity of n. In fact, by using the definition of log-convexity, we
can easily prove that both {F2n+1}n≥0 and {L2n}n≥2 are log-convex. Now we discuss the
log-balancedness of some sequences related to Fn and Ln. We first give a lemma.

Lemma 11. For n ≥ 1, we have

F2n+1 ≥ 2n (6)

and

L2n ≥ 3n. (7)

Proof. It is well known that {Fn}n≥0 and {Ln}n≥0 satisfy the recurrence relation

Wn+1 = Wn +Wn−1, n ≥ 1. (8)

We can prove (6)–(7) by induction. We only give a proof of (6) and (7) can be shown in a
similar way. In fact, it is clear that F2n+1 ≥ 2n for 1 ≤ n ≤ 5. Assume that F2n+1 ≥ 2n for
n ≥ 5. By (8), we have

F2n+3 = F2n+1 + F2n+2.

Then we have F2n+3 ≥ F2n+1 + 2 ≥ 2n + 2. By mathematical induction, (6) holds for each
n ≥ 1.

Proposition 12. The sequences {F2n+1

n
}n≥1 and {L2n

n
}n≥2 are log-balanced.

Proof. Because {F2n+1}n≥0, {L2n}n≥2 and { 1
n
}n≥1 are log-convex, the sequences {F2n+1

n
}n≥1

and {L2n

n
}n≥2 are log-convex. Next we show that {F2n+1

nn!
}n≥1 and {L2n

nn!
}n≥2 are log-concave.

For n ≥ 2, we obtain

(

F2n+1

nn!

)2

− F2n−1F2n+3

(n2 − 1)(n− 1)!(n+ 1)!
=

(n+ 1)(n2 − 1)F 2
2n+1 − n3F2n−1F2n+3

n2(n2 − 1)n!(n+ 1)!

=
n3(F 2

2n+1 − F2n−1F2n+3) + (n2 − n− 1)F 2
2n+1

n2(n2 − 1)n!(n+ 1)!
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and
(

L2n

nn!

)2

− L2n−2L2n+2

(n2 − 1)(n− 1)!(n+ 1)!
=

(n+ 1)(n2 − 1)L2
2n − n3L2n−2L2n+2

n2(n2 − 1)n!(n+ 1)!

=
n3(L2

2n − L2n−2L2n+2) + (n2 − n− 1)L2
2n

n2(n2 − 1)n!(n+ 1)!
.

By means of the equalities

F 2
2n+1 − F2n−1F2n+3 = −1 and L2

2n − L2n−2L2n+2 = −5,

we have
(

F2n+1

nn!

)2

− F2n−1F2n+3

(n2 − 1)(n− 1)!(n+ 1)!
=

−n3 + (n2 − n− 1)F 2
2n+1

n2(n2 − 1)n!(n+ 1)!
,

(

L2n

nn!

)2

− L2n−2L2n+2

(n2 − 1)(n− 1)!(n+ 1)!
=

−5n3 + (n2 − n− 1)L2
2n

n2(n2 − 1)n!(n+ 1)!
.

For n ≥ 2, put

R(n) = −n3 + (n2 − n− 1)F 2
2n+1 and S(n) = −5n3 + (n2 − n− 1)L2

2n.

It follows from Lemma 11 that

R(n) ≥ n2(4n2 − 5n− 4), S(n) ≥ n2(9n2 − 14n− 9).

Note that

R(n) > 0 (n ≥ 2), S(n) > 0 (n ≥ 3).

This implies that {F2n+1

nn!
}n≥1 and {L2n

nn!
}n≥2 are both log-concave. By Definition 2, {F2n+1

n
}n≥1

and {L2n

n
}n≥2 are both log-balanced. This completes the proof.

3 Conclusions

We have derived some new sufficient conditions for log-balancedness of combinatorial se-
quences. We have further applied these results to show log-balancedness of some special
sequences. One future work is to study log-balancedness of the partial sums for log-balanced
sequences.
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