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Abstract
This paper presents a formula for the distinct dissections by diagonals of a regular
n-gon modulo the action of the dihedral group. This counting includes dissection
with intersecting or non-intersecting diagonals. We utilize a corollary of the Cauchy-
Frobenius theorem, which involves counting of cycles. We also give an explicit formula
for the prime number case. We give as a remark the number of distinct dissections,
modulo the action of the cyclic group of finite order.

1 Introduction

The theory of polygon dissection has proven to be a rich area of mathematical thoughts.
Cayley derived the number of ways to dissect an n—gon using a specified number of diagonals.
Other mathematicians gave proofs of older formulas involving polygon dissections using new
techniques, such as generating functions, Legendre polynomials, and Lagrange inversion [2].
Przytycki and Sikora showed relationships between polygon dissections and special types of
numbers, such as the Catalan numbers [4]. Explicit formulas for dissections of a regular
polygon using non-intersecting diagonals were derived in a paper of Bowman and Regev
[1]. More recently, Siegel counted the number of dissections of a regular n-gon using non-
intersecting diagonals in his thesis [5].

The main aim of this paper is to count the number of distinct dissections of an unlabeled
regular n-gon by diagonals modulo the dihedral group. We consider both intersecting and
non-intersecting diagonals in our counting. To do this, we first label the vertices of the poly-
gon and determine which dissections of this labeled n-gon are the same up to the canonical
action of the dihedral group of degree n. We present the following definition:
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Definition 1. Let n > 3. A regular polygon with n vertices is called an n-gon. A diagonal
of an n-gon is a segment extending from a vertex to a non-adjacent vertex. A dissection of
the n-gon is any set of crossing or non-crossing diagonals of the n-gon. A dissection without
any diagonal is an empty dissection.

The main result of this paper is anchored on a consequence of the Cauchy-Frobenius
theorem [3, Corollary 1.7A, p. 26]. We give it below as Lemma 2.

Lemma 2. Let G be a finite group acting on a finite set A. Suppose I" is a non-empty finite
set and Fun(A,T') is the set of all functions from A to I', then G acts on Fun(A,T") by

F56) = f(0° ") (Vf e Fun(AT),z € G, 6 € A)
In addition, the number of orbits of this action is equal to
1 Z IT|¢(9)
|G|
geG

where ¢(g) counts the number of cycles of g as it acts on A, including the trivial cycles, if
they exist.

2 Preliminaries

Let [n] = {1,2,...,n} be the set of vertices of a regular n-gon. It is well-known that the
dihedral group of degree n, with presentation D,, = (r,s : r" =1 = s? srs = r~!), acts on [n]
in a natural way. This is obvious when we express the elements of D,, as permutations of [n]
corresponding to the symmetries of an n-gon, i.e., D,, < Sym([n]). Here, r is the 2f-rotation
and s is the reflection along the axis through center and vertex 1.

Definition 3. Let i,j € [n] be vertices of the n-gon. If i < j, then we define the cycle length
of 7 and 5 as follows:

d({i,7}) =min{j —i,n — (j — i) mod n}.

Form A, = {{i,j} : d({i,5}) > 2}. This is simply the set of all diagonals of the n-gon
and it can be shown that |A,| = @ Moreover, the group D,, acts on A, in a natural
way. Observe that {i,j} € A, if and only if ¢ and j are non-adjacent. Since each element of
D,, only rotates or reflects the n-gon, then for x € D,,

d({i*, j°}) = d({i, j}).

It can then be proven that the map A, x D,, — A,, defined by
{i. 7Y = {5}
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is an action. Let us denote the corresponding permutation representation of this action by
p: D, — Sym(A,). That is, p(r) and p(s) are permutations of the set A, satisfying the
following:

i. p(r)({i,7}) ={i +1modn,j+ 1 mod n};
it. p(s)({i,7}) = {2 —imod n,2 — j mod n}.

Consider the family Fun(A,,I') where I' = {0,1}. We can view each function f €
Fun(A,,T") as a way of dissecting the n-gon. Here, f({i,7}) = 1 means that there exists
a diagonal from vertex ¢ to j. Otherwise, ¢ and j are not connected by any diagonal. The
action of an element z € D,, on Fun(A,,I') can be viewed as either rotating or reflecting
the dissection f to f* preserving the form of the dissection. Consequently, every orbit of
this action represents a certain way of dissecting an n-gon. This only means that counting
the distinct orbits is equivalent to counting the number of distinct dissections of the n-gon
modulo the dihedral group.

Proposition 4. The number vy(n) of distinct dissections of an n-gon modulo the dihedral
action s

where c(g) counts the number of cycles of g as it acts on A, including the trivial cycles
whenever they exist.

3 Result

The following observation will be used to prove the succeeding claims:
Proposition 5. Let n > 4 be a natural number. Then p[D,] = D,,.

Proof. Let r,s be the generators of D,,. When we express p(r) as a product of disjoint
cycles, we see that ({1,3} {2,4} {3,5} ... {n—1,1} {n,2}) is one of these cycles. Since
this cycle is of length n and [p(r)| < n, then the length of each cycle is at most n and so
p(r)| = n.

We now show that |p(s)| = 2. Since |s| = 2, then |p(s)| divides 2 and so the length of
each cycle is at most two. If n is odd then p(s) sends {1, ”T“} to {1, ”TH} and this creates
a cycle of length two. If n is even, p(s) sends {1, g} to {1, ”T+4} and again, this makes a
cycle of length two. Hence, |p(s)| = 2.

Finally, we obtain



For x € D,,, we now count the number of cycles in the decomposition of p(z). We make
use of the well-known properties of permutations stated as Lemma 6.

Lemma 6. Let o € Sym([n]) such that a = cyco - - ¢;, where ¢;’s are disjoint cycles, then
la| = lem(length(c;) 1@ € {1,2,...,1}).

If o« = (ay ay ... ag), then the number of disjoint cycles of o, where 1 <t <k, is ged(k, t).

Lemma 7. Let n > 4. Forie€ {1,2,...,n},

)ng(nai) + ng(g,i), if n is even;
(%52) ged(n, i), ifn is odd.

Proof. We start with n = 4. Then Ay = {{1,3},{2,4}}, i € {1,2,3,4} and we obtain the
following computations:

L p(r) = ({1,3} {2,4}) and so c(r) =1 = (*5*) ged(4, 1)
2. p(r*) = ({1,3}) ({2,4}) = 1a, and so c(1?) = 2 = (457) ged(4, 2) +gcd(%72);
=3. p(r®) = ({1,3} {2,4}) and so c(r®) =1 = (152) ged(4, 3) + ged(3, 3);

i=4. p(r') = p(lyy) = 1a, = ({1,3}) ({2,4}) and so c(r*) = 2 = (%52) ged(4,4) + ged(3, 4).

We let n > 4 and consider two cases. Firstly, assume n is even. The elements of A,, can be
partitioned according to different cycle lengths and we get the following cycle decomposition:

p(r) = ({1,3} {2.4} ... {n,2})({1,4} {2.5} ... {n,3})...

n—:t;cle n—z;cle
{Ln/2} {2,(n+2)/2} ... {n,(n—2)/2}) ({1, (n+2)/2} {2,(n+4)/2} ... {n/2,n})
n—::;/clc n/Q:,cycle
in which there are "T"l n-cycles and only one g-cycle. For i € {1,2,... n}:

p(r') = ({1,3} {2,4} ... {n,2})" ({1,4} {2,5} ... {n,3})"...
({1,n/2} {2,(n+2)/2} ... {n,(n—2)/2}) ({1, (n+2)/2} {2,(n+4)/2} ... {n/2,n})".

By Lemma 6, we obtain

o(r) = (” - 4) ged(n, i) + ged(n/2, ).



Secondly, take n to be odd. Similar to the first case, the elements of A,, can be partitioned
according to different cycle lengths. We obtain the following:

p(r) = ({13} (24} . {n2) (L4 (25} . {n3}). .

n—cycle n—cycle
({1, (n+1)/2} {2,(n+3)/2} ... {n,(n—1)/2})
nfz;cle
in which there are ”T’?’ n-cycles. As with the above, we can compute the following:

o(r) = (” - 3) acd(n, i).

]

Lemma 8. Let n > 4 and s, € D,\(r) be a reflection with axis passing through the center
and a vertex. Then

B "212”, if n is even;
els) = n®—2n-3 if n s odd
1 :

Proof. Note that the case n = 4 is an easy computation. We consider two cases for n > 4.
Firstly, take n to be even. The axis of s, is the diagonal {i,i + 5 mod n} Form

A, = {{i—kmodn,z’+km0dn} ke {1,2,...,n2 2}}

Observe that (i &+ & mod n)®* = i ¥ k mod n and preserves both i and ¢ + § mod n. This
implies that s, fixes setwise each element of A, U {{2,2 + 5 mod n}} Let {a, 3} be an
element of A,,\ (AO U {{z,z + 5 mod n} }), we consider three subcases. Let o = 7. It follows
that € {z’ikmodn:ke {2,...,”7_2}}. If 3 =1+ kmodn then {i,i +k mod n}” =
{i,i—kmodn}. If 5 =i—kmodn then {i,i — k mod n}* = {i,i+ k mod n}. Similar
argument when a = 4+ § mod n. Suppose {a, 5} N {z’,i + 5 mod n} It implies that o, 8 €
{ij:k’modn ke {1,2,...,”7_2}}. If « = i+k; mod n and 8 = i+ky mod n where kqy, ky €
{1, 2,..., ”T_Q}, then {i + k; mod n,i + ke mod n}* = {i — k; mod n,7 — ko mod n}. Sim-
ilar argument can be used for @« = 7 — ky mod n and 8 = i — ky mod n. Without loss of
generality, assume o« = ¢ — ky mod n and 8 = i + ky mod n. It means that ky # ko and
so {i — ky mod n,i + ke mod n}* = {i + k; mod n,i — ks mod n}. In all these subcases, we
obtain {a, 5} # {a, 5}.

Proposition 5 and Lemma 6 assure that the length of every cycle in p(s,) is at most two.
The above results tell us that each element of A, U {i,z' + 5 mod n} creates an 1-cycle in
p(s,), while each element of A\ (AO U {i,z’ + 5 mod n}) creates a 2-cycle. Hence,

n? —2n
c(sy) = :
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For the second case, assume n is an odd integer. The axis of s, is the segment extending
from vertex ¢ to the midpoint of the edge {i + (n — 1)/2 mod n,i — (n — 1)/2 mod n}. Form

-1
AO:{{i+kmodn,i—kmodn}:k‘€{1,2,...,n2 }}

Observe that ¢** =i and (i & k mod n)®* = ¢ F k mod n. Thus, each element of

-1 -1
Ao\{{i+nTmodn,i—nTmodn}}

creates an 1-cycle in p(s,). Let {«, 8} € A,\A,. We consider two subcases. Without loss
of generality, assume a = 4. It follows that § € {i t kmodn: ke {2,...,(n—1)/2}} and
either {i,7+ k mod n}*™ = {i,i — k mod n} or {i,i —k mod n}” = {i,i+ k mod n}. Let
i ¢ {a,B}. Tt means that o, € {i+kmodn:ke{l,2,...,(n—1)/2}}. As with the
above, we always obtain {a, 8} # {«a, 8} in different subcases.

Since the length of each cycle of p(s,) is at most two, then the two subcases above imply
that every {«, f} € A,\A, creates a 2-cycle in p(s,). Hence,

n®—2n—3

c(sy) = 4

]

Lemma 9. Let n > 6 be even. Suppose s. € D,\(r) to be a reflection with azis passing
through the origin and midpoints of opposing edges. Then

n®>—2n—4

c(se) = 1

Proof. The axis of s, is the segment extending from the midpoint of an edge {i,7 + 1 mod n}
to the midpoint of {i — (% —1) mod n,i+ % modn}. We note that for j € [n], j* =
(20 +1) — j mod n. Let

Ay ={{i+kmodn,i—k+1modn}:ke {23 .. (n—2)/2}}.

It should be noted that s, fixes setwise each element of A, and creates an 1-cycle in p(s.).
For {a, 8} € A,\A,, there exists k € {1,2,...,%} such that if & = i + k mod n, then
B € [n]\{i+ kmodn,i —k+ 1 mod n} and so

{i + kmodn,5}* ={i — k+ 1modn, 3%} # {«a, 5}.
Also, if @ =i — k4 1 mod n then 5 € [n]\ {i + k mod n,i — k + 1 mod n} and so

{i — k+1mod n, 5}’ = {i+ k mod n, 5} # {a, 5}.
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Hence, each element of A,\A, creates a 2-cycle of p(s.). That is,

n:—2n—4
c(se) = —
]

We now collect the properties from Lemmas 7, 8 and 9 and plug them in to the equation
in Proposition 4 to obtain our main result.

Theorem 10. Let n > 3. The number v(n) of distinct ways of dissecting an n-gon modulo
the action of the dihedral group D, is:

" n* . n » n2— n n2— n—
% ZQ 74 gcd(n,z)+gcd(2,z)> 4 % (2 = iy 2 4)) ifn is even:

ZQ ) ged(ni) > +n (27125”3)) , if n is odd.

gl

Corollary 11. The number of dissections of a reqular p-gon modulo the dihedral action,
where p is prime with p > 3, is

p—2p 3

(p—1)- 2% + 2"

2p

4 Remark

The number 7.(n) of distinct ways of dissecting an n-gon modulo the action of the cyclic
group ((12 ... n))is

3=

ZQ(T)ng(””Hng(g’i)) , if n is even;

ZQ ?) ged(n.i) > , if n is odd.

Moreover, when n = p > 3, then

Ye(n) =

3=

(p—1)-2%° + 2"
p

Ye(p) =
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