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Abstract

For an arithmetic function fy, we consider the number ¢,,(n, k) of weighted com-
positions of n into k parts, where the weights are the values of the (m — 1)th invert
transform of fo. We connect ¢, (n, k) with ¢1(n, k) via Pascal matrices. We then relate
¢m(n, k) to the number of certain restricted words over a finite alphabet. In addition,
we develop a method which transfers some properties of restricted words over a finite
alphabet to words over a larger alphabet.

Several examples illustrate our findings. Some examples concern binomial coeffi-
cients and Fibonacci numbers. Some examples also extend the classical results about
weighted compositions of Hoggatt and Lind. In each example, we derive an explicit
formula for ¢, (n, k).

1 Introduction

For a given initial arithmetic function fy, Janji¢ [5] examined some properties of the function
fim, which is the m™ invert transform of fy. In that paper, as well as in Birmajer et al. [2],
some cases in which f,, counts the number of restricted words over a finite alphabet were
considered. In the present paper, we consider the function ¢,,(n, k), which is the number of
weighted compositions of n into k parts, where the weights are {f,,_1(1), fr_1(2),...}. Note
that, in Janjié¢ [6], properties of ¢1(n, k) were investigated.
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As mentioned by Birmajer at al. in a recent preprint [3], a formula for the number ¢, (n, k)
was firstly given by Hoggatt and Lind [4], based on results by Moser and Whitney [7]. For
a sequence of weights {f,,—1(1), fm—1(2),...}, the number of f,,_;-weighted compositions of
n into k parts is

k!
cm(n, k) = Z mfm—1(1)k1 s fnea (D)
(1)

where the sum runs over all solutions of
ki +2ky + -+ -+ nk, = n such that ky +--- + k, = k and k; € Ny for all j.
In other words,

Cm(n, k) = z—iBmk(l!fml(l),Q!fml(z), ) (1)

where B,, x(21, T2, . ..) is the Bell partial polynomial. Moreover, as discussed in Hoggatt and
Lind [4], this formula is equivalent to

Cn(n, k) = Y fma(ar) -+ fna(ar), (2)
Vi (r)

where v(n) indicates summations over k-part compositions a; + ag + -+ - + aj of n. As an
immediate consequence, we obtain the following two results:

Corollary 1. The function ¢,,(n, k) satisfies the recurrence

cm(0,0) =1, ¢;,(n,0) =0,(n > 1),

and
n—k+1
(k) = Y fuoi(Dem(n—ik—1),(1 <k <n). (3)
i=1
Corollary 2. The following formula holds:
fm(n) = ) cm(n, k). (4)
k=1

Note that, throughout the paper, letters m, n, k will have the meaning as in the definition
of ¢;n(n, k). Using Birmajer et al. [1, Corollary 10], we derive a formula connecting c,,(n, k)
with ¢,,—1(n, k). The formula may be written in terms of the lower triangular Pascal matrices.
We then extend this result to obtain a relation between ¢,,(n, k) and ¢ (n, k).

For the particular case fo(1) = 1, we develop a method which allows us to derive an
interpretation of ¢, (n,k) in terms of restricted words, when we know the number of re-
stricted words counted by f,,,_1. We finish the paper with a number of examples illustrating
our results. Some examples extend the classical results on weighted compositions given by
Hoggatt and Lind [4].

It is important to note that quantities f,,(n) and ¢,,(n, k) depend only on the initial
arithmetic function fj.



2 A connection of ¢,,(n, k) and ¢,,_1(n, k)

Let Cp,(n) be the lower triangular matrix of order n, whose (i,7) entry is ¢, (4,7), (i =
L,2,...,n;1 < j <id). We let Ly, denote the lower triangular Pascal matrix of order n.
’_1), (1 < j <1). First, we prove the following:

Hence, the (i,7) entry of L, is (jfl
Proposition 3. For each m > 1, we have
Cn(n) = Cp1(n) - Ly,
Proof. Tt is easy to see that the statement is equivalent to the equation
Cm(n, k) = i (;_ 11) Cm—1(n,1). (5)
i=k N

In our terminology, Birmajer et al. [1, Corollary 10] may be written in the form

> ) fuaU) = i <Z i k; - 1) Cm—1(n, 1),

Jitizt+ie=n i=1
where the sum is taken over nonnegative ji,..., jx. Since at most k — 1 of j; may be equal
0, (2) yields

k—1 n .

k . 1+ k—1 .
Z ()Cm<n7k_]) :Z( . )le(n,Z).
=0 \J i=1 !

i+k—1
%

> (i)cm(n,t) = ax, (k=1,2,...,n).

t=1

Replacing k — j by ¢, and denoting >7_, ( )Cm—1(n, i) = a, implies

Denoting X = (¢,,(n,1),¢m(n,2),...,cm(n,n))?, and A = (ay,as,...,a,)T, this system
may be written in the matrix form
Q - X = A7
where () is obtained from the Pascal matrix L,,; by omitting the first row and the first
column. It follows that X = Q~!- A, where Q7! = ((—1)i+j (;)) Fork=1,2,...,n, we

nxn

en(n, k) = i <i(_1)j+k (];) <Z +i’ - 1)) et (1,3). (6)

i=1 \j=1

obtain

Equation (6) holds for each m > 1, as well as for any arbitrary arithmetic function f;.
In particular, taking fo(1) = 1, fo(i) = 0,(: > 1), we obviously have ¢;(n,n) = 1, and



ci(n,k) = 0 for k < n. Also, fi(n) = 1 for all n. In this case, ca(n, k) is the number of
compositions of n into k parts, that is, co(n, k) = (Zj) Therefore, (6) becomes

n—1 - (kN (n+j—1
=) (—1)tk : 7
(o0 =2 () () g
7=1
Hence the expression in the square brackets in (6) equals (;:11), which proves (5). O
Remark 4. As a byproduct, we proved the binomial identity (7).
Remark 5. Replacing i — k by ¢ in (5), we obtain

el k) = Zk (’“ e 1>cm_1(n,k 1) (s)
=0
From the equation C,,(n) = Cy,_1(n) - L, follows
Cp(n) =Cp1(n) - L, =Cps(n)- L2 =---=Cy(n)- L™
We thus obtain,
Proposition 6. The following matriz equation holds:
Cn(n) = Cy(n)L .
Or, explicitly,

n

i—k
Proof. The assertion is true since (i, k) entry of L7~'is (m — 1)"=%(]_1). O
Now, we derive a formula in which f,,(n) is expressed in terms of ¢;(n, k).

Proposition 7. The following formula holds:
fm(n) = Zm"’lcl(n,i). (10)
i=1

Proof. Equation (4) yields

Using the binomial theorem, we obtain (10). O



Note 8. Equation (10) appears in Birmajer et al. [2] with a combinatorial proof based on
the enumeration of certain restricted words.

As an immediate consequence of (1) and (9), we obtain the following identity for the
partial Bell polynomials:

Identity 9. If the sequence yy,ys, . .. is the invert transform of the sequence x1, x5, ..., then

E'Bp(y1, 2! - y2, 3! - ys, .. .) = ; (; B 1)i!Bn,i(3717 2 29,3l x5, 0).

We next prove the following result.

Proposition 10. Assume that fo(1) =1 and m > 1. Assume next that, forn > 1, f,,_1(n)
is the number of some words of length n — 1 over a finite alphabet «. Let x be a letter which
is not in . Then c,,(n, k) is the number of words of length n — 1 over the alphabet o U {x},
in which exactly k — 1 letters equal x.

Proof. Since fo(1) = 1, it follows from Janji¢ [5, Corollary 2| that f,,_1(1) = 1. We use
induction on k. For k = 1, (2) yields ¢,,(n,1) = f_1(n). Since f,,_1(n) is the number of
words of length n — 1 over a not containing z, we conclude that the statement is true for
k = 1. Assume that the claim is true for k—1. Consider the first term f,,_1(1)c,(n—1,k—1)
in (3). By the induction hypothesis, ¢,,(n — 1,k — 1) is the number of words of length n — 2
having k& — 2 letters equal to x. Adding x at the beginning of each such word, we obtain all
the words of length n — 1 over a U {z}, having k — 1 letters equal to z, and all beginning
with x.

Consider now the term f,,,—1(i)-¢;n(n—i,k—1), (¢ > 1) in (3). By the induction hypothesis,
Cm(n — i,k — 1) is the number of words of length n —i — 1 with k — 2 letters equal to x. We
first insert x at the beginning of each such word. In front of z, we insert an arbitrary word
of length ¢ — 1 over «, which are f,,_1(7) in number. We thus obtain all words of length n — 1
over a U {z}, such that the first appearance of x is at the ith position. It follows that the
right-hand side of (3) counts all the desired words. O

Remark 11. We stress the fact that the preceding method may be applied only when we
know the number of (n — 1)-length words counted by f,,—1(n). This is always true when
fo(1), fo(2),... is a binary sequence. Namely, there is a bijection between the compositions
counted by ¢1(n, k) and the binary words of length n — 1 with & — 1 ones. This bijection is
given by the correspondence

1—-1,2—-10,3 — 100,... . (11)

In this way, the compositions of n into k£ parts designate binary words of length n and
having k ones, all of which begin with 1. The converse is also true. Omitting the leading
1, we obtain the desired correspondence. Equation (4) implies that f; and c¢;(n, k) both
count some binary words of length n — 1. We thus may apply Proposition 10 to obtain a
combinatorial interpretation of ¢,,(n, k) as well as f,,(n). Note that this method may be
applied in non-binary cases also.



Remark 12.
1. Janji¢ [5, 6] derive several formulas concerning correspondence (11).

2. Also, Birmajer at al. [2, Theorem 3, Corollary 5] developed a method to obtain the
words counted by f,,_1 starting with the initial function f.

We now illustrate our method by a simple example.

Example 13. Assume that fo(i) = 1 for ¢ = 1,2,.... Then, we have f,,_1(n) = m™1. It
yields that f,,—1(n) is the number of all words of length n — 1 over a = {0,1,...,m — 1}.
Then, ¢i(n, k) = ({_}). This means that Cy(n) = L. It follows that Cy,(n) = L. From the
well-known formula for the terms of L), we obtain

em(n, k) = mn* (Z - 1) (12)

Equation (12) is in accordance with Proposition 10. Namely, according to Proposition 10,
¢m(n, k) is the number of words of length n — 1 over {0, 1,...,m} with k — 1 letters equal to

m. These k —1 letters may be chosen in (Zj) ways. The remaining letters may be arbitrary

letters from {0,1,...,m — 1}, which are m™* in number.

As a byproduct, using (9), we obtain the following binomial identity:
Identity 14. For m > 1, we have
oefn—1 k i n—1 E4+j5—1
" (k—l):;(m_” <k+j—1>( j ) 1)

This simple case is related to the coefficients of the Tchebychev polynomials U, (x) of the
second kind.

Corollary 15. The number |[z"*|(U,11_o())| is the number of words of length n — 1 over
the alphabet {0, 1,2} having k — 1 twos.

Proof. 1t is a well known that (—1)*2"~* (Zj) is the coefficient of U, _o(z) by 2%, We
thus obtain

(2" ) Unims () = <—1>"’“§ (k L 1) <k N 1)’

This is the case when m = 2 in (13). O



3 More examples

Firstly, we revise the result from Janji¢ [6, Corollary 9].

Example 16. We define fy(1) = fo(2) = 1, and fy(n) = 0 otherwise. According to Janji¢ [5,
Corollary 33], fi,—1(n) is the number of words of length n—1 over the alphabet {0,1,...,m—
1} having all zeros isolated.

Corollary 17. The number c¢,,(n, k) is the number of words of length n—1 over the alphabet
{0,1,...,m}, which have k — 1 letters equal to m and all zeros isolated. Also,

= (,5)

win= $ =T () o 5] 2,

and

Jj=I51-k
Proof. The first formula is Hoggatt and Lind [4, Case (ii)]. Since ¢;(n, k—+7j) = (nﬁ;ij)a (=
0,...,n—k), we have k + j > n — k — j, which yields 2j > n — 2k and n > 2k. The second
formula is true according to (9). O

The arrays A030528 and A154929 in Sloane [8] are related to Example 16.

Next, we reexamine the result in Janji¢ [5, Corollary 28].

Example 18. We define fy(n) = 1 when n is odd, and fo(n) = 0 otherwise. According to
Janji¢ [5, Corollary 28|, f,,—1(n) is the number of words of length n — 1 over the alphabet
{0,1,...,m — 1}, avoiding runs of zeros of odd lengths. From Janji¢ [6, Proposition 24], it

follows that )
not k-1 . o .
ci(n, k) = (z,1777), ifn—kis even;

0, if n is odd.

The number ¢;(n, k) is the number of binary words of length n — 1 with k£ — 1 ones, and
avoiding runs of zeros of odd lengths. This follows from bijection (11). We add a short
combinatorial proof.

Proposition 19. The number c¢i(n, k) is the number of binary words of length n — 1 with
k — 1 ones, avoiding runs of zeros of odd lengths.

Proof. Assume that n and k are of different parities. Since a word of length n — 1 with £ —1
ones must have n — k zeros, and since n — k is odd, we conclude that such a word must have
an odd run of zeros. It follows that ¢;(n,k) = 0. If n and k are of the same parity, then

n — k is even. This means that there are "T_k pairs of zeros. Of these "T_k pairs and k£ — 1
ones, we may form (n%zflf_l) words of length n — 1 having k£ — 1 ones and avoiding runs of
zeros of odd lengths. O


http://oeis.org/A030528
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Remark 20. The formula for ¢;(n, k) appears in Hoggatt and Lind [4, Case (iv)].

Using induction and Proposition 10, we obtain

Corollary 21. The number c,,(n, k) is the number of words of length n—1 over {0,1,...,m}
with k — 1 letters equal to m, avoiding runs of zeros of odd lengths.

From (9), we obtain an explicit formula for ¢,,(n, k).
The arrays A037027 and A054456 in Sloane [8] are related to Example 18.

Example 22. We define fo(i) = i,(i = 1,2,...). According to Janji¢ [5, Corollary 37],
fm—-1(n) is the number of 01-avoiding words of length n — 1 over the alphabet {0, 1,...,m}.
Applying Proposition 10 several times, we obtain

Corollary 23. The number c,,(n, k) is the number of words of lengthn—1 over {0,1,...,m+
1} having k — 1 letters equal to m + 1 and avoiding 01.

Corollary 24. The following formula holds:

n+k—1
k) = . 14
)= ("3 (14)
Also,
c(nk)—i(m—l)i_k i—1\(n+i-1
B k—1)\ 2i—-1 )
Proof. Formula (14) may be found in Hoggatt and Lind [4, Case (iii)]. O
Since (”22]:1) is obviously the number of binary words of length n + k — 1 with 2k — 1

zeros, we obtain the following FEuler-type identity:

Identity 25. The number of binary words of length n + k — 1 with 2k — 1 zeros equals the
number of ternary words of length n — 1, having k — 1 letters equal to 2 and avoiding 01.

The arrays A125662, A207823, and A207824 in Sloane [8] are related to Example 22.

The last two examples concern the case fy(1) = 0. Note that in these examples, Propo-
sition 10 can not be used. The first example is an extension of the result from Janjié¢ [6,
Proposition 13].

Example 26. We define fo(1) = 0, and fo(n) = 1 otherwise. It follows from Janjié¢ [5,
Corollary 24] that, for n > 3, f,,(n) is the number of words of length n—3 over {0, 1,...,m},
where no two consecutive letters are nonzero. From Janji¢ [6, Proposition 13], we obtain
ci(n, k) = (";ﬁl) for (1 <k< L%J), and c¢;(n, k) = 0 otherwise. Equation (5) implies that
¢m(n, k) =0 when k > [%].

Remark 27. Note that the formula for ¢i(n, k) also appears in Hoggatt and Lind [4, Case

(iii)).
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Corollary 28. Forn > 3 and 1 < k < LgJ, the number ¢y, (n, k) is the number of words
of length n — 3 over {0,1,...,m} with k — 1 ones, and all nonzero letters are isolated. An

explicit formula for c,,(n, k) is
k 5 0 CA T e A N P
enln k)= 3 (m )( k-1 )( ktj—1 )( = —bJ)’

=0
and cp(n, k) = 0 when k > [5].

Proof. We know that ci(n, k) is the number of compositions of n into k parts, each of which
is greater than 1. Using the bijection (11), we conclude that, for n > 3, ¢1(n, k) is the
number of binary words of length n beginning with 10, ending with 0 and all ones are
isolated. Omitting 10 at the beginning, and 0 at the end of each word, we conclude that
c1(n, k), (n > 3) is the number of binary words of length n — 3 with & — 1 ones, all of which
are isolated. Hence, the statement is true for m = 1. Assume that the statement is true for
m — 1. In (8), by the induction hypothesis, ¢,,—1(n, k + t) is the number of words of length
n — 3 with £+t — 1 ones, in which all nonzero letters are isolated. Replacing ¢ ones with
m, we obtain the desired words. The number ¢ may be chosen in (k+t_1) ways. Hence, the
right-hand side of (8) counts all the desired words. The formula follows from (9) and the
fact that n —k—j—1>k+j— 1. O

The arrays A037027, A249139, and A006130 in Sloane [8] are related to Example 26.

[
Example 29. Define f; in the following way: fo(2) = fo(3) = 1, and fy(n) = 0 otherwise.
Janji¢ [6, Proposition 5] proved that ci(n, k) = (nf%), ([g] <k< [%J) and ¢;(n, k) =0
otherwise.

We know that c¢;(n, k) is the number of compositions of n into k parts equal to either 2
or 3. In other words, forn >3 and 1 < k < \_gj, c1(n, k) is the number of binary words of
length n — 1 with £ — 1 ones. These words begin with 0 and end with 0. Also, zero avoids a
run of length greater than 2, and all ones are isolated.

Corollary 30. For n > 3, the number ¢y, (n, k) is the number of words of length n — 1 over
the alphabet {0,1, ..., m} with k — 1 ones, which begin and end with 0. Also, 0 avoids a Tun
of length greater than 2 and all nonzero letters are isolated.

Proof. The statement holds for m = 1. Assume that the statement is true for m—1. Consider
the term (Hifl) Cm—1(n, k+1t) in (8). The number ¢,,_1(n, k+1t) is the number of the desired
words of length n — 1 over {0,1,...,m — 1} with £ +¢ — 1 ones. We replace t of k +t — 1

ones with m and then sum over ¢ to obtain ¢,,(n, k). O
From (5) follows that c,,(n,k) = 0 if & > |§]. Otherwise, from (9), we obtain

cm(n, k) = L J(m—l)j(j;gﬁzl) (n_kQ—]L_in)’ <1 sks EJ)

=0

w3
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