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Abstract

We give the complete factorization of the first fifty terms of the sequence an :=

nan−1 + 1 with a1 := 0. We searched the terms an for primes up to n = 1019 with the

result that only the indexes 4, 8, 18, 20 and 70 provide primes. A final section deals

with some conjectures on prime terms in this sequence.

1 Introduction

Consider the sequence of integers defined by an := nan−1 + 1 with a1 := 0. This sequence is
A056542 in Neil Sloane’s Online Encyclopedia of Integer Sequences [4]. In this paper we give
the complete factorization of the first fifty terms and deal with the question what terms are
prime numbers for n < 1020. To do this we need two equivalent expressions for the terms
an.

Using a simple induction argument we can show that

an =
n
∑

ν=2

n!

ν!
. (1)

The study of the convergence of the exponential series (which is, among other things,
used to prove the irrationality of e) allows us moreover to write

an = bn!(e− 2)c = bn!ec − 2n!. (2)

Using the first expression it is easy to prove a criterion for the compositeness of certain
terms.
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2 Composite terms

From the definition of the sequence it follows immediately that for odd n > 1 the term an
is even and greater than 3 and hence composite. So only even indexes can provide potential
prime numbers. Expression (1) implies the following result.

Theorem 2.1 Let p be a prime number and n be a natural number with p ≤ n. If p is a
divisor of an then p divides an+p as well.

Proof: Writing

an+p =

p−1
∑

ν=2

(n+ p)!

ν!
+

n+p
∑

ν=p

(n+ p)!

ν!
, (3)

we see that the first sum on the right side contains the factor p. Concerning the second sum,
we obtain (e.g., by induction on n)

n+p
∑

ν=p

(n+ p)!

ν!
=

(

n
∑

ν=0

n!

ν!

)

+ pk (4)

where k is a natural number. This is equivalent to

an+p = an + 2n! + pK

with another natural number K absorbing k and the respective factor of the first sum in (3).
Hence an+p is a multiple of p if an is. ¤

One consequence of the theorem is the fact that for a given prime p it is enough to search
among the terms ap, ap+1, . . . , a2p−1 for multiples of p. Numerical computations lead to the
results presented in Table 1.

Furthermore, we can now use the theorem to sift the prime candidates and retain more
than half of them as composites. The an’s that could not be identified being the product of
two nontrivial factors with our sieve method were tested for compositeness by trying to find
a small factor with a standard factorization algorithm, which again eliminated about half
the terms. Each remaining term was subjected to the Fermat test

2an−1 ≡ 1 mod an. (5)

It turned out that in all the cases, exept for n ∈ {4, 8, 18, 20, 70}, the congruence failed, and
hence the respective an was composite. We studied the indexes n < 1020. Testing one term
took an average CPU time of about one hour.
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p n with p|an p n with p|an

2 3 113 163
5 7, 9 127 135
13 17, 23, 25 131 153, 164
19 25, 33 137 144, 153
23 37, 41 149 218
29 52 163 168
31 45, 50 167 242
37 53, 71, 73 173 336
41 78 179 351
43 62 181 276
59 100 193 250, 255
71 81, 120 197 228, 297
83 157 211 269, 357, 391, 415
97 123 223 363
103 109 227 411, 436
107 158 239 418
109 196, 213 251 279

Table 1: Prime numbers p dividing the term an

3 Prime terms

In the previous section we pointed out that only the terms

a4 = 17

a8 = 28961

a18 = 4598708691828421

a20 = 1747509302894800001

a70 = 8603990361433692835766763032506384134769654780784715495311087517908153547994512075361554378508046501

remain potential prime numbers. For n = 4, 8, 18, 20 it is simple to prove their primality,
for example by trial division up to the respective square roots. For a70, which is a 100-
digit number, primality can be established using two theorems of Brillhart, Lehmer and
Selfridge [1].

Theorem 3.1 Let N − 1 =
∏

pαi

i be the complete factorization of the integer N − 1. If
for each prime factor pi there exists an ai such that N fulfills aN−1

i ≡ 1 (mod N), but

a
(N−1)/pi

i 6≡ 1 (mod N), then N is prime.

Theorem 3.2 Let N + 1 =
∏

pαi

i be the complete factorization of the integer N + 1. Let

U be the set of Lucas sequences {U
(i)
k } with the given discriminant D for which the Jacobi

symbol (D/N) = −1. If for each pi there exists a Lucas sequence in U such that N is a

divisor of U
(i)
N+1, but not a divisor of U

(i)
(N+1)/pi

, then N is prime.
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Remark: Let P and Q be integers with the discriminant D := p2 − 4Q 6= 0. Then the
Lucas sequences are defined recursively by

Uk+2 = PUk+1 −QUk, k ≥ 0, U0 = 0, U1 = 1, (6)

and

Vk+2 = PVk+1 −QVk, k ≥ 0, V0 = 2, V1 = P. (7)

A simple method to compute large terms of a given Lucas sequence is presented in the paper
of Brillhart et al. ([1, pp. 627–628]) as well.

With this we can settle the primality of a70.

Theorem 3.3 The number a70 is prime.

Proof: We have
a70 + 1 = 2 · 3 · 11 · 471193 · p93,

where

p93 = 276666865434658243552094076373979681579672293479713404939810982616341330249301822966628239979

is a 93-digit probable prime. If we assume that p93 is prime, the claim follows with theorem
3.2 by setting D = −3. Then the divisibility criteria hold for the factor 2 with P = Q = 1,
for the factor 3 with P = Q = 3 and for the other three factors with P = 5 and Q = 7.

So, we need the primality of p93. To reach this goal, we consider the factorization

p93 − 1 = 2 · 3 · 167 · 263 · 457 · 8377 · p81

with a 81-digit probable prime

p81 = 274238840573141405175902476234412618955309935656050257207045603051300234586527927.

Again, if we assume that p81 is prime the primality of p93 follows with ai = 3 for all i = 1, . . . , 7
in theorem 3.1.

The next step consists in proving the primality of p81. For this, we apply theorem 3.1
again with the base ai = 3 to

p81 − 1 = 2 · q81

where

q81 = 137119420286570702587951238117206309477654967828025128603522801525650117293263963

is another 81-digit probable prime. A final step shows the primality of q81. This follows with
theorem 3.2 and

q81 + 1 = 22 · 3 · 13 · 29 · 4793 · 15227 · 20422008121 ·

·688270315985433959 · 28276698587131486301 ·

·1044884793638901916109.

These final factors are small enough to be easily proved prime. Here again a discriminant
D = −3 gives the wanted results with P = 5 and Q = 7 for all ten prime factors. ¤

The results of this section are summarized in Sloane’s OEIS A070213 [4].
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Remark: The sequence can be generalized to bn := nbn−1 + 1 by defining another initial
term b1 := b ∈ N. Then we can establish the relation

bn = bn! + an.

Therefore the sieve method will work for the generalized case too. How many primes are
there in the respective sequences?

4 Complete factorization of the first fifty terms

The following factorization results were obtained using Lenstra’s elliptic curve method [3].
The factors found were furthermore tested for their primality again using trial division up
to the square root. All computations in this sections were realized in almost 100 hours of
CPU time on two Pentium-I computers. The results can be found in Tables 3 and 4.

5 Conclusions and conjectures

Using a heuristic argument similar to those used, e.g., by Hardy and Wright ([2, p. 15])
for Fermat numbers, or by Wagstaff [5] for Mersenne numbers, we can formulate some
conjectures about the asymptotic behavior of prime numbers in sequence A056542.

In order to do this, we extended Table 1 up to the first 10, 000 primes by steps of 1000
primes, noting only the number N(p) of n in the interval 1 < n < p, resp. p ≤ n < 2p− 1,
for which p divides an and computed the averages

σ(x) =

∑

p≤xN(p)

2π(x)

with these data. Here π(x) = #{p ∈ P : p ≤ x} denotes the prime number counting function.
These results, which are given in Table 2, suggest that the average number of such n

taken over all primes p less than a given x is approximately equal to 1, which might indicate
that σ(x)→ 1 for x→∞.

π(x) = 1000 2000 3000 4000 5000
1 < n < p 1.019 1.024 1.006 1.005 1.000
p ≤ n < 2p 0.973 1.001 1.005 1.003 1.010
σ(x) = 0.996 1.013 1.006 1.004 1.005
π(x) = 6000 7000 8000 9000 10000

1 < n < p 0.998 0.998 0.990 0.994 0.986
p ≤ n < 2p 1.004 1.004 1.008 1.005 0.999
σ(x) = 1.001 1.001 0.999 1.000 0.993

Table 2: The averages of terms an that are divides by primes p (rounded)
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If we assume that this is the case, this would say that, on average, a prime p divides
an (for large n) with probability 1

p
. But this would mean that the terms of our sequence

behave just like “typical” numbers of the same size, and hence are just as likely to be prime.
So, according to the famous Prime Number Theorem, the probability for any given an to be
prime, would be 1

ln(an)
. Applying the well known Stirling formula to expression (2), we get

ln(an) ≈ ln(n!) ≈ A · n ln(n)

with a constant A < 1. If this all is true, there are two consequences worth mentioning. On
the one hand, the number P (x) of prime terms an with indices n ≤ x would be

P (x) ≈ A−1

bxc
∑

n=2

1

n ln(n)
. (8)

Hence, as the series in (8) diverges for x → ∞, there would be infinitely many prime
terms in sequence A056542.

On the other hand, having a glance at the known prime terms suggests that A−1 ≈ 2.3.
Using this parameter, solving the equation P (x) = 6 would predict a sixth prime term for an
index n ≈ 780. A seventh prime term is expected to accure with the index n ≈ 33700. So,
there should be a sixth prime in the interval 1020 ≤ n < 33700 (and more likely it should
be found short after the index 1020), if we guessed right. Nevertheless, prime terms an look
like being very rare after all.
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n factor(an)

2 1
3 22

4 17
5 2 · 43
6 11 · 47
7 22 · 5 · 181
8 28961
9 2 · 52 · 13 · 401
10 67 · 38903
11 23 · 3583939
12 5 · 68811629
13 2 · 2236377943
14 5 · 661 · 2243 · 8447
15 22 · 234819684019
16 349 · 8627 · 4991479
17 2 · 5 · 13 · 281 · 6993808273
18 4598708691828421
19 25 · 54 · 1579 · 12409 · 222967
20 1747509302894800001
21 2 · 107 · 347 · 461 · 1071999585919
22 5 · 48259 · 3345901481329483
23 22 · 13 · 910619 · 392147324904187
24 5 · 1481 · 41813 · 287851 · 5000304083
25 2 · 13 · 19 · 103 · 257 · 852007193230945949
26 183644977 · 1577374632467830901
27 23 · 5 · 195531926467458324861473137
28 119551 · 373670483 · 4902230134153477
29 2 · 5 · 635087697166304639150064748979
30 13 · 127 · 13511681593 · 8540798558040523807

Table 3: Factorization of an for n ≤ 30
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n factor(an)

31 22 · 6793 · 6623384304659 · 32818224968844709
32 52 · 157 · 329993 · 145922492103580626511308757
33 2 · 19 · 37 · 1549 · 2863807538994480264037164291179
34 5 · 330679 · 1341707 · 2303179 · 41504719765549572671
35 24 · 1572242101 · 295044907934065408376485520711
36 13 · 179 · 3389 · 75793 · 2334397613 · 191495312948444419631
37 2 · 5 · 23 · 1407281 · 30543801770391751614358741298340689
38 13 · 1307 · 22110390324250839623066317140029038949371
39 22 · 5 · 47 · 373 · 1913 · 73181 · 46498981·

·6419283046588931936893783
40 283 · 2207 · 452087 · 27443371 · 10961524829·

·6899549447021827237
41 2 · 23 · 67273 · 855946423 · 9984786337·

·908531145956175717351149
42 5 · 51787 · 59539 · 1306501657·

·50103819744552590244570709074233
43 23 · 13 · 674672980073 · 1673513136729517·

·369560688696281328844439
44 52 · 19 · 487 · 833893·

·9898316305621422245445307761627219210689201
45 2 · 31 · 503621 · 5349857·

·514362201527447374617886292288269244810309
46 613981 · 10339597·

·622595573454047871500475953343208441017551021
47 22 · 5 · 1740373 · 25196940506279·

·211807964674353752193208733585193464069
48 262066528371751897 · 22100157339031818463

·1539560451909744956702071
49 2 · 5 · 13 · 36948815219 · 5938235313533·

·15317873368507025363816947275444788447
50 31 · 293 · 206506391500393 · 31126232036943157·

·374179843710832651624027922347

Table 4: Factorization of an for 30 < n ≤ 50
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