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Abstract

We examine the parity of some statistics on lattice paths and Laguerre configura-
tions, giving both algebraic and combinatorial treatments. For the former, we evaluate
g-generating functions at ¢ = —1; for the latter, we define appropriate parity-changing
involutions on the associated structures. In addition, we furnish combinatorial proofs
for a couple of related recurrences.

Introduction

To establish the familiar result that a finite nonempty set has equally many subsets of odd
and of even cardinality it suffices either to set ¢ = —1 in the generating function

>, =" (Z) ¢ =(1+q", (1.1)

SCln] k=0
where [n] := {1,...,n}, or to observe that the map
1 if 1 ;
I (1.2)
S—{1}, ifles,

is a parity changing involution of 21"



With this simple example as a model, we analyze the parity of a well known statistic
on lattice paths, as well as two statistics on what Garsia and Remmel [ call Laguerre
configurations, i.e., distributions of labeled balls to unlabeled, contents-ordered boxes. These
statistics have in common the fact that their generating functions all involve g-binomial
coefficients.

In §f] we evaluate such coefficients and their sums, known as Galois numbers, when
g = —1, giving both algebraic and bijective proofs. We also give a bijective proof of a
recurrence for Galois numbers, furnishing an elementary alternative to Goldman and Rota’s
proof by the method of linear functionals [[]]. In § we carry out a similar evaluation of
the two types of g-Lah numbers that arise as generating functions for the aforementioned
Laguerre configuration statistics. In addition, we supply a combinatorial proof of a recurrence
for sums of Lah numbers.

The notational conventions of this paper are as follows: N := {0,1,2,...}, P:={1,2,... },
0] := @, and [n| := {1,...,n} for n € P. If ¢ is an indeterminate, then 0, := 0
ng:=1+q+---+¢"'ifneP, O}I =1, né =142, ng if n € P, and

I

|

"9 if0<k<n;
(Z> = BUEEET (13)
a 0, ifk<0or0<n<k.

Our notation in ([) for the ¢-binomial coefficient, which agrees with Knuth’s [[], has the
advantage over the traditional notation m that it can be used to reflect particular values of
the parameter q.

2 A Statistic on Lattice Paths

Let A(n, k) denote the set of (minimal) lattice paths from (0, 0) to (k,n—k), where 0 < k < n.
Each A € A(n, k) corresponds to a sequential arrangement ¢; - - - t,, of the multiset {1’“, 2""“},
with 1 representing a horizontal and 2 a vertical step. Hence, |A(n, k)| = (Z) Moreover,
since the area () subtended by A is equal to the number of inversions in the corresponding
word (i.e., the number of ordered pairs (4, j) with 1 <14 < j < n such that ¢; > ¢,), and since
the ¢g-binomial coefficient is the generating function for the statistic that records the number
of inversions in such words [[(, Prop. 1.3.17], it follows that

n
Y W= <k> 7 (2.1)
AEA(n,k) a

a result that Berman and Fryer [[], p. 218] attribute to Polya. With

An) = |J An.k), (2.2)

0<k<n

it follows that

S W = Gyn) = ; (Z)q (2.3)



The polynomials G,(n) have been termed Galois numbers by Goldman and Rota [].
Let Ay(n) := {X € A(n) : «a(\) = r (mod 2)}, and let A.(n, k) == A(n,k) N A.(n).
Clearly,

(Z) T [Ao(n, k)| — |A1(n, k), (2.4)

and

G1(n) = [Ao(n)] = [As(n)]. (2.5)

In evaluating (2.4) and (P.f]) we shall employ several alternative characterizations of (Z)q,
namely, the recurrence

n n—1 pfn—1
= Vn,k € P 2.6

with (g)q = 0p0 and (g)q = 00, V 1, k € N, the generating function

n >0

and the summation formula

(k) _ Z gtttk (2.8)
q

do+di+-+dr=n—k
d;eN

See [[[T], pp. 201-202] for further details.
Setting ¢ = —1 in (P.7)) and treating separately the even and odd cases for k yields

Theorem 2.1. If0 < k < n, then

n 0, if n is even and k is odd;
k = (Ln/?J i . (2.9)
. Lk/2J)’ otherwise.
A straightforward application of (.7) yields
Corollary 2.1.1. For alln € N,
G_1(n) =221 (2.10)

The above results are well known and apparently very old. But the following bijective
proofs of (P.9) and (R.10), which convey a more visceral understanding of these formulas,
are, so far as we know, new.



Bijective proofs of Theorem 2.1 and Corollary 2.1.1.

As above, we represent a lattice path A € A(n) by a word t1ts - - - t,, in the alphabet {1, 2},
recalling that () is equal to the number of inversions in this word, which we also denote

by a(A). By (1), formula (P-I7) asserts that
[Ao(n)| — [Ar(n)] = 272, (2.11)

Ao(n) having cardinality
n). Let Aj(n) comprise

Our strategy for proving (P-11)) is to identify a subset Ad (n)
2[7/21 " along with an a-parity changing involution of A(n) — A
those words \ = tyty - - - t,, such that for i = 1,2,..., [n/2],

of
o (

t2i71t2i =11 or 22. (212)

Clearly, AJ(n) C Ag(n) and |Af(n)| = 221 If X € A(n) — Af(n), let iy be the smallest
index for which (.19) fails to hold and let X" be the result of switching #9;,—1 and ty;, in A.
The map A +— X is clearly an a-parity changing involution of A(n) — A (n), which proves
(E-10)) and hence (P.10).

By (P-9), formula (P-]) asserts that

0, if n is even and k is odd;

(Hﬂlﬁj), otherwise.
To show (Z-19), let Af(n, k) = Af(n) N A(n, k). The cardinality of AJ(n, k) is given by the
right-hand side of (P-13)), and the restriction of the above map to A(n, k) — A (n, k) is again
an involution and inherits the parity changing property. This proves (P-13), and hence (£9).
0

[Ao(n, k)| = [As(n, B)| = { (2.13)

In tabulating the numbers (Z)_l it is of course more efficient to use the recurrence

(Z)_l N (Z:D T (_1)k(n;1) R (2.14)

representing the case ¢ = —1 of (£0).
Comparison of (P) with an evaluation of () _, based on (E) yields a pair of interesting
identities.

Corollary 2.1.2. If 1 < m < [n/2], then

Sy ("N (T = (M), (215)

J=0

and if 0 <m < [(n —1)/2], then

n_QZm_l(—w m+ 35\ (n=m-j-1) _ o, i ts even; (2.16)
> o . ("/2)),if n is odd. '



Proof. Setting ¢ = —1 and k = 2m in (P.) yields

n
— _1)datdsttdam—1
(2m> -1 Z 1)

do+di1+--+dam=n—2m
n—2m . .
_ Z(_l)j m+j7—1\/n—m—y
(j=d1+d3++dam—1) =0 m—1 m ’

which implies (E.13) by (R.9), upon independently choosing the d;’s of even index, which
sum to n — 2m — j. Setting k = 2m + 1 yields

n
= -1 di+d3+-+dom+1
(an'1) >

do+di+-+damr1=n—2m—1

n—2m—1 . .
(j=d1+d3+-+dam+1) F m m ’

=0

which implies (£-10) by (£9). O
Corollary P11 above can also be proved by induction from the case ¢ = —1 of the

following recurrence for G,(n):

Theorem 2.2. For all n € P,
Gy(n+1)=2G,(n)+ (¢" —1)G4(n — 1), (2.17)
where G,(0) =1 and G4(1) = 2.

Proof. Let a(n,i) := {A € A(n) : a(\) =i}|, wheren € N and a(n,i) := 0if ¢ < 0. Showing
(BI7) is equivalent to showing that

a(n+1,1) = 2a(n,i) + a(n — 1,7 —n) — a(n — 1,17)

= a(n,i) + (a(n,i) —a(n — 1,7)) + a(n — 1,7 —n) (2.18)

for all @ € N. As above, we represent a lattice path A € A(n + 1) by a word tyty---t,,1 in
the alphabet {1, 2}, recalling that «(\) is equal to the number of inversions in this word.
The term a(n + 1,4) thus counts all words of length n + 1 with ¢ inversions. The term
a(n,i) counts the subclass of such words for which ¢, = 2. The term a(n,i) — a(n — 1,17)
counts the subclass of such words for which ¢t; = ¢,,; = 1. For deletion of t; is a bijection
from this subclass to the class of words ujus - - - u,, with i inversions and u,, = 1, and there
are clearly a(n,i) — a(n — 1,i) words of the latter type. Finally, the term a(n — 1,i — n)
counts the subclass of words for which ¢; = 2 and ¢,,7; = 1. For deletion of ¢; and ¢, is
a bijection from this subclass to the class of words vyvy - - - v,—; with i —n inversions (both
classes being empty if i < n). O

The above proof provides an elementary alternative to Goldman and Rota’s proof of
(B-I7) using the method of linear functionals [[I].
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3 Two Statistics on Laguerre Configurations

Let L(n,k) denote the set of distributions of n balls, labeled 1,2,...,n, among k unla-
beled, contents-ordered boxes, with no box left empty. Garsia and Remmel [] term such
distributions Laguerre configurations. If L(n,k) := |L(n, k)|, then L(n,0) = d,0, ¥V n € N,
L(n,k)=0if 0< n <k, and

| /n—1
Ln, k) = ;;(Z > 1<k<n (3.1)

The numbers L(n, k) are called Lah numbers, after Ivo Lah [[J], who introduced them as the
connection constants in the polynomial identities

z(x+1)---(x+n—1) ZLnk (x—=1)--(z—k+1), Vn € N. (3.2)

From (B-])) it follows that

3 L(n, E 1(1fx>k, Vk € N. (3.3)

n>k

The Lah numbers also satisfy the recurrence relations
Ln,k)=Ln—1,k—1)+(n+k—1)L(n—1,k), Vn, k € P, (3.4)

and
L(n,k) = %L(n ~1,k—1)+nLn—1k), VnkeP. (3.5)

The set L(n) = U, L(n,k) comprises all distributions of n balls, labeled 1,2,...,n,
among n unlabeled, contents-ordered boxes. If L(n) := |£(n)|, it follows from (B.3]) that

> L(n) z/(1=2), (3.6)

n>0
and differentiating (B.0) yields [[] p. 171], [}, A000262]
Theorem 3.1. For alln € P,
Lin+1)=2n+1)L(n) — (n* —n)L(n — 1), (3.7)
where L(0) = L(1) = 1.
Combinatorial proof of Theorem 3.1.

We'll argue that the cardinality of £(n + 1) is given by the right-hand side of (B.7) when
n > 1. Let us represent members of £(m) by partitions of [m] in which the elements of each
block are ordered. As there are clearly L(n) members of £(n + 1) in which the singleton
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{n + 1} occurs, we need only show that the members of £(n + 1) in which the singleton
{n + 1} doesn’t occur number 2nL(n) —n(n — 1)L(n — 1).

Suppose A € L(n) and consider the 2n members of L(n + 1) gotten from A by inserting
n+ 1 either directly before or directly after an element of [n] within A. Then 2nL(n) double
counts members of £(n + 1) for which n + 1 is neither first nor last in its block and counts
once all other members of £(n + 1) for which n+1 goes in a block with at least one element
of [n]. But there are n(n—1)L(n—1) configurations of the former type as seen upon choosing
an element j of [n] to directly follow n 4+ 1 and then inserting n + 1, j directly after an ele-
ment of [n]—{7} in a Laguerre configuration of the set [n|—{j}. O

In what follows, we consider two statistics on Laguerre configurations.

3.1 The Statistic

Given a distribution § € L(n, k), let us represent the ordered contents of each box by a word
in [n], and then arrange these words in a sequence W7, ..., W} in decreasing order of their
least elements. Replacing the commas in this sequence by zeros and counting inversions in
the resulting single word yields the value i(0), i.e.,

i(6) = the number of inversions in W;0W50 - - - 0Wj,_10W}. (3.8)
As an illustration, for the distribution § € £(9,4) given by

13,4,9] |81 [2,6] |7,5], (3.9)

we have () = 35, the number of inversions in the word 750349026081.
The statistic ¢ is due to Garsia and Remmel [[J], who show that the generating function

|
g ' (71 1<k< 1
Z q k‘;(k_l)q’ IR (3' O)

deL(n,k)
Generalizing (B.4]), the ¢-Lah number L, (n, k) satisfies the recurrence
Ly(n, k) =q" 2L, (n — 1,k — 1)+ (n+k — 1), Ly(n — 1,k),Yn, k € P. (3.11)

Garsia and Remmel also show that

3

Tox+1)- - (x+n—-1),=> Lynk)ry(x—1), - (x —k+1), (3.12)

where z, := (¢ — 1)/ (¢ — 1). It seems not to have been noted that (B.IJ) is equivalent to

2(gr+1y) - (¢ e+ (n— 1), ZL (n, k)z ( >(%> (3.13)

which generalizes (B-3).



Theorem 3.2. If1 < k <n, then
L,l(n, k’) = 5n,k- (314)

Proof. Formula (B-17) is an immediate consequence of (B-I]) and (P-7), upon considering even
and odd cases for n, as j_; = 0 if j is even (cf. [{]). For a bijective proof of (B.14), first note
that L_q(n, k) = |Lo(n, k)| — |L1(n, k)|, where L,(n, k) := {6 € L(n,k) : i(0) =r (mod 2)}.
Now L(n,n) consists of a single distribution 0, with i(dJ) = n(n — 1) = the number of
inversions in n0(n — 1)0---0201, whence |Lo(n,n)] = 1 and |Li(n,n)] =0. f1 <k <n
and 6 € L(n,k) gives rise to the sequence W7y, ..., Wy, then locate the leftmost word W;
containing at least two letters and interchange its first two letters. The resulting map is a
parity changing involution of L(n, k), whence |Ly(n, k)| — [£1(n, k)| = 0. O

Remark. Note that L(n,1) = S, the set of permutations of [n], and so (B.1() is a general-
ization of the well known result that

3 ¢ ™ =, (3.15)

71'6877.

and (B.14)) a generalization of the fact that among the permutations of [n], if n > 2, there are
as many with an odd number of inversions as there are with an even number of inversions.

3.2 The Statistic w

As above, given § € L(n, k), we represent the ordered contents of each box by a word in [n].
Now, however, we arrange these words in a sequence W7, ..., W} in increasing order of their
initial elements, defining w(J) by the formula

k
@(0) =Y (i = (Wil = 1), (3.16)

i=1
where |W;| denotes the length of the word W;. As an illustration, for the distribution
d € £(9,4) given above by (B.9), we have Wy, Wy, W3, W, = 26, 349, 75, 81 and w(d) = 7.

The statistic w is an analogue of a now well known partition statistic first introduced by

Carlitz [[] (see also [[L1]).

Theorem 3.3. The generating function

= ; l/n—1
L,(n, k)= Z ¢ = %(Z B 1> : 1<k <n. (3.17)
seL(n,k) ’ q

Proof. In running through § € L(n,k), we are running through all sequences of words
Wi, ..., W, whose initial elements form an increasing sequence, and such that |W;| = n,,

with " n; = n. For fixed such ny, ..., ny, there are (})(n—k)! such sequences, (}) being the



number of ways to choose and place the initial elements, and (n — k)! the number of ways
to place the remaining elements. By (B.10) and (B.g), it follows that

w5 _ (T _ 0(n1—1)+1(na—1)+-+(k—1)(np—1)
S = (w3 g k

deL(n,k ni+-+ng=n
n; €P
_n! (n — 1)
kKI\k—-1),
[
From (B.17) and (P.7), it follows that
~ " 1 zk
Lyn,k)— = — . Vk e N 3.18
2 Q(n> )n| k! H (1_(]]1_)7 ) ( )
"z 0<j<h—1
which generalizes (§7). The g-Lah number L,(n, k) also satisfies the recurrence
L,(nk) = %qu — 1,k —1)+ng"Ly(n — 1,k), (3.19)
which generalizes (B-1).
Theorem 3.4. If1 < k <n, then
~ 0, if nis odd and k is even;
L_i(n, k) = {n n—1)/2 - (3.20)
k—!!(ﬁk_lzfﬁ), otherwise.

Proof. This follows immediately from (BI7) and (P29), but the following bijective proof
yields a deeper insight into this result: with £,(n,k) := {0 € L(n, k) : @w(d) =r (mod 2)},
we have L_y(n, k) = |Lo(n, k)| — |£1(n, k)|. To prove (BZ0) it thus suffices to identify a
subset L (n, k) of Lo(n, k) such that

L (n, k)| = {2: e if n is (?dd and k is even; (3.21)
H(L(kfl)/QJ)7 otherwise,
along with a parity changing involution of L(n,k) — Ld (n, k).
The set £ (n, k) consists of those distributions whose associated sequences Wy, W, ..., Wy
satisfy
|Wai—1| is odd and |[Wy| =1, 1 << |[k/2]. (3.22)

Clearly, L (n,k) = @ if n is odd and k is even. In the remaining cases, the factor n!/k!
arises as the product (Z) (n —k)!, just as it does in the proof of Theorem B3, and

(K3l = oo S s,

and ny; =1, 1 <i < W2J}(, (3.23)



upon halving compositions of an integer whose parts are all even.

Suppose now that 6 € L(n, k) — L (n, k) is associated with the sequence W1, ..., W}, and
that ig is the smallest index for which (B227)) fails to hold. If |[Wy,,_1]| is even, take the last
member of Wy, 1 and place it at the end of Wy,,. If [Wo;, 1| is odd, whence |Wy;,| > 2, take
the last member of Wy, and place it at the end of Wy;,_;. The resulting map is a parity
changing involution of £(n, k) — L (n, k). O

In tabulating the numbers L_;(n, k) it is of course more efficient to use the recurrence
L i(n,k) = %[N/_l(n —1Lk—1)+ (=D nl_i(n—1,k), (3.24)

representing the case ¢ = —1 of (B.19). This yields the following table for 0 < k < n < 8:

Table 3.1: The numbers E_l(n, k) for 0 <k <n <8.

| |[k=0] 1] 2] 3[ 4] 5] 6] 7] 8]
n=>0 1
1 0 1
2 0 2 1
3 0 6 1
4 0 24 12 4 1
5 0 120 0 40 0 1
6 0 720 360 240 60 6 1
7 0| 5040 0] 2520 0| 126 0 1
8 0 | 40320 | 20160 | 20160 | 5040 | 1008 | 168 8 1

The row sums of Table B-]] correspond to the quantities L_1(n) [[J, A089656], where
Lyn):= Y ¢"O=>"Ly(n,k). (3.25)

0eL(n) k

We have been unable to find a simple closed form or recurrence for L_;(n). However, using
the case ¢ = —1 of formula (B-1J), it is straightforward to show that

. n V1= 22
Z L,l(n)x—' = cosh ——— + "~ sinh ————. (3.26)

n — x? 1—x — x?
"o 1—2 1—2

The values of L_;(n) for 0 < n < 10 are as follows: 1, 1, 3, 7, 41, 161, 1387, 7687, 86865,
623233, 8682131.

4 Some Concluding Remarks

Reductions from g-binomial coefficients to ordinary binomial coefficients similar to those seen
when ¢ = —1 occur with higher roots of unity. For example, substituting ¢ = p = ’HT‘@, a
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third root of unity, and ¢ = 4, a fourth root of unity, into (P.7]) and considering cases for k
mod 3 and mod 4 yields

Theorem 4.1. If0 < k < n, then

(

ng})’ ifn=k (mod3) or k=0 (mod 3);
@ =q /() fn=2 (mod3) and k=1 (mod 3) (4.1
p
0, otherwise.

\

and

Theorem 4.2. If0 < k <n, then

(
(Bz;:ﬂ)a ifn=k (mod4) or k=0 (mod 4);
(n> B i), ifn=3 (mod4) and k=1,2 (mod 4); )
Bl a+a (), ifn=2 (mod4) and k=1 (mod 4);
0, otherwise.
x

Bijective proof of Theorem 4.1.

We modify the combinatorial argument used to establish (P-). Instead of pairing mem-
bers of A(n, k) of opposite a-parity, we partition a portion of A(n, k) into tripletons each of
whose members have different « values mod 3. Each such tripleton contributes 0 towards
the sum (Z)p = D xeA(mk) p*W since 1+ p + p% = 0.

As before, we represent lattice paths by words in {1,2}. Let A’(n,k) consist of those
words A = tity - - t, in A(n, k) satisfying

tgl',Q = tgl',l = tgl', 1 < 1 < Ln/3j (43)

In all cases, the right-hand side of ([[]]) above gives the net contribution of A’(n, k) towards
(Z)p; note that members of A’'(n, k) may end in either 12 or 21 if n =2 (mod 3) and k =1
(mod 3), hence the 1 + p = —p? factor in this case.

Suppose now that A = tyty - - t, € A(n, k) — AN (n, k), with iy the smallest i for which ([[3))
fails to hold. Group the three members of A(n, k) — A’(n, k) gotten by circularly permuting
t3io—2, t3io—1, and ts;, within A = tyt5---t,, leaving the rest of A undisturbed. Note that
these three members of A(n,k) — A’(n, k) have different o values mod 3, which establishes

(ED). 0

A similar proof, which involves partitioning members of A(n, k) according to their inv
values mod 4, applies to ([L.F), the details of which we leave as an exercise for interested
readers.

11



If m € Pand w = e*/™ a primitive m™ root of unity, examining (27) when ¢ = w

reveals that (’,;”)w is of the form ﬁ(kgm) for all n and k, where 3 is some complex number
depending on the values of n and k£ mod m. Even though 3 can in general be expressed in

terms of symmetric functions of certain m! roots of unity, there does not appear to be a
simple closed form for (})  which generalizes (F), ({CT]), and (). Some particular cases
are easily ascertained. For example, when m divides n, we have from (£.7),

(n) _ {(252), if m divides k; (4.4)

k 0, otherwise.

When m is a prime, the combinatorial argument used for ([[]]) readily generalizes to ([L7).
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