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Abstract

We examine the parity of some statistics on lattice paths and Laguerre configura-

tions, giving both algebraic and combinatorial treatments. For the former, we evaluate

q-generating functions at q = −1; for the latter, we define appropriate parity-changing
involutions on the associated structures. In addition, we furnish combinatorial proofs

for a couple of related recurrences.

1 Introduction

To establish the familiar result that a finite nonempty set has equally many subsets of odd
and of even cardinality it suffices either to set q = −1 in the generating function

∑

S⊆[n]
q|S| =

n
∑

k=0

(

n

k

)

qk = (1 + q)n, (1.1)

where [n] := {1, . . . , n}, or to observe that the map

S 7→
{

S ∪ {1}, if 1 /∈ S;

S − {1}, if 1 ∈ S,
(1.2)

is a parity changing involution of 2[n].

1



With this simple example as a model, we analyze the parity of a well known statistic
on lattice paths, as well as two statistics on what Garsia and Remmel [3] call Laguerre
configurations, i.e., distributions of labeled balls to unlabeled, contents-ordered boxes. These
statistics have in common the fact that their generating functions all involve q-binomial
coefficients.
In §2 we evaluate such coefficients and their sums, known as Galois numbers, when

q = −1, giving both algebraic and bijective proofs. We also give a bijective proof of a
recurrence for Galois numbers, furnishing an elementary alternative to Goldman and Rota’s
proof by the method of linear functionals [4]. In §3 we carry out a similar evaluation of
the two types of q-Lah numbers that arise as generating functions for the aforementioned
Laguerre configuration statistics. In addition, we supply a combinatorial proof of a recurrence
for sums of Lah numbers.
The notational conventions of this paper are as follows: N := {0, 1, 2, . . . }, P := {1, 2, . . . },

[0] := ∅, and [n] := {1, . . . , n} for n ∈ P. If q is an indeterminate, then 0q := 0,

nq := 1 + q + · · ·+ qn−1 if n ∈ P, 0!q := 1, n!q := 1q2q · · ·nq if n ∈ P, and

(

n

k

)

q

:=







n!q
k!q(n−k)!q

, if 0 ≤ k ≤ n;

0, if k < 0 or 0 ≤ n < k.

(1.3)

Our notation in (1.3) for the q-binomial coefficient, which agrees with Knuth’s [5], has the
advantage over the traditional notation

[

n
k

]

that it can be used to reflect particular values of
the parameter q.

2 A Statistic on Lattice Paths

Let Λ(n, k) denote the set of (minimal) lattice paths from (0, 0) to (k, n−k), where 0 6 k 6 n.
Each λ ∈ Λ(n, k) corresponds to a sequential arrangement t1 · · · tn of the multiset

{

1k, 2n−k
}

,
with 1 representing a horizontal and 2 a vertical step. Hence, |Λ(n, k)| =

(

n
k

)

. Moreover,
since the area α(λ) subtended by λ is equal to the number of inversions in the corresponding
word (i.e., the number of ordered pairs (i, j) with 1 6 i < j 6 n such that ti > tj), and since
the q-binomial coefficient is the generating function for the statistic that records the number
of inversions in such words [10, Prop. 1.3.17], it follows that

∑

λ∈Λ(n,k)
qα(λ) =

(

n

k

)

q

, (2.1)

a result that Berman and Fryer [1, p. 218] attribute to Polya. With

Λ(n) :=
⋃

06k6n

Λ(n, k), (2.2)

it follows that
∑

λ∈Λ(n)
qα(λ) = Gq(n) :=

n
∑

k=0

(

n

k

)

q

. (2.3)
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The polynomials Gq(n) have been termed Galois numbers by Goldman and Rota [4].
Let Λr(n) := {λ ∈ Λ(n) : α(λ) ≡ r (mod 2)}, and let Λr(n, k) := Λ(n, k) ∩ Λr(n).

Clearly,
(

n

k

)

−1
= |Λ0(n, k)| − |Λ1(n, k)|, (2.4)

and
G−1(n) = |Λ0(n)| − |Λ1(n)|. (2.5)

In evaluating (2.4) and (2.5) we shall employ several alternative characterizations of
(

n
k

)

q
,

namely, the recurrence

(

n

k

)

q

=

(

n− 1
k − 1

)

q

+ qk
(

n− 1
k

)

q

, ∀n, k ∈ P, (2.6)

with
(

n
0

)

q
= δn,0 and

(

0
k

)

q
= δk,0, ∀ n, k ∈ N, the generating function

∑

n>0

(

n

k

)

q

xn =
xk

(1− x)(1− qx) · · · (1− qkx)
, ∀k ∈ N, (2.7)

and the summation formula
(

n

k

)

q

=
∑

d0+d1+···+dk=n−k
di∈N

qd1+2d2+···+kdk . (2.8)

See [11, pp. 201–202] for further details.
Setting q = −1 in (2.7) and treating separately the even and odd cases for k yields

Theorem 2.1. If 0 6 k 6 n, then

(

n

k

)

−1
=

{

0, if n is even and k is odd;
(bn/2c
bk/2c

)

, otherwise.
(2.9)

A straightforward application of (2.9) yields

Corollary 2.1.1. For all n ∈ N,

G−1(n) = 2
dn/2e. (2.10)

The above results are well known and apparently very old. But the following bijective
proofs of (2.9) and (2.10), which convey a more visceral understanding of these formulas,
are, so far as we know, new.

3



Bijective proofs of Theorem 2.1 and Corollary 2.1.1.

As above, we represent a lattice path λ ∈ Λ(n) by a word t1t2 · · · tn in the alphabet {1, 2},
recalling that α(λ) is equal to the number of inversions in this word, which we also denote
by α(λ). By (2.5), formula (2.10) asserts that

|Λ0(n)| − |Λ1(n)| = 2dn/2e. (2.11)

Our strategy for proving (2.11) is to identify a subset Λ+0 (n) of Λ0(n) having cardinality
2dn/2e, along with an α-parity changing involution of Λ(n) − Λ+0 (n). Let Λ+0 (n) comprise
those words λ = t1t2 · · · tn such that for i = 1, 2, . . . , bn/2c,

t2i−1t2i = 11 or 22. (2.12)

Clearly, Λ+0 (n) ⊆ Λ0(n) and |Λ+0 (n)| = 2dn/2e. If λ ∈ Λ(n) − Λ+0 (n), let i0 be the smallest
index for which (2.12) fails to hold and let λ′ be the result of switching t2i0−1 and t2i0 in λ.
The map λ 7→ λ′ is clearly an α-parity changing involution of Λ(n) − Λ+0 (n), which proves
(2.11) and hence (2.10).
By (2.4), formula (2.9) asserts that

|Λ0(n, k)| − |Λ1(n, k)| =
{

0, if n is even and k is odd;
(bn/2c
bk/2c

)

, otherwise.
(2.13)

To show (2.13), let Λ+0 (n, k) = Λ
+
0 (n) ∩ Λ(n, k). The cardinality of Λ+0 (n, k) is given by the

right-hand side of (2.13), and the restriction of the above map to Λ(n, k)−Λ+0 (n, k) is again
an involution and inherits the parity changing property. This proves (2.13), and hence (2.9).
¤

In tabulating the numbers
(

n
k

)

−1 it is of course more efficient to use the recurrence

(

n

k

)

−1
=

(

n− 1
k − 1

)

−1
+ (−1)k

(

n− 1
k

)

−1
, (2.14)

representing the case q = −1 of (2.6).
Comparison of (2.9) with an evaluation of

(

n
k

)

−1 based on (2.8) yields a pair of interesting
identities.

Corollary 2.1.2. If 1 6 m 6 bn/2c, then
n−2m
∑

j=0

(−1)j
(

m+ j − 1
m− 1

)(

n−m− j

m

)

=

(bn/2c
m

)

, (2.15)

and if 0 6 m 6 b(n− 1)/2c, then
n−2m−1
∑

j=0

(−1)j
(

m+ j

m

)(

n−m− j − 1
m

)

=

{

0, if n is even;
(bn/2c

m

)

, if n is odd.
(2.16)
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Proof. Setting q = −1 and k = 2m in (2.8) yields

(

n

2m

)

−1
=

∑

d0+d1+···+d2m=n−2m
(−1)d1+d3+···+d2m−1

=
(j=d1+d3+···+d2m−1)

n−2m
∑

j=0

(−1)j
(

m+ j − 1
m− 1

)(

n−m− j

m

)

,

which implies (2.15) by (2.9), upon independently choosing the di’s of even index, which
sum to n− 2m− j. Setting k = 2m+ 1 yields

(

n

2m+ 1

)

−1
=

∑

d0+d1+···+d2m+1=n−2m−1
(−1)d1+d3+···+d2m+1

=
(j=d1+d3+···+d2m+1)

n−2m−1
∑

j=0

(−1)j
(

m+ j

m

)(

n−m− j − 1
m

)

,

which implies (2.16) by (2.9).

Corollary 2.1.1 above can also be proved by induction from the case q = −1 of the
following recurrence for Gq(n):

Theorem 2.2. For all n ∈ P,

Gq(n+ 1) = 2Gq(n) + (q
n − 1)Gq(n− 1), (2.17)

where Gq(0) = 1 and Gq(1) = 2.

Proof. Let a(n, i) := |{λ ∈ Λ(n) : α(λ) = i}|, where n ∈ N and a(n, i) := 0 if i < 0. Showing
(2.17) is equivalent to showing that

a(n+ 1, i) = 2a(n, i) + a(n− 1, i− n)− a(n− 1, i)
= a(n, i) + (a(n, i)− a(n− 1, i)) + a(n− 1, i− n)

(2.18)

for all i ∈ N. As above, we represent a lattice path λ ∈ Λ(n + 1) by a word t1t2 · · · tn+1 in
the alphabet {1, 2}, recalling that α(λ) is equal to the number of inversions in this word.
The term a(n + 1, i) thus counts all words of length n + 1 with i inversions. The term

a(n, i) counts the subclass of such words for which tn+1 = 2. The term a(n, i) − a(n − 1, i)
counts the subclass of such words for which t1 = tn+1 = 1. For deletion of t1 is a bijection
from this subclass to the class of words u1u2 · · · un with i inversions and un = 1, and there
are clearly a(n, i) − a(n − 1, i) words of the latter type. Finally, the term a(n − 1, i − n)
counts the subclass of words for which t1 = 2 and tn+1 = 1. For deletion of t1 and tn+1 is
a bijection from this subclass to the class of words v1v2 · · · vn−1 with i− n inversions (both
classes being empty if i < n).

The above proof provides an elementary alternative to Goldman and Rota’s proof of
(2.17) using the method of linear functionals [4].
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3 Two Statistics on Laguerre Configurations

Let L(n, k) denote the set of distributions of n balls, labeled 1, 2, . . . , n, among k unla-
beled, contents-ordered boxes, with no box left empty. Garsia and Remmel [3] term such
distributions Laguerre configurations. If L(n, k) := |L(n, k)|, then L(n, 0) = δn,0, ∀ n ∈ N,
L(n, k) = 0 if 0 6 n < k, and

L(n, k) =
n!

k!

(

n− 1
k − 1

)

, 1 6 k 6 n. (3.1)

The numbers L(n, k) are called Lah numbers, after Ivo Lah [6], who introduced them as the
connection constants in the polynomial identities

x(x+ 1) · · · (x+ n− 1) =
n
∑

k=0

L(n, k)x(x− 1) · · · (x− k + 1), ∀n ∈ N. (3.2)

From (3.1) it follows that

∑

n>k

L(n, k)
xn

n!
=
1

k!

(

x

1− x

)k

, ∀k ∈ N. (3.3)

The Lah numbers also satisfy the recurrence relations

L(n, k) = L(n− 1, k − 1) + (n+ k − 1)L(n− 1, k), ∀n, k ∈ P, (3.4)

and
L(n, k) =

n

k
L(n− 1, k − 1) + nL(n− 1, k), ∀n, k ∈ P. (3.5)

The set L(n) :=
⋃

k L(n, k) comprises all distributions of n balls, labeled 1, 2, . . . , n,
among n unlabeled, contents-ordered boxes. If L(n) := |L(n)|, it follows from (3.3) that

∑

n>0

L(n)
xn

n!
= ex/(1−x), (3.6)

and differentiating (3.6) yields [7, p. 171], [9, A000262]

Theorem 3.1. For all n ∈ P,

L(n+ 1) = (2n+ 1)L(n)− (n2 − n)L(n− 1), (3.7)

where L(0) = L(1) = 1.

Combinatorial proof of Theorem 3.1.

We’ll argue that the cardinality of L(n+1) is given by the right-hand side of (3.7) when
n > 1. Let us represent members of L(m) by partitions of [m] in which the elements of each
block are ordered. As there are clearly L(n) members of L(n + 1) in which the singleton
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{n + 1} occurs, we need only show that the members of L(n + 1) in which the singleton
{n+ 1} doesn’t occur number 2nL(n)− n(n− 1)L(n− 1).
Suppose λ ∈ L(n) and consider the 2n members of L(n + 1) gotten from λ by inserting

n+1 either directly before or directly after an element of [n] within λ. Then 2nL(n) double
counts members of L(n + 1) for which n + 1 is neither first nor last in its block and counts
once all other members of L(n+1) for which n+1 goes in a block with at least one element
of [n]. But there are n(n−1)L(n−1) configurations of the former type as seen upon choosing
an element j of [n] to directly follow n + 1 and then inserting n + 1, j directly after an ele-
ment of [n]−{j} in a Laguerre configuration of the set [n]−{j}. ¤

In what follows, we consider two statistics on Laguerre configurations.

3.1 The Statistic i

Given a distribution δ ∈ L(n, k), let us represent the ordered contents of each box by a word
in [n], and then arrange these words in a sequence W1, . . . ,Wk in decreasing order of their
least elements. Replacing the commas in this sequence by zeros and counting inversions in
the resulting single word yields the value i(δ), i.e.,

i(δ) = the number of inversions in W10W20 · · · 0Wk−10Wk. (3.8)

As an illustration, for the distribution δ ∈ L(9, 4) given by

3, 4, 9 8, 1 2, 6 7, 5 , (3.9)

we have i(δ) = 35, the number of inversions in the word 750349026081.
The statistic i is due to Garsia and Remmel [3], who show that the generating function

Lq(n, k) :=
∑

δ∈L(n,k)
qi(δ) = qk(k−1)

n!q

k!q

(

n− 1
k − 1

)

q

, 1 6 k 6 n. (3.10)

Generalizing (3.4), the q-Lah number Lq(n, k) satisfies the recurrence

Lq(n, k) = qn+k−2Lq(n− 1, k − 1) + (n+ k − 1)qLq(n− 1, k),∀n, k ∈ P. (3.11)

Garsia and Remmel also show that

xq(x+ 1)q · · · (x+ n− 1)q =
n
∑

k=1

Lq(n, k)xq(x− 1)q · · · (x− k + 1)q, (3.12)

where xq := (q
x − 1)/ (q − 1). It seems not to have been noted that (3.12) is equivalent to

x(qx+ 1q) · · · (qn−1x+ (n− 1)q) =
n
∑

k=1

Lq(n, k)x

(

x− 1q
q

)

· · ·
(

x− (k − 1)q
qk−1

)

, (3.13)

which generalizes (3.2).
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Theorem 3.2. If 1 ≤ k ≤ n, then

L−1(n, k) = δn,k. (3.14)

Proof. Formula (3.14) is an immediate consequence of (3.10) and (2.9), upon considering even
and odd cases for n, as j−1 = 0 if j is even (cf. [8]). For a bijective proof of (3.14), first note
that L−1(n, k) = |L0(n, k)|− |L1(n, k)|, where Lr(n, k) := {δ ∈ L(n, k) : i(δ) ≡ r (mod 2)}.
Now L(n, n) consists of a single distribution δ, with i(δ) = n(n − 1) = the number of
inversions in n0(n − 1)0 · · · 0201, whence |L0(n, n)| = 1 and |L1(n, n)| = 0. If 1 6 k < n
and δ ∈ L(n, k) gives rise to the sequence W1, . . . ,Wk, then locate the leftmost word Wi

containing at least two letters and interchange its first two letters. The resulting map is a
parity changing involution of L(n, k), whence |L0(n, k)| − |L1(n, k)| = 0.

Remark. Note that L(n, 1) = Sn, the set of permutations of [n], and so (3.10) is a general-
ization of the well known result that

∑

π∈Sn

qi(π) = n!q, (3.15)

and (3.14) a generalization of the fact that among the permutations of [n], if n > 2, there are
as many with an odd number of inversions as there are with an even number of inversions.

3.2 The Statistic w̃

As above, given δ ∈ L(n, k), we represent the ordered contents of each box by a word in [n].
Now, however, we arrange these words in a sequence W1, . . . ,Wk in increasing order of their
initial elements, defining w̃(δ) by the formula

w̃(δ) =
k
∑

i=1

(i− 1)(|Wi| − 1), (3.16)

where |Wi| denotes the length of the word Wi. As an illustration, for the distribution
δ ∈ L(9, 4) given above by (3.9), we have W1, W2, W3, W4 = 26, 349, 75, 81 and w̃(δ) = 7.
The statistic w̃ is an analogue of a now well known partition statistic first introduced by
Carlitz [2] (see also [11]).

Theorem 3.3. The generating function

L̃q(n, k) :=
∑

δ∈L(n,k)
qw̃(δ) =

n!

k!

(

n− 1
k − 1

)

q

, 1 6 k 6 n. (3.17)

Proof. In running through δ ∈ L(n, k), we are running through all sequences of words
W1, . . . ,Wk whose initial elements form an increasing sequence, and such that |Wi| = ni,
with

∑

ni = n. For fixed such n1, . . . , nk, there are
(

n
k

)

(n−k)! such sequences,
(

n
k

)

being the
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number of ways to choose and place the initial elements, and (n − k)! the number of ways
to place the remaining elements. By (3.16) and (2.8), it follows that

∑

δ∈L(n,k)
qw̃(δ) =

(

n

k

)

(n− k)!
∑

n1+···+nk=n
ni∈P

q0(n1−1)+1(n2−1)+···+(k−1)(nk−1)

=
n!

k!

(

n− 1
k − 1

)

q

.

From (3.17) and (2.7), it follows that

∑

n>k

L̃q(n, k)
xn

n!
=
1

k!

xk
∏

06j6k−1
(1− qjx)

, ∀k ∈ N, (3.18)

which generalizes (3.3). The q-Lah number L̃q(n, k) also satisfies the recurrence

L̃q(n, k) =
n

k
L̃q(n− 1, k − 1) + nqk−1L̃q(n− 1, k), (3.19)

which generalizes (3.5).

Theorem 3.4. If 1 ≤ k ≤ n, then

L̃−1(n, k) =

{

0, if n is odd and k is even;
n!
k!

(b(n−1)/2c
b(k−1)/2c

)

, otherwise.
(3.20)

Proof. This follows immediately from (3.17) and (2.9), but the following bijective proof
yields a deeper insight into this result: with Lr(n, k) := {δ ∈ L(n, k) : w̃(δ) ≡ r (mod 2)},
we have L̃−1(n, k) = |L0(n, k)| − |L1(n, k)|. To prove (3.20) it thus suffices to identify a
subset L+0 (n, k) of L0(n, k) such that

|L+0 (n, k)| =
{

0, if n is odd and k is even;
n!
k!

(b(n−1)/2c
b(k−1)/2c

)

, otherwise,
(3.21)

along with a parity changing involution of L(n, k)− L+0 (n, k).
The set L+0 (n, k) consists of those distributions whose associated sequencesW1,W2, . . . ,Wk

satisfy
|W2i−1| is odd and |W2i| = 1, 1 6 i 6 bk/2c. (3.22)

Clearly, L+0 (n, k) = ∅ if n is odd and k is even. In the remaining cases, the factor n!/k!
arises as the product

(

n
k

)

(n− k)!, just as it does in the proof of Theorem 3.3, and

(b(n− 1)/2c
b(k − 1)/2c

)

=
∣

∣

∣

{

(n1, . . . , nk) :
∑

ni = n, n2i−1 is odd,

and n2i = 1, 1 6 i 6 bk/2c
}∣

∣

∣
, (3.23)
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upon halving compositions of an integer whose parts are all even.
Suppose now that δ ∈ L(n, k)−L+0 (n, k) is associated with the sequence W1, . . . ,Wk and

that i0 is the smallest index for which (3.22) fails to hold. If |W2i0−1| is even, take the last
member of W2i0−1 and place it at the end of W2i0 . If |W2i0−1| is odd, whence |W2i0 | > 2, take
the last member of W2i0 and place it at the end of W2i0−1. The resulting map is a parity
changing involution of L(n, k)− L+0 (n, k).

In tabulating the numbers L̃−1(n, k) it is of course more efficient to use the recurrence

L̃−1(n, k) =
n

k
L̃−1(n− 1, k − 1) + (−1)k−1nL̃−1(n− 1, k), (3.24)

representing the case q = −1 of (3.19). This yields the following table for 0 6 k 6 n 6 8:

Table 3.1: The numbers L̃−1(n, k) for 0 6 k 6 n 6 8.

k = 0 1 2 3 4 5 6 7 8

n = 0 1
1 0 1
2 0 2 1
3 0 6 0 1
4 0 24 12 4 1
5 0 120 0 40 0 1
6 0 720 360 240 60 6 1
7 0 5040 0 2520 0 126 0 1
8 0 40320 20160 20160 5040 1008 168 8 1

The row sums of Table 3.1 correspond to the quantities L̃−1(n) [9, A089656], where

L̃q(n) :=
∑

δ∈L(n)
qw̃(δ) =

∑

k

L̃q(n, k). (3.25)

We have been unable to find a simple closed form or recurrence for L̃−1(n). However, using
the case q = −1 of formula (3.18), it is straightforward to show that

∑

n>0

L̃−1(n)
xn

n!
= cosh

x√
1− x2

+

√
1− x2

1− x
sinh

x√
1− x2

. (3.26)

The values of L̃−1(n) for 0 6 n 6 10 are as follows: 1, 1, 3, 7, 41, 161, 1387, 7687, 86865,
623233, 8682131.

4 Some Concluding Remarks

Reductions from q-binomial coefficients to ordinary binomial coefficients similar to those seen
when q = −1 occur with higher roots of unity. For example, substituting q = ρ = −1+

√
3i

2
, a
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third root of unity, and q = i, a fourth root of unity, into (2.7) and considering cases for k
mod 3 and mod 4 yields

Theorem 4.1. If 0 ≤ k ≤ n, then

(

n

k

)

ρ

=



























(bn/3c
bk/3c

)

, if n ≡ k (mod 3) or k ≡ 0 (mod 3);

− ρ2
(bn/3c
bk/3c

)

, if n ≡ 2 (mod 3) and k ≡ 1 (mod 3);

0, otherwise.

(4.1)

and

Theorem 4.2. If 0 ≤ k ≤ n, then

(

n

k

)

i

=











































(bn/4c
bk/4c

)

, if n ≡ k (mod 4) or k ≡ 0 (mod 4);

i
(bn/4c
bk/4c

)

, if n ≡ 3 (mod 4) and k ≡ 1, 2 (mod 4);

(1 + i)
(bn/4c
bk/4c

)

, if n ≡ 2 (mod 4) and k ≡ 1 (mod 4);

0, otherwise.

(4.2)

Bijective proof of Theorem 4.1.

We modify the combinatorial argument used to establish (2.9). Instead of pairing mem-
bers of Λ(n, k) of opposite α-parity, we partition a portion of Λ(n, k) into tripletons each of
whose members have different α values mod 3. Each such tripleton contributes 0 towards
the sum

(

n
k

)

ρ
=
∑

λ∈Λ(n,k) ρ
α(λ) since 1 + ρ+ ρ2 = 0.

As before, we represent lattice paths by words in {1, 2}. Let Λ′(n, k) consist of those
words λ = t1t2 · · · tn in Λ(n, k) satisfying

t3i−2 = t3i−1 = t3i, 1 6 i 6 bn/3c. (4.3)

In all cases, the right-hand side of (4.1) above gives the net contribution of Λ′(n, k) towards
(

n
k

)

ρ
; note that members of Λ′(n, k) may end in either 12 or 21 if n ≡ 2 (mod 3) and k ≡ 1

(mod 3), hence the 1 + ρ = −ρ2 factor in this case.
Suppose now that λ = t1t2 · · · tn ∈ Λ(n, k)−Λ′(n, k), with i0 the smallest i for which (4.3)

fails to hold. Group the three members of Λ(n, k)− Λ′(n, k) gotten by circularly permuting
t3i0−2, t3i0−1, and t3i0 within λ = t1t2 · · · tn, leaving the rest of λ undisturbed. Note that
these three members of Λ(n, k) − Λ′(n, k) have different α values mod 3, which establishes
(4.1). ¤

A similar proof, which involves partitioning members of Λ(n, k) according to their inv
values mod 4, applies to (4.2), the details of which we leave as an exercise for interested
readers.
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If m ∈ P and ω = e2πi/m, a primitive mth root of unity, examining (2.7) when q = ω
reveals that

(

n
k

)

ω
is of the form β

(bn/mc
bk/mc

)

for all n and k, where β is some complex number
depending on the values of n and k mod m. Even though β can in general be expressed in
terms of symmetric functions of certain mth roots of unity, there does not appear to be a
simple closed form for

(

n
k

)

ω
which generalizes (2.9), (4.1), and (4.2). Some particular cases

are easily ascertained. For example, when m divides n, we have from (2.7),

(

n

k

)

ω

=

{

(

n/m
k/m

)

, if m divides k;

0, otherwise.
(4.4)

When m is a prime, the combinatorial argument used for (4.1) readily generalizes to (4.4).
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