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Abstract

We consider an animal S as a set of points in the coordinate plane that are reachable
from the origin (0, 0) through points in S by steps from {(1, 0), (0, 1), (1, 1), (−1,−1)}.
In this paper, we give a combinatorial bijection with 2-Motzkin paths, i.e., the Motzkin
paths with two different horizontal steps.

1 Introduction

We start by dividing the plane into eight equal octants. In this paper we count animals Ai,
1 ≤ i ≤ 3, in the first i octants . The count of A1 was first done by Gouyou-Beauchamps and
Viennot [5] and the idea of classifying it by the number of points lying on the x-axis is due
to Aigner [1]. Bousquet-Melou [3] includes the possibility of diagonal steps, which changes
the count of A3 from 3n to 4n, and that is the case we will consider here. In Theorems 8,
13, and 18 we give a bijection between animals and 2-Motzkin paths. For definitions and
references, see Stanley [7].

Definition 1 An animal S is a set of points in the xy-plane with integer coordinates
that satisfy the following conditions:

1. (0, 0) ∈ S,
2. if (a, b) ∈ S and b 6= −a, let C(a, b) := {(a−1, b), (a, b−1), (a−1, b−1)}, then C(a, b)∩

S 6= ∅,
3. if (0, 0) 6= (−b, b) ∈ S, then (−(b− 1), (b− 1)) ∈ S.

1Author’s current address: 2103 Opal Ridge, Vista, CA 92081, USA.
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For A1 we require also that 0 ≤ b ≤ a, i.e., the first octant. For A2 we want 0 ≤ a, b, i.e.,
the first quadrant or the first two octants. Then A3 is defined by 0 ≤ b and a + b ≥ 0, i.e.,
the first three octants.

Definition 2 We start with partial Motzkin paths beginning at (0, 0) with steps from
{U = (1, 1), D = (1,−1), H = (1, 0)}. Then bicoloring the horizontal steps we have partial
2-Motzkin paths with steps from {U = (1, 1), D = (1,−1), Hr = (1, 0) and Hg = (1, 0)},
where Hr is a horizontal step colored red and where Hg is a horizontal step colored green.
Let M(n) = M3(n) be the set of all partial 2-Motzkin paths of n steps, let M2(n) ⊂ M3(n)
be the set of paths that never go below the x-axis and let M1(n) ⊂ M2(n) denote the set of
paths that end on x-axis at (n, 0) and let mi(n) = |Mi(n)| and mi(n, k) = |Mi(n, k)|, where
Mi(n, k) is the set of partial 2-Motzkin paths that end at (n, k).

For m, k ≤ 6, the entries (m3(n, k)) and (m2(n, k)) are as follows:

(m3(n, k)) =





















n/k −5 −4 −3 −2 −1 0 1 2 3 4 5
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 2 1 0 0 0 0
2 0 0 0 1 4 6 4 1 0 0 0
3 0 0 1 6 15 20 15 6 1 0 0
4 0 1 8 28 56 70 56 28 8 1 0
5 1 10 45 120 210 252 210 120 45 10 1





















,

(m2(n, k)) =





















n/k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 2 1 0 0 0 0
2 5 4 1 0 0 0
3 14 14 6 1 0 0
4 42 48 27 8 1 0
5 132 165 110 44 10 1





















.

Let A(n) be the set of all animals of size n = |S − {(0, 0)}| , i.e., we do not count the
origin (0, 0) for the size. Let Ai(n) be the set of animals in the first i octants of size n and
ai(n) = |Ai(n)| be the number of elements. We shall construct a bijection between Ai(n)
and Mi(n).

Example 3 For n = 2, we illustrate the 5 elements in A1(2), and their counterparts in
M1(2); × marks source points on the line y = −x. Note that the lowest source point is the
origin, (0, 0).

× • • → HrHr,

•
× • → UD,

•
× • → HrHg,
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• •
× → HgHr,

•
•

× → HgHg.

Both A2(2) and M2(2) have 10 elements. The following 5 elements are those not in A1(2):

•
•

× → HgU,

•
× • → HrU,

• •
× → UHr

•
•
× → UHg,

•
•
× → UU.

We have 16 elements in A3(2),M3(2). The following 6 elements are those not in A2(2)

×
× • → HrD,

× •
× → DHr,

× •
× → HgD,

•
×

× → DHg,

•
×

× → DU,

×
×

× → DD.

Algorithm 4 We describe a decomposition method of an animal into two smaller parts,
the top T and the bottom B. The bottom part is an animal while the top part will be an
animal after we apply Algorithm 5. Let S be an animal and start the partition path at
PS(a0, a0) at a point (a0, a0) with the least a0 > 0. If (ai, bi) ∈ S, go E = (1, 0) one unit;
otherwise go diagonally D = (1, 1) one unit. Keep going until there are no more points in S
with larger first coordinate than this point. Let T ⊂ S be the set of points on or above the
path and let B ⊂ S denote the set of points below the path.

Algorithm 5 Let us define T (i) inductively: T (1) = T , and T (i+1) is constructed from
T (i) by replacing each (a, b) ∈ T (i) with (a − 1, b − 1) whenever C(a, b) ∩ T (i) = ∅ and
a, b > 0. Continue until T (i + 1) = T (i) = T

′

.

Example 6 For the following example S, we start with (2, 2) and by Algorithm 4 the
partition path of S is P = EEDEEDE, i.e., (2, 2) → (3, 2) → (4, 2) → (5, 3) → (6, 3) →
(7, 3)→ (8, 4)→ (9, 4),
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S =

◦4 ◦6 ◦7
◦3 ◦5

◦1 ◦2 •
• • • •

× • • • ,

The partition path partitions S into B, T as follows:

B =

•
• • • •

× • • • ,

T =

◦4 ◦6 ◦7
◦3 ◦5

◦1 ◦2

× ,

Applying Algorithm 5 on T , we have

T
′

=

◦4 ◦6 ◦7
◦1 ◦2 ◦3 ◦5 .

2 Animals A1(m) and 2-Motzkin Paths M1(m)

Here we construct a bijection between animals and 2-Motzkin paths. For other bijections
and partitions, see [2, 4].

Example 7 For m = 1, 2. A1(m)⇔ M1(m)

× • → Hr,

•
× → Hg ,

× • • → HrHr,

•
× • → HrHg,

•
× • → UD,

• •
× → HgHr,

•
•

× → HgHg.
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Theorem 8 The number of the animals in the first octant of size n is given by cn+1, the

(n + 1)th Catalan number.

Proof. By induction, assume that the theorem is true for size less than n. Let S ∈
A1(n). We apply Algorithm 4 by starting at the smallest d > 0 such that (d, d) ∈ S to
partition S into T,B. We apply Algorithm 5 to obtain the T

′

. Let B → B
′ ∈ A1(k − 1),

by removing the first point (the origin). If T
′

= ∅, then B
′

is of size k − 1 = n− 1, the first
step is Hr and by induction S → HrB

∗. If B
′

= ∅, then the first step is Hg and by induction
S → HgT

∗. Otherwise, the first step is U and the kth step is D, by induction fill in steps 2 to
(k − 1) by B

′ → B∗ and steps (k + 1)th to the nth by T
′ → T ∗, i.e., S → P = U(B∗)D(T ∗).

Conversely, by induction let P = a1a2 · · · an ∈ M1(n). If a1 = Hr, then P
′

= a2a3 · · · an

is of size m− 1, by induction P
′ → S∗ and S = (S∗ + (1, 0)) ∪ {(0, 0)} ∈ A1(n) (shift S∗ to

the right one unit). If a1 = Hg, then S = {S∗ + (1, 1) ∪(0, 0)} (shift S∗ diagonally up one
unit). If a1 is U , then find the first k such that a1a2 · · · ak ∈ M(k), B = a2a3 · · · ak−1 and
T = ak+1ak+2 · · · an. By induction T → T ∗, B → B∗ → B

′

= (B∗ + (1, 0)) ∪ {(0, 0)}. Let
T
′

= T ∗ + (j + 1, j + 1), where j = max{b : (a, b) ∈ B}, and then apply Algorithm 5 by
starting with the union of B

′

and T
′

. By induction the total count is

a1(n) = a1(n− 1) + a1(n− 2)a1(0) + a1(n− 3)a1(1) + a1(n− 4)a1(2) + · · ·
= cnc0 + cn−1c1 + cn−2c2 + · · ·+ c0cn−1

=
n

∑

i=0

cn−ici = cn+1,

where the first term represents the case that T is empty and the second term represents the
case that T is one point. Similarly, the last term represents the case that B is empty and
next-to-last term represents the case that B is one point.

The generating function is
∑

a1(n)x
n = 1 + 2x + 5x2 + 14x3 + 42x4 + · · · = C2.

Example 9 This example is for the first part of the proof in Theorem 8. The partition
path is (2, 2) → (3, 2) → (4, 2) → (5, 3) → (6, 3), which partitions S into two animals T,B.
By induction we produce 2-Motzkin paths T ∗ and B∗, and by Theorem 8 we produce a
2-Motzkin path P for S.

S =

◦
◦

◦ ◦ •
• • •

× • • • → T =

◦
× ◦ ◦ , B =

•
• • •

× • • ,

P = U(B∗)D(T ∗)→ U(UHrHgUDD)D(HrUD).
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Example 10 This example is for the converse of the bijection. We start with a 2-Motzkin
path P = U(UHrDHrHrUD)D(HrUHrHgHrD), locate the first D such that the path P
comes back to x-axis. The subpath B = UHrDHrHrUD is the section of P between the
first step(U) and this D, the section after this D is the subpath T = HrUHrHgHrD. By
induction we produce subanimals T ∗ and B∗, using Theorem 8 we produce the animal S for
P .

T → T ∗ =

◦4 ◦6 ◦7
×1 ◦2 ◦3 ◦5 , B → B∗ → B

′

=

•
• • • •

× • • • ,

B
′ ∪ T

′

=

◦4 ◦6 ◦7
×1 ◦2 ◦3 ◦5

•
• • • •

× • • • ,

P → S =

◦4 ◦6 ◦7
◦3 ◦5

×1 ◦2 •
• • • •

× • • • .

Remark 11 Let us partition A1(n) by the number points on the line y = x. Let
A1(n, k) = {S ∈ A1(n) : |S ∩ {(x, x) : x > 0}| = k} and a1(n, k) = |A1(n, k)|. Then the
following is the matrix (a1(n, k)) for n, k up to 5:





















n\k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 1 1 0 0 0 0
2 2 2 1 0 0 0
3 5 5 3 1 0 0
4 14 14 9 4 1 0
5 42 42 28 14 5 1





















.

We say that an infinite lower triangular matrix L = (g, f) is a Riordan matrix if the
generating function of the kth column is gfk for all k. Here (a1(n, k)) = (C, xC). For more
about the Riordan matrix, see [6].

Remark 12 By using the Lagrange Inversion Formula (Wilf [8]) with some index ad-
justment we derive the explicit formula a1(n, k) = k+1

2n−k+1

(

2n−k+1

n−k

)

.
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3 Animals A2(m) and 2-Motzkin PathsM2(m)

Here we construct a bijection between animals and 2-Motzkin paths. For other bijections
and partitions, see [2, 4].

Theorem 13 There is a bijection between M2(m) and A2(m). Moreover, for all m ≥ 0, we
have a2(m) =

(

2m+1

m

)

.

Proof. Let S ∈ A2(m), we apply Algorithm 4 by starting at (0, 1) to partition S into T ,
B. Then B ∈ A1(k) and by applying Algorithm 5, T → T

′

. If T = ∅, then S ∈ A1(m) and by
Theorem 8 we are done. Otherwise, T

′ → T ∗ = T
′ − (0, 1), B → B∗; and S → P = B∗UT ∗.

Conversely, by induction let P = a1a2 · · · am ∈M2(m)−M1(m). We look for the largest
k such that (k, 0) ∈ P, i.e., the last time P is on the x-axis. By induction a1a2 · · · ak → B
and ak+2 · · · am → T. T → T

′

= T + (0, 1) → T ∗ = T
′

+ (j + 1, j + 1), where j = max{b :
(a, b) ∈ B}. Apply Algorithm 5 by starting with B ∪ T ∗; we have P → S = (B ∪ T ∗)

′

.
The generating function of the counts of A2(m) is

C2(1 + xC2 + (xC2)2 + (xC2)3 + · · · ) = C2

1− xC2
=

C2

C
√
1− 4x

=
C√

1− 4x
.

These numbers appear as the nonzero entries in column one in the Pascal’s Triangle.

Example 14 This example is for the first part of Theorem 13. We start an animal S
with the partition path (2, 3) → (3, 3) → (4, 3) → (5, 4) → (6, 4) → (7, 5) → (8, 5), which
partitions S into B, T. By induction B → B∗, T → T ∗ we derive the path P .

S =

◦4
◦3

◦ ◦ ◦2
◦ ◦1 •

◦ ◦ • •
• • •
• • •

× • ,

B =

•
• •

• • •
• • •

× • → B∗ = U(HgHrUHgHrHgDHr)D,

T =

◦ ◦ ◦4
◦ ◦3

× ◦ ◦1 ◦2 → T ∗ = (U(HrUD)D)UHrHr →
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P = (B∗)U(T ∗) = (UHgHrUHgHrHgDHrD)U(UHrUDDUHrHr).

Remark 15 Let us partition A2(m) by

A2(m, k) = {S ∈ A2(m) : k = max{b− a : (a, b) ∈ S}}

and a2(m, k) = |A2(m, k)|. By using the Lagrange Inversion Formula (Wilf [8]) and sim-
ple algebraic operations we obtain the explicit formula a2(m, k) = 2k+2

2m+2

(

2m+2

m−k

)

. Then by
Theorem 13 the following is the matrix (a2(m, k)) = (C2, xC2) for m, k up to 5:





















m/k 0 1 2 3 4 5
0 1 0 0 0 0 01
1 2 1 0 0 0 0
2 5 4 1 0 0 0
3 14 14 6 1 0 0
4 42 48 27 8 1 0
5 132 165 110 44 10 1





















.

Remark 16 Let us partition A2(m) by

A∗
2(m, k) = {S ∈ A2(m) : k = max{b : (0, b) ∈ S}}

and a∗2(m, k) = |A∗
2(m, k)| . The set A∗

2(m, 0) consists of two copies of A2(m− 1); one copy
consists of those with no points on x-axis except the origin and the other copy with such
points. Hence the generating function is

1 +
2xC√
1− 4x

=

√
1− 4x + 2xC√

1− 4x
=

2−C
C

+ 2xC√
1− 4x

=
1√

1− 4x
.

Note that if (0, 1) ∈ S, the partition is T,B in Theorem 13 with B containing no point
on y = x > 0. By using the Lagrange Inversion Formula (Wilf [8]) and simple algebraic
operations we can derive the explicit formula a∗

2(m, k) =
(

2m−k

m−k

)

.

The generating function for B is C and the following is the matrix (a∗
2(m, k)) = ( 1√

1−4x
, xC)

for m, k up to 5:





















m/k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 2 1 0 0 0 0
2 6 3 1 0 0 0
3 20 10 4 1 0 0
4 70 35 15 5 1 0
5 252 126 56 21 6 1





















.
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Remark 17 Let us go a step further. Let D(m) = A2(m, 0), the set of animals in the
first quadrant containing no point on the y-axis except the origin and partition D(m) by
the number of points on the x-axis D(m, k) = {S ∈ D(m) : (k, 0) ∈ S, (k + 1, 0) /∈ S}. Let
d(m, k) = |D(m, k)|. Then by using the Lagrange Inversion Formula (Wilf [8]) and simple
algebraic operations we can derive the explicit formula d(m, k) =

(

2m−k−1

m−k

)

for k > 0 and

d(m, 0) =
(

2m−1

m−1

)

.
The following is the matrix (d(m, k)) for m, k up to 5:





















m/k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 1 1 0 0 0 0
2 3 2 1 0 0 0
3 10 6 3 1 0 0
4 35 20 10 4 1 0
5 126 70 35 15 5 1





















= ( 1 +
xC√
1− 4x

, xC(x)).

4 Animals A3(m) and 2-Motzkin Paths M3(m)

Here we construct a bijection between animals and 2-Motzkin paths. For other bijections
and partitions, please see [2, 4].

Theorem 18 There is a bijection between M3(m) = M(m) and A3(m) = A(m). Moreover,

the number of animals in the first three octants of size m is 4m, m ≥ 0.

Proof. Let S ∈ A3(m), apply Algorithm 4 by starting at (−1, 1) to partition S into T ,

B. Then B ∈ A1(k) and apply Algorithm 5 to T → T
′

∈ A3(m− k − 1). Then T
′ → T ∗ =

T
′

+ (1,−1). If S ∈ A2(m), then by Theorem 13 we are done. Otherwise, by induction
S → (B∗)D(T ∗) ∈M3(m).

Conversely, let P = a1a2 · · · am ∈ M3(m). If P ∈ M2(m), then by Theorem 13, we are
done. Otherwise, we look for the first k such that (k, 0) ∈ P and P goes under the x-
axis after that. Then by induction a1a2 · · · ak → B∗ and ak+2 · · · am → T , T → T

′

=
T + (−1, 1). T ∗ = E ∪ ((T

′ −E) + (j + 1, j + 1)), where E is the set of points in T
′

that are
not in the first quadrant and j = max{(b : (a, b) ∈ B}. Apply Algorithm 5 by starting with
B∗ ∪ T ∗. We have P → S.

In terms of generating functions we have

C√
1− 4x

((1+xC2+(xC2)2+(xC2)3+· · · ) = C√
1− 4x

1

1− xC2
=

C√
1− 4x

1

C
√
1− 4x

=
1

1− 4x
.

Example 19 This example is the converse of the proof of Theorem 18. Let

P = (UUDHrHgHgDHgHr)D(HrHrDHrHgHgHr)

be a 2-Motzkin path and locate the first D step, where the path goes below the x-axis. The
section of P before the D is B and the section after the D is T . Then by induction we derive
the animal S for P .
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B = U(UDHrHgHg)D(HgHr)→ B∗ =

•
• •

• •
• •

× • • ,

(HrHr)D(HrHgHgHr) → T =

◦4 ◦5
◦

× ◦
×1 ◦2 ◦3 ,

T
′

=

◦4 ◦5
◦

× ◦
×1 ◦2 ◦3

× ,

P = (UUDHrHgHgDHgHr)D(HrHrDHrHgHgHr) = (B∗)D(T ∗),

→ S =

◦5 ◦3
◦4 ◦2 •

◦ • •
× ◦ • •

×1 • •
× • • .

Remark 20 Let us partition A(m) by the number of source points on the line y = −x >
0. Let A(m, k) = {S ∈ A(m) : (−k, k) ∈ S, (−(k + 1), k + 1) /∈ S} and a(m, k) = |A(m, k)| .
By using the Lagrange Inversion Formula (Wilf [8]) and simple algebraic operations we obtain
the explicit formula a(m, k) =

(

2m+1

m−k

)

.

10



The following is the matrix (a(m, k)) for m, k up to 5:

(a(m, k)) =





















m/k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 3 1 0 0 0 0
2 10 5 1 0 0 0
3 35 21 7 1 0 0
4 126 84 36 9 1 0
5 462 330 165 55 11 1





















= (
C√

1− 4x
, xC2).

The kth column is the condensed version of the (2k + 1)th column of Pascal’s Triangle.
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