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Abstract. We describe a practical method for constructing a nontrivial
homomorphism between two Verma modules of an arbitrary semisimple Lie
algebra. With some additions the method generalises to the affine case.
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A theorem of Verma, Bernstein-Gel’fand-Gel’fand gives a straightforward criterion
for the existence of a nontrivial homomorphism between Verma modules. More-
over, the theorem states that such homomorphisms are always injective. In this
paper we consider the problem of explicitly constructing such a homomorphism
if it exists. This boils down to constructing a certain element in the universal
enveloping algebra of the negative part of the semismiple Lie algebra.

There are several methods known to solve this problem. Firstly, one can
try and find explicit formulas. In this approach one fixes the type (but not the
rank). This has been carried out for type An in [18], Section 5, and for the similar
problem in the quantum group case in [4], [5], [6]. In [4] root systems of all types
are considered, and the solution is given relative to so-called straight roots, using
a special basis of the universal enveloping algebra (not of Poincaré-Birkhoff-Witt
type). In [5], [6] the solution is given for types An and Dn for all roots, in a
Poincaré-Birkhoff-Witt basis. Our approach compares to this in the sense that we
have an algorithm that, given any root of a fixed root system, computes a general
formula relative to any given Poincaré-Birkhoff-Witt basis (see Section 3.).

A second approach is described in [18], which gives a general construction
of homomorphisms between Verma modules. However, it is not easy to see how
to carry out this construction in practice. The method described here is a variant
of the construction in [18], the difference being that we are able to obtain the
homomorphism explicitly.

In Section 1. of this paper we review the theoretical concepts and notation
that we use, and describe the problem we deal with. In Section 2. we derive a
few commutation formulas in the field of fractions of U(n−). Then in Section 3.
the construction of a homomorphism between Verma modules is described. In
Section 4. we briefly comment on the problem of finding compositions of such
homomorphisms. In Section 5. we comment on the analogous problem for affine
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algebras, and we show how our algorithm generalises to that case. Finally in
Section 6. we give an application of the algorithm to the problem of constructing
irreducible modules. This is based on a result by P. Littelmann.

I have implemented the algorithms described in this paper in the computer
algebra system GAP4 ([7]). Sections 3. and 6. contain tables of running times. All
computations for these have been done on a PII 600 Mhz processor, with 100M of
memory of GAP.

1. Preliminaries

Let g be a semisimple Lie algebra, with root system Φ, relative to a Cartan
subalgebra h . We let ∆ = {α1, . . . , αl} be a fixed set of simple roots. Let Φ+ =
{α1, . . . , αs} be the set of positive roots (note that here the simple roots are listed
first). Then there are root vectors yi = x−αi

, xi = xαi
(for 1 ≤ i ≤ s), and basis

vectors hi ∈ h (for 1 ≤ i ≤ l), such that the set {x1, . . . , xs, y1, . . . , ys, h1, . . . , hl}
forms a Chevalley basis of g (cf. [10]). We have that g = n− ⊕ h⊕ n+ , where n− ,
n+ are the subalgebras spanned by the yi , xi respectively.

In the sequel, if β = αi ∈ Φ+ , then we also write yβ in place of yi .

We let P denote the integral weight lattice spanned by the fundamental
weights λ1, . . . , λl . Also QP = Qλ1 + · · · + Qλl . For λ, µ ∈ QP we write µ ≤ λ
if µ = λ−

∑l
i=1 kiαi , where ki ∈ Z≥0 . Then ≤ is a partial order on QP .

For α ∈ Φ we have the reflection sα : QP → QP , given by sα(λ) =
λ− 〈λ, α∨〉α .

Let U(g) denote the universal enveloping algebra of g . We consider U(g)
as a g-module by left multiplication. Let λ =

∑
aiλi ∈ QP , and let J(λ) be

the g-submodule of U(g) generated by hi − ai + 1 for 1 ≤ i ≤ l and xi for
1 ≤ i ≤ s . Then M(λ) = U(g)/J(λ) is a g-module. It is called a Verma module.
As U(g) = U(n−) ⊕ J(λ) we see that U(n−) ∼= M(λ) (as U(n−)-modules). Let
vλ denote the image of 1 under this isomorphism. Then hi · vλ = (ai − 1)vλ , and
xi · vλ = 0. Furthermore, all other elements of M(λ) can be written as Y · vλ ,
where Y ∈ U(n−).

Let ν =
∑l

i=1 kiαi , where ki ∈ Z≥0 . Then we let U(n−)ν be the span of all
yi1 · · · yir such that αi1 + · · ·+ αir = ν .

For a proof of the following theorem we refer to [1], [3].

Theorem 1.1. (Verma, Bernstein-Gel’fand-Gel’fand) Let λ, µ ∈ QP , and set

Rµ,λ = HomU(g)(M(µ),M(λ)).

Then

1. dimRµ,λ ≤ 1,

2. non-trivial elements of Rµ,λ are injective,

3. dimRµ,λ = 1 if and only if there are positive roots αi1 , . . . , αik such that

µ ≤ sαi1
(µ) ≤ sαi2

sαi1
(µ) ≤ · · · ≤ sαik

· · · sαi1
(µ) = λ.
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The problem we consider is to construct a non-trivial element in Rµ,λ if
dimRµ,λ = 1. By Theorem 1.1, this boils down to finding an element in Rµ,λ

if µ = sα(λ) = λ − 〈λ, α∨〉α and 〈λ, α∨〉 ∈ Z>0 . Suppose that we are in this
situation, and set h = 〈λ, α∨〉 . An element Y · vλ ∈ M(λ), where Y ∈ U(n−)
is said to be singular if xα · (Y · vλ) = 0 for α ∈ Φ+ . Let ψ ∈ Rµ,λ be a
non-trivial U(g)-homomorphism. Then ψ(vµ) = Y · vλ for some Y ∈ U(n−)
with Y · vλ singular. We have hiy = yhi − 〈ν, α∨i 〉y for all y ∈ U(n−)ν . Hence
hi · (y · vλ) = (〈λ− ν, α∨i 〉− 1)yvλ . So, as hi · (Y vλ) = (〈µ, α∨i 〉− 1)Y vλ we see that
Y ∈ U(n−)hα . Conversely, if we have a Y ∈ U(n−)hα such that Y · vλ is singular,
then ψ : M(µ) → M(λ) defined by ψ(Y ′ · vµ) = Y ′Y · vλ will be a non-trivial
element of Rµ,λ . So the problem reduces to finding a Y ∈ U(n−)hα such that Y ·vλ

is singular. Note that this can be done by writing down a basis for U(n−)hα and
computing a set of linear equations for Y . However, this algorithm becomes rather
cumbersome if dimU(n−)hα gets large. We will describe a more direct method.

2. The field of fractions

From [3], §3.6 we recall that U(n−) has a (non-commutative) field of fractions,
denoted by K(n−). It consists of all elements ab−1 for a ∈ U(n−), b ∈ U(n−)\{0} .
For the definitions of addition and multiplication in K(n−) we refer to [3], §3.6.
They imply aa−1 = a−1a = 1.

Let α, β ∈ Φ+ . If α + β ∈ Φ+ then we let Nα,β be the scalar such that
[yα, yβ] = −Nα,βyα+β . Also set Pα,β = {iα + jβ | i, j ≥ 0} ∩ Φ+ . Then there are
seven possibilities for Pα,β :

(I) Pα,β = {α, β} ,

(II) Pα,β = {α, β, α+ β}

(III) Pα,β = {α, β, α+ β, α+ 2β} ,

(IV) Pα,β = {α, β, α+ β, 2α+ β} ,

(V) Pα,β = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}

(VI) Pα,β = {α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β} ,

(VII) Pα,β = {α, β, α+ β, 2α+ β, α+ 2β} .

Lemma 2.1. In case (I) we have ym
β y

n
α = yn

αy
m
β for all m,n ∈ Z.

Proof. If n > 0 then yβy
n
α = yn

αyβ . Multiplying this relation on the left and on
the right by y−n

α we get yβy
−n
α = y−n

α yβ . So we have yβy
n
α = yn

αyβ for all n ∈ Z .
From this it follows that ym

β y
n
α = yn

αy
m
β for m > 0, n ∈ Z . If we now multiply this

from the left and the right by y−m
β we get the result for m < 0 as well.

Since (
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
,

these binomial coefficients are defined for arbitrary n ∈ Q , and k ∈ Z≥0 . In fact,
we see that

(
n
k

)
is a polynomial of degree k in n . Note also that if n ∈ Z and

0 ≤ n < k then the coefficient is 0.



418 de Graaf

Lemma 2.2. In case (II) we have for m ≥ 0, n ∈ Z,

ym
β y

n
α =

m∑
k=0

Nk
α,β

(
m

k

)(
n

k

)
k!yn−k

α ym−k
β yk

α+β.

Proof. First of all, this formula is known for m,n ≥ 0 (see, e.g., [9]). In
particular, for n > 0 we have yβy

n
α = yn

αyβ + Nα,βny
n−1
α yα+β . If we multiply this

relation on the left and the right with y−n
α , and use Lemma 2.1, then we get it for

all n ∈ Z . Now the formula for m > 1 is proved by induction.

Lemma 2.3. In case (III) we have for m ≥ 0, n ∈ Z,

ym
β y

n
α =

∑
k,l≥0

k+2l≤m

cm,n
k,l y

n−k−l
α ym−k−2l

β yk
α+βy

l
α+2β,

where

cm,n
k,l = Nk+l

α,β

(1

2
Nβ,α+β

)l
(

n

k + l

)(
m

k + 2l

)(
k + l

l

)
(k + 2l)!.

Proof. This goes in exactly the same way as the proof of Lemma 2.2.

Lemma 2.4. In case (IV) we have for m ≥ 0, n ∈ Z,

ym
β y

n
α =

∑
k,l≥0

k+l≤m

cm,n
k,l y

n−k−2l
α ym−k−l

β yk
α+βy

l
2α+β,

where

cm,n
k,l = Nk+l

α,β

(1

2
Nα,α+β

)l
(

n

k + 2l

)(
m

k + l

)(
k + l

l

)
(k + 2l)!.

Proof. Again we get the formula for m,n ≥ 0 from [9]. In this case the formula
for m = 1, n ≥ 0 reads

yβy
n
α = yn

αyβ +Nα,βny
n−1
α yα+β +Nα,βNα,α+β

(
n

2

)
yn−2

α y2α+β.

If we multiply this on the left and the right by y−n
α , and use Lemmas 2.1, 2.2 we

get the same relation with n replaced by −n . So the case m = 1, n ∈ Z follows.
The formula for m > 1 now follows by induction.

The cases (V), (VI), (VII) can only occur when the root system has a
component of type G2 . We omit the formulas for these cases; they can easily be
derived from those given in [9].

Now let a = yn1
1 · · · yns

s be a monomial in U(n−). For β ∈ Φ+ and m,n ∈ Z
consider the element ym

β ay
−n
β . By repeatedly applying Lemmas 2.1, 2.2, 2.3, 2.4

we see that

ym
β ay

−n
β =

∑
(k1,...,kt)∈I

c(k1, . . . , kt)y
m−n−p1k1−···−ptkt

β a(k1, . . . , kt). (1)
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Here the a(k1, . . . , kt) ∈ U(n−), the (finite) index set I , the pi ∈ Z>0 are all
independent of n , they only depend on a . Only the exponents of yβ and the
coefficients c(k1, . . . , kt) (which are polynomials in n) depend on n .

Now we take m,n ∈ Q such that m − n ∈ Z . Then we define ym
β ay

−n
β to

be the right-hand side of (1), and we say that ym
β ay

−n
β is an element of K(n−).

More generally, if Y is a linear combination of monomials, and m,n ∈ Q such
that m− n ∈ Z then ym

β Y y
−n
β is an element of K(n−).

3. Constructing singular vectors

Here we suppose that we are given a λ ∈ QP and α ∈ Φ+ with 〈λ, α∨〉 = h ∈ Z>0 .
The problem is to find a Y ∈ U(n−)hα such that Y · vλ is a singular vector.

We recall that l = |∆| is the rank of the root system. Let 1 ≤ i ≤ l , then

xiy
r
i · vλ = r(〈λ, α∨i 〉 − r)yr−1

i · vλ. (2)

Lemma 3.1. Suppose that α ∈ ∆, i.e., α = αi , 1 ≤ i ≤ l . Then yh
i · vλ is a

singular vector.

Proof. This follows from (2), cf. the proof of [1], Lemma 2.

Note that this solves the problem when g = sl2 . So in the remainder we
will assume that the rank of the root system is at least 2. By an embedding
φ : M(µ) ↪→M(λ) we will always mean an injective U(g)-homomorphism.

Lemma 3.2. Suppose that ν, η ∈ P , and β ∈ ∆ is such that m = 〈ν, β∨〉 is
a non-negative integer. Suppose further that we have an embedding ψ : M(ν) ↪→
M(η) given by ψ(vν) = Y vη . Set n = 〈η, β∨〉. Then ym

β Y y
−n
β is an element of

U(n−) and we have an embedding φ : M(sβν) ↪→ M(sβη) given by φ(vsβν) =
ym

β Y y
−n
β · vsβη .

Proof. If n ≤ 0 then the first statement is clear. The embedding φ is the
composition M(sβν) ↪→ M(ν) ↪→ M(η) ↪→ M(sβη), where the first and the third
maps follow from Lemma 3.1.

If n > 0, then we view M(sβη) as a submodule of M(η). We have vsβη =
yn

βvη (Lemma 3.1). Set v = ym
β Y vη ; then v is a singular vector (being the image

of vsβν under M(sβν) ↪→ M(ν) ↪→ M(η)). We claim that v ∈ M(sβη). Suppose
that this claim is proved. Then there is a Y ′ ∈ U(n−) such that v = Y ′vsβη . But
that means that ym

β Y = Y ′yn
β , and the lemma follows.

The claim above is proved in [1]. For the sake of completeness we transcribe
the argument. Set V = M(η)/M(sβη), and let v̄ν denote the image of ψ(vν) in
V ; then v̄ν = X · v̄η , for some X ∈ U(n−). For k ≥ 0 write yk

βX = X1y
k1
β .

By increasing k we can get k1 arbitrarily large (cf. [3], Lemma 7.6.9; it also
follows by straightforward weight considerations). By Lemma 3.1 we know that
yn

βvη ∈ M(sβη). Therefore there is a k > 0 such that yk
β v̄ν = 0. Then by using

(2) we see that the smallest such k must be equal to m .
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Proposition 3.3. Let ν, η ∈ QP be such that ν = sγ(η) = η − kγ , where
γ ∈ Φ+ and k ∈ Z>0 . Let Y ∈ U(n−)kγ be such that Y · vη is singular. Let
β ∈ ∆, β 6= γ . Set m = 〈ν, β∨〉, n = 〈η, β∨〉. Then ym

β Y y
−n
β is an element

of K(n−); it is even an element of U(n−). Secondly, we have an embedding
φ : M(sβν) ↪→M(sβη) given by φ(vsβν) = ym

β Y y
−n
β · vsβη .

Proof. We have that m − n = −k〈γ, β∨〉 ∈ Z , so ym
β Y y

−n
β is an element of

K(n−).

Set V = {µ ∈ QP | 〈µ, γ∨〉 = k} , which is a hyperplane in QP , containing
η . Let {a1, . . . , at} be a basis of U(n−)kγ . Take µ =

∑l
i=1 riλi ∈ V and set

µ̃ = sγ(µ) = µ − kγ . Then by Theorem 1.1 there is a Yµ =
∑t

i=1 ζiai such that
Yµ · vµ is singular. Here the ζi are polynomial functions of the ri . (Indeed, the
ζi form a solution to a set of linear homogeneous equations. The coefficients of
these equations depend linearly on the ri . Hence the coefficients of a solution are
polynomial functions of the ri .)

Set p = 〈µ̃, β∨〉 , q = 〈µ, β∨〉 . Then Y ′ = yp
βYµy

−q
β =

∑
j cjbj , where the

bj are linearly independent elements of K(n−), and the cj are coefficients that
depend polynomially on the ri . Now Lemma 3.2 implies that if the ri ∈ Z and
p ≥ 0, then Y ′ ∈ U(n−). Let now j be such that bj 6∈ U(n−). If the ri ∈ Z
and p ≥ 0, then cj = 0. Suppose that β = αi0 , the i0 -th simple root. Then the
condition p ≥ 0 amounts to ri0 ≥ k〈γ, β∨〉 . We have that µ ∈ V if and only if∑l

i=1 uiri = k , where the ui are certain elements of Z . Also, since β 6= γ at least
one ui 6= 0 with i 6= i0 . We see that the requirement ri0 ≥ k〈γ, β∨〉 cuts a half
space W off V . Furthermore V ∩ P is an (l − 1)-dimensional lattice in V (cf.
[1]). The conclusion is that cj = 0 if µ ∈ W ∩ P . Since the cj are polynomials in
the ri , it follows that cj = 0 if µ ∈ V . In particular, ym

β Y y
−n
β lies in U(n−).

Finally we note that Y ′ · vsβµ is singular, by the same arguments. (Indeed,
xi · (Y ′ · vsβµ) =

∑
j fjzj · vsβµ where the fj are polynomials in the ri , and the

zj are elements of U(n−). Since the fj are zero when µ ∈ W ∩ P we have that
fj = 0 when µ ∈ V .) In particular, ym

β Y y
−n
β · vsβη is singular.

Example 3.4. To illustrate the argument in the preceding proof, consider
the Lie algebra of type A3 , with simple roots α, β, γ (with β corresponding
to the middle node of the Dynkin diagram). Then it is possible to choose a
Chevalley basis such that [yα, yβ] = yα+β , [yα, yβ+γ] = yα+β+γ , [yβ, yγ] = yβ+γ ,
[yγ, yα+β] = −yα+β+γ . Set a1 = yαyβyγ , a2 = yγyα+β , a3 = yαyβ+γ , a4 = yα+β+γ .
Then {a1, a2, a3, a4} is a basis of U(n−)α+β+γ .

We abbreviate a weight r1λ1 + r2λ2 + r3λ3 by (r1, r2, r3). Let V be the
hyperplane in QP consisting of all weights µ such that 〈µ, (α + β + γ)∨〉 = 1,
i.e., V = {(r1, r2, r3) | r1 + r2 + r3 = 1} . Let µ = (r1, r2, r3) ∈ V and set
µ̃ = sα+β+γ(µ) = (r1 − 1, r2, r3 − 1). Set Yµ = a1 − r1a2 − (r1 + r2)a3 − r1r3a4 ;
then Yµ · vµ is singular. Set p = 〈µ̃, α∨〉 = r1 − 1 and q = 〈µ, α∨〉 = r1 . Now
Y ′ = yp

αYµy
−q
α = yβyγ − (r1 + r2)yβ+γ + r1(1− r1 − r2 − r3)y

−1
α yα+β+γ . According

to Lemma 3.2 this is an element of U(n−) whenever (r1, r2, r3) ∈ V with the ri

integral and p ≥ 0. Therefore the coefficient of y−1
α yα+β+γ has to vanish, which is

indeed the case. We see that Y ′ lies in U(n−) for all (r1, r2, r3) ∈ V .

Now we return to the situation of the beginning of the section. We have
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λ ∈ QP , α ∈ Φ+ with 〈λ, α∨〉 = h ∈ Z>0 . Set µ = sα(λ) = λ− hα . To obtain an
embedding M(µ) ↪→M(λ), we perform the following steps:

1. Select β1, . . . , βr ∈ ∆ and positive roots α0, . . . , αr in the following way. Set
α0 = α , and k = 0. Then:

(a) If αk ∈ ∆, then set r = k and go to step 2.

(b) Otherwise, let βk+1 ∈ ∆ be such that 〈αk, β
∨
k+1〉 > 0, and set αk+1 =

sβk+1
(αk), and k := k + 1. Return to (a).

2. Set β = αr ∈ ∆. For 1 ≤ k ≤ r set ak = −〈µ, sβ1 · · · sβk−1
(βk)

∨〉 , and
bk = 〈λ, sβ1 · · · sβk−1

(βk)
∨〉 .

3. Set Y0 = yh
β , and for 0 ≤ k ≤ r − 1:

Yk+1 = y
ar−k

βr−k
Yky

br−k

βr−k
.

Remark 3.5. Note that the βk+1 in step 1 (b) exists as otherwise 〈αk, γ
∨〉 ≤ 0

for all γ ∈ ∆, and this implies that the set ∆ ∪ {αk} is linearly independent (cf.
[11], Chapter IV, Lemma 1), which is not possible since αk 6∈ ∆. Also, all αk must
be positive roots because sγ permutes the positive roots other than γ , for γ ∈ ∆.
Then the loop in 1. must terminate because the height of αk decreases every step.

Proposition 3.6. All Yk are elements of U(n−) and we have an embedding
M(µ) ↪→M(λ) given by vµ 7→ Yr · vλ .

Proof. We write si = sβi
. For 0 ≤ k ≤ r we set wk = sr−k · · · s1 (so

wr = 1), and µk = wkµ , λk = wkλ . We claim that there is an embedding
M(µk) ↪→ M(λk) given by vµk

7→ Yk · vλk
. First we look at the case k = 0. Note

that sr · · · s1(α) = β ∈ ∆. Since for w in the Weyl group we have wsβw
−1 = swβ

we get sα = s1 · · · srsβsr · · · s1 = w−1
0 sβw0 . Therefore µ0 = w0sα(λ) = sβ(λ0), and

〈λ0, β
∨〉 = 〈λ, s1 · · · sr(β)∨〉 = 〈λ, α∨〉 = h . The case k = 0 now follows by Lemma

3.1.

Now suppose we have an embedding M(µk) ↪→M(λk) as above. Note that
wk+1 = sr−kwk and αk = wkα . Also µk = wkµ = λk − hαk , and 〈λk, α

∨
k 〉 = h ,

so that µk = sαk
(λk). We now apply Proposition 3.3 (with ν := µk , η := λk ,

β := βr−k ). We have βr−k ∈ ∆ and βr−k 6= αk as αk 6∈ ∆. Furthermore,
m = 〈sr−k · · · s1µ, β

∨
r−k〉 = −〈µ, s1 · · · sr−k−1(βr−k)

∨〉 = ar−k . In the same way
n = 〈λk, β

∨
r−k〉 = −br−k . So by Proposition 3.3, if we set

Yk+1 = y
ar−k

βr−k
Yky

br−k

βr−k
,

then we have an embedding M(µk+1) = M(sβr−k
µk) ↪→ M(sβr−k

λk) = M(λk+1)
by vµk+1

7→ Yk+1 · vλk+1
.

Finally we note that λr = λ , µr = µ .
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It is possible to reformulate the algorithm in such a way that it looks more
like the method from [18]. The construction described in [18] works as follows.
Write sα = sαi1

· · · sαit
, as a product of simple reflections. For 1 ≤ k ≤ t set

mk = 〈sαik+1
· · · sαit

λ, α∨ik〉 . Then Y = ym1
i1
· · · ymt

it
is an element of U(n−) and we

have an embedding M(µ) ↪→M(λ) by vµ 7→ Y ·vλ . Now, using the same notation
as in the description of the algorithm, the expression we get is

ya1
β1
· · · yar

βr
yh

βy
br
βr
· · · yb1

β1
.

As remarked in the proof of Proposition 3.6, sα = s1 · · · srsβsr · · · s1 (where
again we write si = sβi

). Furthermore, bk = 〈sk−1 · · · s1λ, β
∨
k 〉 , h = 〈λ, α∨〉 =

〈sr · · · s1λ, β
∨〉 , ak = 〈sk+1 · · · srsβsr · · · s1λ, β

∨
k 〉 . So we see that our method is a

special case of the construction in [18]. However, the difference is that we have
an explicit method to rewrite the element above to an element of U(n−). By the
next lemma the expression we use for sα is the shortest possible (so we cannot do
essentially better by taking a different reduced expression).

Lemma 3.7. The expression sα = s1 · · · srsβsr · · · s1 obtained by the first step
of the algorithm, is reduced.

Proof. Set γ = s1(α) = α −mβ1 , where m > 0. Then sα = ss1(γ) = s1sγs1 .
By induction, the expression sγ = s2 · · · srsβsr · · · s2 is reduced. We show that
`(sα) = `(sγ) + 2. For this we use the fact that the length of an element w of the
Weyl group is equal to the number of positive roots that are mapped to negative
roots by w . Write Φ+ = A∪{β1} , where A = Φ+ \ {β1} . There is a positive root
δ0 ∈ Φ with sγs1δ0 = β1 . Set S = {δ ∈ A | sγs1δ < 0} ∪ {δ0, β1} . Then sα maps
all elements of S to negative roots. Since 〈γ, β∨1 〉 = −m < 0, also 〈β1, γ

∨〉 < 0,
and hence sγ(β1) > 0. So all roots that are mapped to negative roots by sγ are in
A . Therefore, since s1 permutes A , there are `(γ) roots δ ∈ A with sγs1(δ) < 0.
We conclude that the cardinality of S is `(γ) + 2. So `(α) ≥ `(γ) + 2, but that
means that `(α) = `(γ) + 2.

We can use the algorithm described in this section to construct general
formulas for singular elements. More precisely, let γ be a fixed root in the root
system of g . Then by applying the formulas of Section 2. symbolically we can
derive a formula that given arbitrary weights λ, µ such that 〈λ, γ∨〉 ∈ Z>0 and
µ = sγ(λ) produces an element Y ∈ U(n−)λ−µ such that Y · vλ is singular. We
illustrate this with an example.

Example 3.8. Suppose that g is of type A3 . We use the same basis of n− as
in Example 3.4. We consider the root α + β + γ . Let λ = (r1, r2, r3) be such
that h = r1 + r2 + r3 is a positive integer. A reduced expression of sα+β+γ is
sαsβsγsβsα . The corresponding element of U(n−) is

Y = yr2+r3
α yr3

β y
h
γy

r1+r2
β yr1

α .

First we have

yr3
β y

h
γy

r1+r2
β =

h∑
k=0

(−1)k

(
h

k

)(
r1 + r2
k

)
k!yh−k

β yh−k
γ yk

β+γ.
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Now to obtain the formula for Y we have to apply Lemma 2.2 three times (and
Lemma 2.1 a few times). We get

Y =
h∑

k=0

k∑
l=0

h−k∑
s=0

s∑
t=0

(−1)k+l+s

(
h

k

)(
r1 + r2
k

)(
k

l

)(
r1
l

)(
h− k

s

)(
r1 − l

s

)
(
s

t

)(
h− k

t

)
k!l!s!t!yh−l−s

α yh−k−s
β yh−k−t

γ ys−t
α+βy

k−l
β+γy

l+t
α+β+γ.

Table 1 contains a few running times of the implementation of this algorithm
in GAP4. The root γ is in each case the highest root of the root system. The

type length time (s)
A6 29 0.2
D6 109 1.6
E6 316 2.9
E7 2866 26.3
E8 > 10556 ∞

Table 1: Running times for the computation of a formula for a singular vector.

length of a formula is the number of summations it contains (so the length of the
above formula for A3 is 4). The computation for E8 did not terminate in the
available amount of memory (100M). When the program exceeded the memory,
the expression contained 10556 summations.

Remark 3.9. It is also possible to use this method to obtain formulas for a
fixed type, but variable rank. However, for that a convenient Chevalley basis
needs to be chosen. We refer to [18], Section 5, for the formula for An .

Remark 3.10. We have chosen Q as the ground field, because it is easy to
work with. However, from the algorithm it is clear that instead we can choose any
field F of characteristic zero and construct embeddings of Verma modules with
highest weights from FP .

4. Composition of embeddings

In this section we consider the problem of obtaining an embedding M(ν) ↪→M(λ),
where ν = sαsβ(λ) < sβ(λ) < λ . The obvious way of doing this is to set µ = sβ(λ)
and obtain the embeddings M(ν) ↪→M(µ), M(µ) ↪→M(λ) and composing them.
This amounts to multiplying two elements of U(n−). This then corresponds to an
expression for sαsβ , which is not necessarily reduced. The question arises whether
in this case it is possible to do better, i.e., to start with a reduced expression for
sαsβ = sαi1

· · · sαir
, set mk = 〈sαik+1

· · · sαit
λ, α∨ik〉 , and rewrite Y = ym1

i1
· · · ymt

it
to

an element of U(n−). The next example shows that this does not always work.

Example 4.1. Let Φ be of type F4 , with simple roots α1, . . . , α4 and Cartan
matrix 

2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 .
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Let α = α1 + α2 + 2α3 and β = α1 + 2α2 + 2α3 + α4 . We abbreviate a weight
a1λ1 + · · ·+a4λ4 by (a1, a2, a3, a4). Set λ = (5

6
,−1

2
, 2

3
, 0) and ν = (−1

6
,−1

2
,−1

3
, 2).

Then ν = sαsβ(λ). Write si = sαi
. Then a reduced expression of sαsβ is

s1s2s1s3s2s1s3s2s4s3s2s1s3s2.

We get

Y = y
1
6
1 y

2
3
2 y

1
2
1 y

5
3
3 y

3
2
2 y1y

4
3
3 y

5
6
2 y4y

4
3
3 y

1
2
2 y

1
3
1 y

− 1
3

3 y
− 1

2
2 .

And I do not see any direct way to rewrite this as an element of U(n−).

In general we have to obtain the embedding by composition. In this example
set µ = sβ(λ) = λ − β = (5

6
,−3

2
, 5

3
, 0). Then for the embedding M(µ) ↪→ M(λ)

we get

Y1 = y
2
3
2 y

4
3
3 y

2
3
1 y

1
2
2 y

− 1
3

3 y4y
4
3
3 y

1
2
2 y

1
3
1 y

− 1
3

3 y
− 1

2
2 .

For the embedding M(ν) ↪→M(µ) we get

Y2 = y
1
6
1 y

1
3
3 y2y

5
3
3 y

5
6
1 .

Then the product Y2Y1 will provide the embedding M(ν) ↪→M(λ).

5. Affine algebras

In this section we comment on finding embeddings of Verma modules of affine
Kac-Moody algebras. First we fix some notation and recall some facts. Our main
reference for this is [12].

We let ĝ be the (untwisted) affine Lie algebra corresponding to g , i.e.,

ĝ = Q[t, t−1]⊗ g⊕QK ⊕Qd

with multiplication

[tm ⊗ x+ a1K + b1d, t
n ⊗ y + a2K + b2d] =tm+n ⊗ [x, y] + b1nt

n ⊗ y − b2mt
m ⊗ x

+mδm,−nκ(x, y)K,

where m,n ∈ Z , x, y ∈ g , a1, a2, b1, b2 ∈ Q and κ( , ) is the Killing form on g .

The Lie algebra ĝ has a triangular decomposition ĝ = n̂− ⊕ ĥ ⊕ n̂+ . Here
n̂− is spanned by the tm⊗yi for m ≤ 0, along with tn⊗xi , and tn⊗hj for n < 0.

The subalgebra ĥ is spanned by the t0 ⊗ hi and K and d . Furthermore, n̂+ is
spanned by the tm ⊗ xi for m ≥ 0, along with tn ⊗ yi and tn ⊗ hj for n > 0.

The Verma module M(λ) of highest weight λ is defined in the same way
as for g . As vector spaces M(λ) ∼= U(n̂−). Let α be a positive root of ĝ . Then
from [13] we get that M(λ−nα) embeds in M(λ) if and only if 2(λ, α) = n(α, α),
where n is a positive integer.

Now if α is a real root with 2(λ, α) = n(α, α), then we can construct a
singular vector in U(n̂−)nα by essentially the same method as in Section 3.. The
only difference is the algorithm for rewriting fn−r

i af r
i , where r ∈ Q , a ∈ U(n̂−),

and fi a basis element of n− . We need commutation relations ymf r
i = f r

i y
m + · · · ,

where y runs through the basis elements of n̂− .
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First of all, if fi = tj ⊗ xα for some α ∈ Φ, and y = tk ⊗ xβ for
some β ∈ Φ such that α + β ∈ Φ, then set ymα+nβ = tmj+nk ⊗ xmα+nβ . Set
B = {ymα+nβ | mα+nβ ∈ Φ} . Then B spans a subalgebra of ĝ isomorphic to the
subalgebra of g spanned by the corresponding xmα+nβ . The isomorphism is given
by ymα+nβ 7→ xmα+nβ . So we get the same formula as in the finite-dimensional
case.

Now suppose that α+β = 0. Then j+ k ≤ 0; so [fi, y] = tj+k ⊗hα , where
hα = [xα, x−α] . In this case we use the following relation:

(tk ⊗ x−α)(tj ⊗ xα)r =(tj ⊗ xα)r(tk ⊗ x−α)−
r(tj ⊗ xα)r−1(tk+j ⊗ hα)− r(r − 1)(tj ⊗ xα)r−2(tk+2j ⊗ xα),

which is easily proved by induction. If tk⊗x−α occurs with an exponent > 1 then
we use this formula repeatedly.

The last possibility is

(tk ⊗ hq)(t
j ⊗ xα)r = (tj ⊗ xα)r(tk ⊗ hq) + r〈α, α∨q 〉(tj ⊗ xα)r−1(tk+j ⊗ xα).

Again, we use this formula repeatedly if tk ⊗ hq occurs with exponent > 1.

Now we suppose that α = mδ is an imaginary root with (λ, α) = 0 (here
δ is the fundamental imaginary root). Then M(λ− nα) ↪→ M(λ) for all positive
integers n . In this case there are a lot of singular elements. One class of them is
easily constructed. Let u1, . . . , uq , u1, . . . , uq be two basis of g , dual to each other
with respect to the Killing form. For n > 0 set

Sn =

q∑
i=1

n∑
j=0

(t−j ⊗ ui)(t
j−n ⊗ ui).

Lemma 5.1. Suppose that (λ, δ) = 0, then Sn ·vλ is a singular vector of weight
nδ in M(λ).

Proof. From [12], 12.8 we have the Sugawara operators

Ts =
∑
m∈Z

q∑
i=1

(t−m ⊗ ui)(t
m+s ⊗ ui).

It is straightforward to see that Sn · vλ = T−n · vλ . Now K acts on M(λ) as scalar
multiplication by −h∨ , where h∨ is the dual Coxeter number. But also by [12],
Lemma 12.8 we have for x ∈ g :

[tm ⊗ x, T−n] = 2m(K + h∨)(tm−n ⊗ x).

From this it follows that x · Snvλ = 0 for 0 ≤ i ≤ l , x ∈ n+ . Therefore Sn · vλ is
a singular vector.

Lemma 5.1 provides an infinite number of singular vectors. However, these
are not the only ones. In [17] it is shown that for n > 0 and 1 ≤ i ≤ l there are
independent elements Si

n ∈ U(n̂−) of weight nδ , such that Si
n · vλ is a singular

vector. These Si
n are constructed from the generators of the centre of U(g). In
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this construction the Sn correspond to the Casimir operator. However, with the
exception of the Casimir operator, I do not know of efficient algorithms to construct
the generators of the centre of U(g). For example, the explicit expressions given
in [8] for a generator of the centre of degree s involve sums of (dim g)s terms. So
constructing generators of the centre of U(g) appears to be a very hard algorithmic
problem in its own right.

The conclusion is that we have efficient algorithms to construct an inclusion
M(λ− nα) ↪→M(λ) if α is a real root, or when α is imaginary. However, in the
last case there are many singular vectors which at present appear to be rather
difficult to construct.

6. Constructing irreducible representations

In [16], P. Littelmann proves a theorem describing a particular basis of the ir-
reducible representations of g , using inclusions of Verma modules. Apart from
giving a basis this result also allows one to construct the irreducible representa-
tions of g . In this section we first briefly indicate how this works, and then give
some experimental data concerning this algorithm.

The first ingredient of the construction is Littelmann’s path method. Here
we only give a very rough description of that method; for the details we refer
to [14], [15]. A path is a piecewise linear function π : [0, 1] → RP , such that
π(0) = 0. Such a path is given by two sequences µ̄ = (µ1, . . . , µr) and ā =
(a0 = 0, a1, . . . , ar = 1), where the µi ∈ RP and the ai are real numbers with
0 = a0 < a1 < . . . < ar = 1. The path π corresponding to this data is given by

π(t) = (t− as−1)µs +
s−1∑
i=1

(ai − ai−1)µi for as−1 ≤ t ≤ as.

Let λ be a dominant weight. Then the path πλ is given by the sequences (λ)
and (0, 1), i.e., it is the straight line from the origin to λ . For α ∈ ∆ there is
a path-operator fα . Given a path π , fα(π) is a new path, or 0. Set B(λ) =
{fαi1

· · · fαik
(πλ) | k ≥ 0, αij ∈ ∆} , and let V (λ) be the irreducible g-module

with highest weight λ . Then from [14], [15] we have that the endpoints of the
paths in B(λ) are weights of V (λ) and the number of paths with endpoint µ is
equal to the dimension of the weight space in V (λ) with weight µ .

Let π ∈ B(λ) be given by (µ1, . . . , µr) and (a0 = 0, a1, . . . , ar = 1). Set
µr+1 = λ and νi = aiµi and ηi = aiµi+1 for 1 ≤ i ≤ r . Then it can be shown that
M(νi) ↪→ M(ηi). Let Θi ∈ U(n−)ηi−νi

be such that Θi · vηi
is a singular vector.

Then set Θπ = Θ1 · · ·Θr . The element Θπ ∈ U(n−)λ−π(1) is determined upto a
multiplicative constant.

Now in [16] an inclusion B(mλ) ↪→ B(nλ) is described for m < n . With
this inclusion we can view B(mλ) as as a subset of B(nλ). Furthermore, B(λ,∞)
denotes the union of all B(mλ) for m ≥ 1. Write λ = n1λ1 + · · · + nlλl , and let
I(λ) be the left ideal of U(n−) generated by the elements yni+1

i for 1 ≤ i ≤ l .
Then V (λ) = M(λ+ ρ)/I(λ) · vλ , where ρ = λ1 + · · ·+λl . Now from [16] we have
the following result.

Proposition 6.1. Suppose that all ni > 0. Then {Θπ | π ∈ B(λ,∞), π 6∈
B(λ)} is a basis of I(λ).
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(If some ni = 0 then there is a similar result, which we will omit here, cf.
[16].)

In order to construct and work with the quotient M(λ+ ρ)/I(λ), we need
a basis of I(λ). If λ− µ is not a weight of V (λ), then I(λ) ∩ U(n−)µ = U(n−)µ .
So we only need bases of the spaces I(λ) ∩ U(n−)µ where λ − µ is a weight of
V (λ). By the above theorem we can compute those bases by first computing paths
π ∈ B(λ,∞) with π(1) = λ − µ , and then constructing the corresponding Θπ .
We call this algorithm A.

In Table 2, the running times are given of algorithm A on some sample
inputs. Also listed are the running times of the algorithm described in [9], which
uses a Gröbner basis method to compute bases of the spaces I(λ) ∩ U(n−)µ . We
call it algorithm B. In order to fairly compare both algorithms, the output in both
cases consisted of the representing matrices of a Chevalley basis of g .

type λ dimV (λ) ] inclusions time A (s) time B (s)
A2 (2, 2) 27 64 1 1
A2 (3, 4) 90 296 2 5
A2 (5, 5) 216 788 7 14
A3 (1, 1, 1) 64 897 17 6
A3 (2, 1, 1) 140 2834 56 15
A3 (2, 1, 2) 300 7837 178 40
B2 (2, 2) 81 807 10 6
B2 (3, 3) 256 3330 56 23
B2 (4, 4) 625 9502 347 79

Table 2: Running times (in seconds) of the algorithms A and B for the construction
of V (λ). The fourth column displays the number of inclusions of Verma modules
computed by algorithm A. The ordering of the fundamental weights is as in [2].

We see that for type A2 , algorithm A competes well with algorithm B.
However, for the other types considered this is not the case. In these cases huge
numbers of inclusions of Verma modules have to be constructed, which slows the
algorithm down considerably. I have also tried to construct V (λ) for λ = (1, 1, 1),
and g of type B3 . But algorithm A did not complete this calculation within the
available amount of memory (100M).
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