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Abstract. Functional limit theorems for random step lines and ran-
dom broken lines defined by sums of iid random variables with replace-
ments are obtained and discussed. Also we obtained functional limit
theorems for integrals of such random processes. We use our results to
study a number of models of the financial market.

1. Introduction
The paper deals with random step lines processes and random broken lines

processes defined by sums of independent identically distributed random vari-
ables multiplied by values of indicators defined on another probability space.
These processes describe some models in which random variables are replaced
with other one. We prove our theorems in the Skorokhod space Db(R+) of
bounded functions defined on R+ = [0,∞) and in the space Cb(R+) of bounded
continuous functions defined on R+.

For the indicators we will assume that one of the following properties is
valid:

1) in each line the indicators are independent;
2) the indicators are defined by occupations of series of balls.
And our limit theorems are founded on strong laws of large numbers for the

indicators (Lemma 1, Lemma 2 and there Corollaries). Observe, that in the
case 2) weak law of large numbers for the indicators follows from Theorem 1
on p. 22 in (Kolchin, Sevast’ianov, and Chistiakov, [1]). So Lemma 2 is a
straightness of this result.

We have different types of replacements:
a) summands are replaced randomly by zeros;
b) summand are replaced randomly by nonzero random variables.
Also we consider various examples which show that the class of such indi-

cators is sufficiently large. In the case of the convergence to gaussian process
we prove the convergence for integrals of our processes in the space C[0, T ],
0 < T < ∞, of bounded continuous functions defined on [0, T ].
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As a corollaries we obtain functional limit theorems in the case then indica-
tors and random variables are defined on the same probability space and are
independent. In this case our limit theorems can be considered as functional
limit theorems for random sums (see about limit theorems for random sums,
for example Korolev and Kruglov [2]).

We give some applications of our results to some models of stochastic fi-
nancial mathematics. We construct three models of a financial market: the
market with constant number of agents, the market with increasing number
of agents and the market with decreasing number of agents. We suppose that
the trading policy is changing during the time and we consider various types
of this changing. For such models we construct the random processes of stock
market price with respect to market probability and we construct the random
processes of stock market price with respect to risk-neutral probability.

The limit theorems for such models for almost all sequences of the trade
policy changing are given. Using this limit theorems we obtained analogs of
Black-Scholes formula for there models.

For the space Cb(R+) the method of the proofs of our theorems is the same
as those of Prokhorov theorem (see Prokhorov, [3]) and for the space Db(R+)
the method of the proofs of our theorems is the same as those of Skorokhod
theorem (see Gihman and Skorokhod, [4]). Our results generalizes functional
limit theorems from Fazekas and Chuprunov [5]. We mention that in Rusakov
[6], another type of replacement was considered and a functional limit theorem
with an Ornstein-Uhlenbeck limit process was proved.

2. Preliminary results: strong laws of large numbers.

We will use the following denotation:
d−→ – the convergence in distribution;
P−→ – the convergence in probability;

d
= – the equality in distribution (for random processes

d
= is the equality of

finite dimensional distributions);
IN – the set of positive integers;
Q – the set of rational numbers;
Q+ = IR+ ∩Q;
QT – the set of numbers yT where y ∈ [0, 1] ∩Q;
[c] – integer part of a real number c;
{c} – fractional part of a real number c;
L(X) – the law of distribution of a random element or a random processes X;
1IA – the indicator function of an event A;
γ(v) – a gaussian random variable with the expectation zero and the variance
v2;
Φ – distribution function of γ(1);
σ2(ξ) – the variance of the random variable ξ;
W (t), W ′(t) – the independent standard Brownian motions (Bm);
WD(t), WD′(t), t ∈ IR+ – the independent homogeneous infinitely divisible
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random processes with independent increments such that WD(1)
d
= γD and

WD′(1)
d
= γD′ where γD and γD′ is an infinitely divisible random variables.

For any (ai) we will suppose that
∑
i∈∅

ai = 0 and
∏
i∈∅

ai = 1.

We will consider two probability spaces {Ω, A,P} and {Ω1, A1,P1}. The
first probability space will play a role of a space of noise, and the second one
will play a role a space of information. Next we denote by E and E1 the
mathematical expectations respectively to the probabilities P and P1.

We will consider a scheme of series parameterized by a natural n. Through-
out the paper we will use a previously fixed natural parameter m playing a
role of viscosity for an information. It shows a rate of changing of informa-
tional events along the discrete time. We will examine an asymptotic under a
sequence (kn) of natural numbers such that kn →∞ as n →∞ and kn < kn+1,
n ∈ N.

We will denote informational events from A1 as Aij ≡ Aij(n) for i, j ∈ IN,

and corresponding indicators will denote as 1IAij(n)(ω1)
4
= 1Iij ≡ 1Iij(n), ω1 ∈

Ω1. We will suppose that probabilities of these events independent of the time
index i, i.e. the sequence (informational flow) (Aij)

∞
i=1 is homogeneous on the

time,

P1{Aij(n)} 4
= pj(n) ≡ pj, ∀i ∈ N

In connect with some ways an interpretation and a formalization an informa-
tion flow we will suppose that the informational events Aij(n) satisfy to one
of the following properties:

(A) Aij(n) are mutually independent over all n ∈ IN and such that for all
x ∈ IR+ for a continues function f the following limit relation holds and the
corresponding limits exist

f(x)
4
= lim

n→∞
E1{1Ii1(n)1Ii2(n) · · · 1Ii[knx](n)} = lim

n→∞
p1(n)p2(n) · · · p[knx](n)

In particular, (A) implies that f(0) = 1 and f is decreasing.

(A1) Let ξ, ξj, j ∈ N be independent identically uniformly distributed
on [0, 1) random variables defined on (Ω1, A1,P1), ∆i = ∆ni = [ i−1

kn
, i

kn
), 1 ≤

i ≤ kn and m ∈ N.
Define the informational events with connection to the split ∆ of the interval

[0, 1)

Aij ≡ Aij(n,m) = ∩mj
k=m(j−1)+1 {ω1 ∈ Ω1 : ξk(ω1) 6∈ ∆i} , 1 ≤ i ≤ kn, j, n ∈ N.

For defined here information events there exists a natural interpretation. The
intervals ∆j, j = 1, . . . , kn we treat as a row of boxes. Random variables ξj

are independent copies of rv ξ. Each realization of rv ξ we treat as random
allocation one ball onto the kn boxes. We consider series containing m balls.
And the equality 1Iij to one means that for a random occupation all balls
from jth series do not allocate the ith box. We will use the following simple

corollaries of well-known results.
Lemma 1. Let gni : Ω1 → R, 1 ≤ i ≤ kn, n ∈ N be independent identically

distributed random variables in each series such that for all 1 ≤ i ≤ kn, n ∈ N,
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E1(gni − E1gni)
4 ≤ C for some C > 0 and E1gin → p as n → ∞. Then we

have

1

kn

kn∑
i=1

gni → p as n →∞

almost surely.

Proof. Observe that E1

∣∣∣ 1
kn

kn∑
i=1

(gni − E1gni)
∣∣∣
4

≤ 7C
k2

n
, n ∈ N. Therefore

for all ε > 0 it holds
∞∑

n=1

P1{
∣∣∣ 1
kn

kn∑
i=1

(gni − E1gni)
∣∣∣ > ε} ≤ 1

ε4

∞∑
n=1

7C
k2

n
< ∞.

Consequently, 1
kn

kn∑
i=1

(gni − E1gni) → 0 as n →∞ almost sure. Then we have

1

kn

kn∑
i=1

gni − p =
1

kn

kn∑
i=1

(gni − E1gni) + E1gni − p → 0

as n →∞ almost sure. The proof is complete.
We will set

f1n(t) = f1n(t)(ω1) =
kn∑
i=1

1I[knt]i(n)1I([knx]−1)i(n) · · · 1I1i(n), t ∈ R+, ω1 ∈ Ω1

and

f2n(t) = f2n(t)(ω1) =
kn∑
i=1

(1−1I[knt]i(n)1I([knx]−1)i(n) · · · 1I1i(n)), t ∈ R+, ω1 ∈ Ω1,

where n ∈ N.
Corollary 1. Let (A) be valid. Then there exists Ω′ ⊂ Ω1 such that

P1(Ω
′) = 1 and for all ω1 ∈ Ω′ uniformly by t ∈ R+ one has

f1n(t)(ω1)

kn

→ f(t) as n →∞. (1)

Proof. By Theorem A there exists Ω′ ⊂ Ω1 such that P1(Ω
′) = 1 and for

all ω1 ∈ Ω′ for all t ∈ Q+ (1) is valid.
Let ω1 ∈ Ω′ and t ∈ R+. Choose t1, t2 ∈ Q+ such that 0 ≤ t1 ≤ t ≤ t2.

Since f1n is a decreasing function we have

f1n(t2)(ω1)

kn

≤ f1n(t)(ω1)

kn

≤ f1n(t1)(ω1)

kn

.

Therefore, one has

f ∗(t2) ≤ lim inf
n→∞

f1n(t)(ω1)

kn

≤ lim sup
n→∞

f1n(t)(ω1)

kn

≤ f(t1).

By the continuity of f(t) this follows (1) uniformly by t ∈ R+. The corollary
is proved.

Corollary 2. Let (A) be valid. There exists Ω′ ⊂ Ω1 such that P1(Ω
′) = 1

and for all ω1 ∈ Ω′ uniformly by t ∈ R+ one has
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f2n(t)(ω1)

kn

→ 1− f(t) as n →∞.

Since f2n(t) = kn − f1n(t), t ∈ R+, Corollary 2 follows from Corollary 1.
From Theorem 1 on p. 22 in (Kolchin, Sevast’ianov, and Chistiakov, [1]) it

follows that for all t > 0 1
kn

∑kn

i=1

∏[tkn]
j=1 Ipji → e−mt, as n →∞ in probability.

Consider more strong version of this result.
Lemma 2. Let (A1) be valid. For all t ∈ R+ we have

1

kn

kn∑
i=1

[tkn]∏
j=1

1Ipji → e−mt, as n →∞.

almost sure.
Proof. Let t ∈ R+. Denote gni =

∏[tkn]
j=1 1Ipji,

gi = gni − E1gni = gni −
(

1− 1

kn

)m[tkn]

.

We will estimate

I = E1

(
kn∑
i=1

gi

)4

=
kn∑

j1=1

kn∑
j2=1

kn∑
j3=1

kn∑
j4=1

Egj1gj2gj3gj4

= knE(g1)
4 + 6kn(kn − 1)E(g1)

2(g2)
2 + 4kn(kn − 1)E(g1)

3g2

+ 12kn(kn − 1)(kn − 2)E(g1)
2g2g3 + 24kn(kn − 1)(kn − 2)(kn − 3)Eg1g2g3g4

= I1 + 6I2 + 4I3 + 12I4 + 24I5.

Since |gi| ≤ 1, we have

I1 + 6I2 + 4I3 ≤ kn + 6kn(kn − 1) + 4kn(kn − 1) ≤ 10k2
n. (2)

Using the inequality ak − bk ≤ k(a − b), 0 ≤ b ≤ a ≤ 1, k ∈ N and the
inequality

(
1− 1

kn

)2m[tkn](
1− 2

kn

)m[tkn]

−
(
1− 1

kn

)4[tkn]

≤ 0
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we obtain

I4 ≤ k3
nE

(
[tkn]∏
i=1

1I{ξi 6∈∆1} −
(
1− 1

kn

)m[tkn]
)2

×
(

[tkn]∏
i=1

1I{ξi 6∈∆2} −
(
1− 1

kn

)m[tkn]
)(

[tkn]∏
i=1

1I{ξi 6∈∆3} −
(
1− 1

kn

)m[tkn]
)

= k3
nE

(
[tkn]∏
i=1

1I{ξi 6∈∆1} −
(
2

[tkn]∏
i=1

1I{ξi 6∈∆1}
)(

1− 1

kn

)m[tkn]

+
(
1− 1

kn

)2m[tkn]
)

×
(

[tkn]∏
i=1

I{ξi 6∈∆2∪∆3} −
([tkn]∏

i=1

I{ξi 6∈∆2}
)(

1− 1

kn

)m[tkn]

−
([tkn]∏

i=1

I{ξi 6∈∆1}
)(

1− 1

kn

)m[tkn]

+
(
1− 1

kn

)2m[tkn]
)

≤ k3
nE

(([tkn]∏
i=1

I{ξi 6∈∆1}
)(

1− 2
(
1− 1

kn

)m[tkn])
+

(
1− 1

kn

)2m[tkn]
)

×
(

[tkn]∏
i=1

I{ξi 6∈∆2∪∆3} −
([tkn]∏

i=1

I{ξi 6∈∆2}
)(

1− 1

kn

)m[tkn]

−
[tkn]∏
i=1

I{ξi 6∈∆3}
(
1− 1

kn

)m[tkn]

+
(
1− 1

kn

)2m[tkn]
)

= k3
n

((
1− 2

(
1− 1

kn

)m[tkn])((
1− 3

kn

)m[tkn]

− 2
(
1− 2

kn

)m[tkn](
1− 1

kn

)m[tkn]

+
(
1− 1

kn

)3m[tkn]
)

+
(
1− 1

kn

)2m[tkn](
1− 2

kn

)m[tkn]

−
(
1− 1

kn

)4m[tkn]
)

≤ n3

((
1− 1

kn

)3m[tkn]

−
(
1− 2

kn

)m[tkn](
1− 1

kn

)m[tkn]
)

≤ k3
n

((
1− 2

kn

+
1

k2
n

)m[tkn]

−
(
1− 2

kn

)m[tkn]
)
≤ k3

n

1

k2
n

m[tkn] ≤ mtk2
n. (3)
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Now, using the Newton binomial, we have

I5 ≤ k4
nEg1g2g1g3g4 = k4

n

((
1− 4

kn

)m[tkn]

− 4
(
1− 3

kn

)m[tkn](
1− 1

kn

)m[tkn]

+ 6
(
1− 2

kn

)m[tkn](
1− 1

kn

)2m[tkn]

− 4
(
1− 1

kn

)4m[tkn]

+
(
1− 1

kn

)4m[tkn]
)

= k4
n

((
1− 4

kn

)m[tkn]

− 4
(
1− 4

kn

+
3

k2
n

)m[tkn]

+ 6
(
1− 4

kn

+
5

k2
n

− 2

k3
n

)m[tkn]

− 3
(
1− 4

kn

+
6

k2
n

− 4

k3
n

+
1

k4
n

)m[tkn]
)

= k4
n

((
1− 4

kn

)m[tkn]

− 4

m[tkn]∑

k=0

Ck
m[tkn]

(
1− 4

kn

)m[tkn]−k( 3

k2
n

)k

+ 6

m[tkn]∑

k=0

Ck
m[tkn]

(
1− 4

kn

)m[tkn]−k( 5

k2
n

− 2

k3
n

)k

− 3

m[tkn]∑

k=0

Ck
m[tkn]

(
1− 1

kn

)m[tkn]−k( 6

k2
n

− 4

k3
n

+
1

k4
n

)k
)

= k4
n

(
kn

(
−12

k2
n

+
30

k2
n

− 12

k3
n

− 18

k2
n

+
12

k3
n

− 3

k4
n

)(
1− 1

kn

)m[tkn]−1

+

m[tkn]∑

k=2

Ck
m[tkn]

[
−4

( 3

k2
n

)k

+6
( 5

k2
n

− 2

k3
n

)k

−3
( 6

k2
n

− 4

k3
n

+
1

k4
n

)k])
.

Since

kn

(
−12

k2
n

+
30

k2
n

− 12

k3
n

− 18

k2
n

+
12

k3
n

− 3

k4
n

)(
1− 1

kn

)m[tkn]−1

< 0

and

−4
( 3

k2
n

)k

+6
( 5

k2
n

− 2

k3
n

)k

−3
( 6

k2
n

− 4

k3
n

+
1

k4
n

)k

< 0

for k > 4, we have

I5 ≤ k4
n

4∑

k=2

Ck
m[tkn]

[
−4

( 3

k2
n

)k

+6
( 5

k2
n

− 2

k3
n

)k

−3
( 6

k2
n

− 4

k3
n

+
1

k4
n

)k]
≤

≤ k4
n

k2
n

4∑

k=2

Ck
m[tkn]

k
2(k−1)
n

6 · 5k ≤ 6
(
t2m2 25

2
+ t3m3 125

6kn

+ t4m4 625

24k2
n

)
k2

n. (4)
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From (2), (3) and (4) we obtain

E

(
kn∑
i=1

(
gni − E1gni

))4

≤ C ′k2
n,

where C ′ does not depends from n. Further the proof repeats the proof of
Lemma 1.

Corollary 1. Let (A1) be valid. Then there exists Ω′ ⊂ Ω1 such that
P1(Ω

′) = 1 and for all ω1 ∈ Ω′ uniformly for t ∈ R+ one has

f1n(t)(ω1)

kn

→ e−mx as n →∞.

Corollary 2. Let (A1) be valid. Then there exists Ω′ ⊂ Ω1 such that
P1(Ω

′) = 1 and for all ω1 ∈ Ω′ uniformly for x ∈ R+ one has

f2n(t)(ω1)

kn

→ 1− e−mt as n →∞.

The proofs of Corollary 1 and Corollary 2 is the same as ones of Lemma 1.
We will denote fm(t) = e−mt, t ∈ R+.

3. Preliminary results: functional limit theorems

To construe our noise structure and to study the random processes we give
conditions and definitions for considered random elements on {Ω, A,P}.

(Y) Let Yn, Yni, n, i ∈ N be an rectangle array of random variables defined
on {Ω, A,P} which are independent and identically distributed in each string.

(Y’) Let Y ′
n, Y ′

ni, i ∈ N be an array of independent and identically distributed
in each string random variables defined on (Ω, A,P) such that Y ′

ni, Yni, i ∈ N
are independent random variables for all n ∈ N.

And we will assume that some of the following conditions are satisfied:

(C)
kn∑
j=1

Ynj
d−→ γD, as n →∞; (C’)

kn∑
j=1

Y ′
nj

d−→ γD′ , as n →∞;

(S)
kn∑
i=1

Yni
d−→ γ(v), as n →∞; (S’)

kn∑
i=1

Y ′
ni

d−→ γ(v′), as n →∞.

The following theorem is a simple corollary of Lindeberg-Feller Theorem.
Theorem A. Let (Y) be fulfilled.
(1) The condition (S) is valid if and only if

(1b) for all ε > 0 knP{|Yn| > ε} → 0 as n →∞;

(2b) knEYn1I{|Yn|≤1} → 0 as n →∞;

and

(3b) knσ
2(Yn1I{|Vn|≤1}) → v2, as n →∞.
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(2) Let (S) be valid and bni ∈ R be such that sup{1≤i≤kn,n∈N} |bni| < ∞.

Denote Un =
kn∑
i=1

bniYni, n ∈ N. Then Un
d−→ γ(s) as n →∞ if and only if

(4b) σ2(Yn1I{|Yn|≤1})
∑kn

i=1(bni)
2 → s2, as n →∞.

(D) Let fn(x), f ∗(x) : IR+ 7→ IR+, n ∈ IN be integer valued functions, f ∗(x)
is a continue bounded function plays a role of the following limit

fn(x)

kn

→ f ∗(x), as n →∞

for all x ∈ [0,∞] and one of the following conditions is true:
a) fn are increasing functions;
b) fn are decreasing functions.
In the paper we will examine a sequence of the random processes with a

time scale managing by the functions (fn(x)),

(Z0′) X ′
∗n(x) = X ′

∗n(Y )(x) =

fn(x)∑
i=1

Yni, x ∈ IR+, n ∈ IN

and their modifications formed by piece-wise linear continuous broken lines,

(Z0) X0n(x) = X0n(Y )(x) = X ′
∗n(xk) +

x− xk

xk+1 − xk

(X ′
∗n(xk+1)−X ′

∗n(xk)) ,

n ∈ IN, x ∈ [xk, xk+1), where 0 = x0 < x1 < x2 . . . are the points of jumps
of fn.

Theorem B. Let the conditions (C) and (D) be valid. Then for the pro-
cesses, defined by (Z0’) one has

X ′
∗n

d→ Wf∗D, as n →∞
in Db(R+) where Wf∗D(x) = WD(f ∗(x)), x ∈ R+.

The proof of Theorem B is the same as one of Skorokhod Theorem (see
Theorem 1 on p. 547, [4]).

Theorem C. Let the conditions (S) and (D) be valid. Then for the pro-
cesses, defined by (Z0) one has

X0n
d→ Wf∗v, as n →∞

in Cb(R+), where Wf∗v(x) = W (v2f ∗(x)), x ∈ R+.
Proof. We represent X0n as follows

X0n = X0n(Y (1)) + X0n(Y (2)) + X0n(Y (3)),

where Y
(3)
n = YnI{|Yn|>1}, Y

(2)
n = EYn1I{|Yn|≤1}, and Y

(1)
n = Yn1I{|Yn|≤1} −

EYn1I{|Yn|≤1}. Since for all ε > 0 it holds

P{ sup
t∈R+

|X0n(Y (3))| > ε} < knP{|Yn| > 1},
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by (1b) we have X0n(Y (3)) → 0, as n → ∞ in probability in Cb(R+). If
ε > kn|EYn1I{|Yn|≤1}|, then

P{ sup
t∈R+

|X0n(Y (2))| > ε} = 0.

Therefore by (2b) one has X0n(Y (2)) → 0, as n → ∞ in probability in

Cb(R+). The random variables Y
(1)
ni satisfy to the conditions of Lindeberg-

Feller theorem. Consequently, repeating the proof of Prokhorov Theorem [3]

we can show that X
(1)
n

d→ Wfv as n → ∞ in Cb(R+). This implies Theorem
D.

It is easy to see that the correlation function of Wf∗v in the case of a) is
B0(x, y) = v2f#(x, y), where f#(x, y) = f ∗(min(x, y)) and the correlation
function of Wf∗v in the case of b) is B0(x, y) = v2f#(x, y), where f#(x, y) =
f ∗(max(x, y))

Formulate the analogy of (D):
(D’) Let f ∗∗n (x), f ∗∗(x) : IR+ 7→ IR+, n ∈ IN be integer valued functions,

f ∗∗(x) is a continue bounded function plays a role of the following limit

f ∗∗n (x)

kn

→ f ∗∗(x), as n →∞

for all x ∈ [0,∞] x ∈ IR+ and one of the following conditions is true:
a) f ∗∗n are increasing functions;
b) f ∗∗n are decreasing functions.
We will consider the random processes

(Z0”) X ′
∗∗n(x) = X ′

∗∗n(Y ′)(x) =

f∗∗n (x)∑
i=1

Y ′
ni , n ∈ IN x ∈ IR+.

and their modifications formed by piece-wise linear continuous broken lines,
(Z0∗)

X∗∗n(x) = X∗∗n(Y ′)(x) = X ′
∗∗n(xk) +

x− x∗k
x∗k+1 − x∗k

(
X ′
∗∗n(x∗k+1)−X ′

∗∗n(x∗k)
)
,

n ∈ IN, x ∈ [x∗k, x
∗
k+1), where 0 = x∗0 < x∗1 < x∗2 . . . are the points of jumps

of fn.
Since X0n and X∗∗n are independent random processes from Theorem C it

follows
Theorem D. Let the conditions (S), (S’), (D) and (D’) be valid. Then for

the processes, defined by (Z0) and (Z0∗) one has

X0n + X∗∗n
d→ Wf∗v + Wf∗∗v′ , as n →∞

in Cb(R+).

Let −∞ ≤ a < b ≤ ∞, For a function x : [a, b] → R+ we define

∆a,b(x) = sup
a≤t′≤t≤t”≤b

[min{|x(t′)− x(t)|, |x(t)− x(t”)|}].
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In order to prove a version of Theorem D for Skorokhod space we need the
following lemma.

Lemma 3.Let V ′(t) and V ”(t), t ∈ [a, b] be separable independent random
processes. Denote V = V ′ + V ”. Then for all ε > 0 we have

P {∆a,b(V ) > ε}

≤ 2P

{
sup

a≤t≤b
|V ′(b)− V ′(t)| > ε

4

}
P

{
sup

a≤t≤b
|V ”(b)− V ”(t)| > ε

4

}

+ P
{

∆a,b(V
′) >

ε

2

}
+ P

{
∆a,b(V ”) >

ε

2

}
.

Proof. Using the inequality |a + b| ≤ 2 max(|a|, |b|), a, b ∈ R+, we obtain

P {∆a,b(V ) > ε} ≤ P
{

2 sup
a≤t′≤t≤t”≤b

[min{max(|V ′(t′)− V ′(t)|, |V ”(t′)− V ”(t)|),

max(|V ′(t)− V ′(t”)|, |V ”(t)− V ”(t”)|)}] > ε
}

≤ P
{

∆a,b(V
′) >

ε

2

}
+ P

{
∆a,b(V ”) >

ε

2

}

×P
{

sup
a≤t′≤t≤t”≤b

[min{|V ′(t′)− V ′(t)|, |V ”(t)− V ”(t”)|}] >
ε

2

}

×P
{

sup
a≤t′≤t≤t”≤b

[min{|V ”(t′)− V ”(t)|, |V ′(t)− V ′(t”)|}] >
ε

2

}

≤ 2P

{
sup

a≤t≤b
|V ′(b)− V ′(t)| > ε

4

}
P

{
sup

a≤t≤b
|V ”(b)− V ”(t)| > ε

4

}

+ P
{

∆a,b(V
′) >

ε

2

}
+ P

{
∆a,b(V ”) >

ε

2

}
.

The proof is complete.

The addition in Skorokhod space is not continuous. Therefore in general the
sum of convergence sequences of random processes does not appear a conver-
gence sequence. However we have

Theorem E. Let the conditions (C), (C’), (D) and (D’) be valid. Then for
the processes, defined by (Z0’) and (Z0”) one has

X ′
∗n + X ′

∗∗n
d→ Wf∗D + Wf∗∗D′ , as n →∞

in Db(R+).

Proof. Since by Theorem C X ′
∗n

d→ Wf∗D, as n →∞ and X ′
∗∗n

d→ Wf∗∗D′ ,
as n → ∞ and for all n ∈ N X ′

∗n and X ′
∗∗n are independent in Db(R+) and

for all n ∈ N X ′
∗n and X ′

∗∗n are independent, finite dimensional distributions
of X ′

∗n + X ′
∗∗n converge to finite dimensional distributions of Wf∗D + Wf∗∗D′ .

The proof of the tightness of {L(X ′
∗n + X ′

∗∗n), n ∈ N} in Db(R+) is the
same as Skorokhod Theorem (see Theorem 1 on p. 548, [3]). Only with the
Skorokhod inequality (see Lemma 1 on p. 548, [4]) we use Lemma 3. By
Theorem 2 (see p. 545, [4]) this implies Theorem E.

Now we will prove a functional limit theorem for integral of X ′
0n. More

precisely we will consider the random processes:
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(Z0)

Z0n(t) ≡ Z0n(t)(Y ) =

∫ t

0

X ′
∗n(x)dx =

kt∑

k=1




fn(xk−1)∑
i=1

Yni


 ∆k +




fn(xkt
)∑

i=1

Yni


 ∆t

t ∈ IR+, n ∈ IN and the random processes

(Z0’) Z ′
0n(x) ≡ Z ′

0n(x)(Y ) =
kt∑

k=1




fn(xk−1)∑
i=1

Yni


 ∆k, t ∈ IR+ , n ∈ IN.

Here ∆k = xk − xk−1, k ∈ N, kt = sup{k : xk ≤ t}, xt = xkt , and ∆t = t− xt.
We will use the condition:

(E) max
1≤k≤kT +1

∆k → 0 as n →∞.

Consider the function:

c) f#
n (x, y) = fn(min(x,y))

kn
in the case of a);

d) f#
n (x, y) = fn(max(x,y))

kn
in the case of b);

e) gn(x, y) =
∑kx

k1=1

∑ky

k2=1 f#
n (xk1−1, xk2−1)∆k1∆k2 and

f) g(x, y) =
∫ x

0

∫ y

0
f#(t1, t2)dt1dt2, x, y ∈ R+.

Lemma 4. Let (D) and (E) be valid. Then for all x, y ∈ R+ one has

gn(x, y) → g(x, y), as n →∞,

Proof. Since fn, f ∗ are monotone bounded functions, fn(x) → f ∗(x), as
n →∞ uniformly by x ∈ R+. Therefore

gn(x, y)−
kx∑

k1=1

ky∑

k2=1

f#(xk1−1, xk2−1)∆k1∆k2 → 0, as n →∞.

Observe that
kx∑

k1=1

ky∑

k2=1

f#(xk1−1, xk2−1)∆k1∆k2

is an integral sum for the integral
∫ tx

0

∫ ty
0

f#(t1, t2)dt1dt2. Consequently,

kx∑

k1=1

ky∑

k2=1

f#(xk1−1, xk2−1)∆k1∆k2 →
∫ x

0

∫ y

0

f#(t1, t2)dt1dt2, as n →∞.

This follows the lemma.
We will use the following version of Levy maximal inequality (see. p. 262,

[7]). Let Ui, 1 ≤ i ≤ n, be independent random variables. Denote Vk =
k∑

i=1

Ui.

Then for all ε > 0 one has
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P{max
k≤n

|Vk| > ε} ≤ 2P{|Vn| > ε−
√

2σ2(Vn)}. (5)

Observe that (5) remain true if instead maxk≤n Vk the expression maxk∈M Vk,
where M ⊂ {1, 2, . . . n}. We will use this in the following lemma.

Lemma 5. Let (D), (Y) and (S) be valid. Then for all c, ε > 0 it holds

lim sup
n→∞

P{ sup
0≤t<∞

c|X ′
∗n(t)| > ε} ≤ 2P{c|γ(v1)| > ε

2
−
√

2v1c},

where v1 = v supt∈R+
f ∗(t).

Proof. Denote mn = sup0≤t<∞fn(x). By (D) mn

kn
→ supt∈R+

f ∗(t) as

n → ∞. Therefore
∑mn

i=1 Yni
d→ γ(v1) as n → ∞. So, by Theorem B(1) using

denotation of Theorem D we obtain

lim sup
n→∞

P{ sup
0≤t<∞

c|X ′
∗n(t)| > ε} ≤ lim sup

n→∞
P

{
sup

1≤k≤mn

c|
k∑

i=1

Yni| > ε

}

≤ lim sup
n→∞

(
P

{
sup

1≤k≤mn

c|
k∑

i=1

Y
(1)
ni | >

ε

2

}
+P

{
sup

1≤k≤mn

c|
k∑

i=1

(Y
(2)
ni +Y

(3)
ni )| > ε

2

})

≤ lim sup
n→∞

(
P

{
sup

1≤k≤mn

c|
k∑

i=1

Y
(1)
ni )| > ε

2

}

+ P

{
c

mn∑
i=1

|Yni|1I{|Yni|>1} >
ε

2
− ckn|EYn1I{|Yn|≤1}|

})

≤ 2 lim sup
n→∞

P

{
c|

k∑
i=1

Y
(1)
ni )| > ε

2
− c

√√√√2σ2(
k∑

i=1

Y
(1)
ni )

}

= 2P{c|γ(v1)| > ε

2
−
√

2v1c}.
The lemma is proved.
Corollary. Let (D), (E), (Y) and (S) be valid. For all c, ε > 0 and ω1 ∈ Ω′

it holds

P{ sup
t∈[0,T ]

|Z0n(t)− Z ′
0n(t)| > ε} → 0, as n →∞.

Proof. Observe that

P{ sup
t∈R+

|Z0n(t)−Z ′
0n(t)| > ε} ≤ P{2

(
sup

1≤k≤kT +1
∆k

)(
sup

0≤k≤mn

|
mn∑
i=1

Yni|
)

> ε}.

By Lemma 5 this implies Corollary.
Theorem F. Assume that the conditions (Y), (S), (D) and (E) are fulfilled.

Then the processes defined by (Z0) weakly converge in C[0, T ] as follows

Z0n
d−→ W0, as n →∞,
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where W0 is a centered gaussian random process with the covariance B1(t1, t2) =
v2

1g(t1, t2), t1, t2 ∈ [0, T ].
Proof. Let ε > 0, M ∈ N, 0 < δ < T

M
Denote yk = k T

M
, 0 ≤ k ≤ M . In

the same way as in the proof of Theorem 1 in p. 358 [7], we have

P

{
sup

|t′−t”|≤δ

|Z0n(t′)− Z0n(t”)| > ε

}

≤ 4
M∑

k=1

P

{
sup

yk−1≤t≤yk

|Z0n(t)− Z0n(yk)| > ε

8

}

≤ 4
M∑

k=1

P

{
sup

yk−1≤t≤yk

∣∣∣∣∣
∫ t

yk−1

X∗n(t)

∣∣∣∣∣ >
ε

8

}

≤ 4
M∑

k=1

P

{
T

m
sup

1≤l≤mn

|
l∑

i=i

Yni| > ε

8

}
.

Thus by Lemma 5 we obtain

lim
δ→0

lim sup
n→∞

P

{
sup

|t′−t”|≤δ

|Z0n(t′)− Z0n(t”)| > ε

}

≤ lim
M→∞

lim sup
n→∞

≤ 4
M∑

k=1

P

{
T

M
sup

1≤l≤mn

∣∣∣∣∣
l∑

i=i

Yni

∣∣∣∣∣ >
ε

8

}

≤ 8 lim
M→∞

MP

{
T

M
|γ(v1)| > ε

16
−
√

2v1
T

M

}
= 0. (6)

Let M ∈ N, 0 ≤ t1 < t2 . . . tM ≤ T and ak ∈ R, 1 ≤ k ≤ M . We will show

M∑

k=1

akZ0n(tk)
d→

M∑

k=1

akW0(tk), as n →∞.

By Corollary of Lemma 5 it is sufficient to prove that

M∑

k=1

akZ
′
0n(tk)

d→
M∑

k=1

akW0(tk), as n →∞.

Consider Un =
M∑

k=1

akZ
′
0n(tk) =

mn∑
i=1

bniYni. Observe that |bni| ≤ C, where

C = T
M∑

k=1

|ak|, and

mn∑
i=1

E(bniY
(1)
ni )2 = E

(
M∑

k=1

akZ
′
0n(Y (1))(tk)

)2

= knv
2
n

M,M∑

l1,l2=1

al1al2gn(tl1 , tl2),
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where v2
n = σ2(Y

(1)
n ). Therefore by Lemma 3 we have as n →∞,

mn∑
i=1

E(bniY
(1)
ni )2 → v2

(
M,M∑

l1,l2=1

al1al2g(tl1 , tl2)

)
= E

(
M∑

k=1

akW1(tk)

)2

,

Consequently, by Theorem B(2)
M∑

k=1

akZ0n(tk)
d→

M∑
k=1

akW0(tk), as n →∞.

So, by Theorem 7.7 p. 76 in [8] finite dimensional distributions of Z0n

converge to finite dimensional distributions of W0. By Theorem 1 on p. 522 in

[4] this and (6) imply Z0n
d→ W0 as n →∞ in C[0, T ]. The proof is complete.

Observe that the random processes Z ′
0n have not continuous trajectories.

Therefore it need to consider the convergence of Z ′
0n in more wide spaces then

C[0, T ].
Theorem G. Assume that the conditions (D), (E), (Y), and (S) are fulfilled.

Then the processes defined by (Z0’) weakly converge in L∞[0, T ] as follows

Z ′
0n

d−→ W0, as n →∞.

Proof. By Corollary of Lemma 5 Z0n(t) − Z ′
0n(t)

P−→ 0 as n → ∞ in
L∞[0, T ]. The space C[0, T ] is a subspace of L∞[0, T ]. Trajectories of Z ′

0n(t)
belongs to L∞[0, T ]. Therefore Theorem G follows from Theorem F. The proof
is complete.

4. Main results.

At first we consider the case of the replacement by zeros.
Fix n and describe a recurrent procedure of operations on rows.
(0) We start with initial string (Yni)

∞
i=1.

(1) At each row i on each term the indicator 1Iij impacts. It means that in
the case a term is a rv Yni remains to ith step non-zero valued (as rv) and 1Iij
equals to zero than the term Yni is disappear at ith step or is replacing with
0, and the term Ynj remains the same if 1Iij = 1.

Define the sequence
(
S

(1n)
k

)∞
k=0

of row sums,

(X1) S
(1n)
0 =

kn∑
j=1

Ynj,

S
(1n)
1 =

kn∑
j=1

1I1j(n)Ynj,

S
(1n)
2 =

kn∑
j=1

1I2j(n)1I1j(n)Ynj,

...

S
(1n)
k =

kn∑
j=1

1I1j(n)1I2j(n) · · · 1Ikj(n)Ynj,
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...

We will consider sequences of step lines random processes depending from
ω1 ∈ Ω1. As we shell use the same type of construction in several cases, (Zi′)
will denote that the process X ′

in is defined by the random variables S
(in)
k , i ∈ N.

For i ∈ N let

(Zi’) X ′
in(x) ≡ X ′

in(x ; ω1)(Y )
4
= S

(in)
[knx], x ∈ IR+ , n ∈ IN , ω1 ∈ Ω1 .

Theorem 1. Assume that the conditions (Y) and (C) are satisfied.
(1) Let (A) be valid. Then the processes defined by (X1) and (Z1’) for almost

all ω1 ∈ Ω1 weakly converge in Db(R+) as follows

X ′
1n(ω1)

d−→ WfD, as n →∞.

(2) Let (A2) be valid. Then the processes defined by (X1) and (Z1’) for
almost all ω1 ∈ Ω1 weakly converge in Db(R+) as follows

X ′
1n(ω1)

d−→ WfmD, as n →∞.

Observe that X ′
1n

d
= X ′

∗n with fn(x) = f1n(x). So Theorem 1(1) follows from
Theorem B and Corollary 1 of Lemma 1, Theorem 1(2) follows from Theorem
B and Corollary 1 of Lemma 2.

We will consider the following random broken line sequence:

(Zi) Xin(x) ≡ Xin(x ; ω1)(Y )
4
= S

(in)
[knx] + {knx}(S(in)

[knx]+1 − S
(in)
[knx]),

x ∈ IR+, n ∈ IN, ω1 ∈ Ω1, i ∈ N.

Since X1n
d
= X0n with fn = f1n, from Theorem C and Corollary 1 of Lemma

1 or Corollary 1 of Lemma 2, respectively, it follows
Theorem 2. Assume that the conditions (Y) and (S) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (X1) and (Z1) for almost

all ω1 ∈ Ω1 weakly converge in Cb(R+) as follows

X1n(ω1)
d−→ Wfv, as n →∞.

(2) Let (A1) be valid. Then the processes defined by (X1) and (Z1) for
almost all ω1 ∈ Ω1 weakly converge in Cb(R+) as follows

X1n(ω1)
d−→ Wfmv, as n →∞.

In Theorem 1 and Theorem 2 where considered the case of sums in which
the number of summands is decreasing. Now we will consider the case in which
the number of summands in sums is increasing. Let

(X2) S
(2n)
0 = 0,

S
(2n)
1 =

kn∑
i=1

(1− 1I1i(n))Y ′
ni,

S
(2n)
2 =

kn∑
i=1

(1− 1I1i(n)1I2i(n))Y ′
ni,
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...

X
(2n)
k =

kn∑
i=1

(1− 1I1i(n)1I2i(n) · · · 1Iki(n))Y ′
ni,

...

Observe that X ′
2n

d
= X ′

∗n and X2n
d
= X0n with fn(x) = f2n(x). Therefore by

Corollary 2 of Lemma 1 or Corollary 2 of Lemma 2, Theorem D or Theorem
E respectively we obtain

Theorem 3. Assume that the conditions (Y) and (C) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (X2) and (Z2’) weakly

converge in Db(R+) as follows

X ′
2n(ω1)

d−→ W(1−f)D′ , as n →∞
for almost all ω1 ∈ Ω1.

(2) Let (A1) be valid. Then the processes defined by (X2) and (Z2’) weakly
converge in Db(R+) as follows

X ′
2n(ω1)

d−→ W(1−fm)D′ , as n →∞
for almost all ω1 ∈ Ω1.

Theorem 4. Assume that the conditions (Y) and (S) are valid.
(1) Let (A) be valid. Then the processes defined by (X2) and (Z2) weakly

converge in Cb(R+) as follows

X2n(ω1)
d−→ W(1−f)v′ , as n →∞

for almost all ω1 ∈ Ω1.
(2) Let (A1) be valid. Then the processes defined by (X2) and (Z2) weakly

converge in Cb(R+) as follows

X2n(ω1)
d−→ W(1−fm)v′ , as n →∞

for almost all ω1 ∈ Ω1.
Now we consider the case of the replacement by non-zero random variables.
We start with the summands Yni, 1 ≤ i ≤ kn and in each step, in the random

way, we change Yni to Y ′
ni, 1 ≤ i ≤ kn. More precisely, let

(X3) S
(3n)
0 =

kn∑
i=1

Yni,

S
(3n)
1 =

kn∑
i=1

1I1i(n)Yni +
kn∑
i=1

(1− 1I1i(n))Y ′
ni,

S
(3n)
2 =

kn∑
i=1

1I1i(n)1I2i(n)Yni +
kn∑
i=1

(1− 1I1i(n)1I2i(n))Y ′
ni,
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...

S
(3n)
k =

kn∑
i=1

1I1i(n)1I2i(n) · · · 1Iki(n)Yni +
kn∑
i=1

(1− 1I1i(n)1I2i(n) · · · 1Iki(n))Y ′
ni,

...

Since X3n = X1n(Y ) + X2n(Y ′) and X1n(Y ), X2n(Y ′) are independent ran-
dom processes, from Theorem D and Theorem E, respectively, it follows

Theorem 5. Suppose that (Y), (S), (Y’) and (S’) are satisfied.
(1) Let (A) be valid. Then for the processes defined by (X3) and (Z3) one

has

X3n(ω1)
d→ Wfvv′ , n →∞ in Cb(R+)

for almost all ω1 ∈ Ω1, where Wfvv′(x) = W (v2f(x)) + W ′(v′2(1 − f(x))),
x ∈ R+.

(2) Let (A1) be valid. Then for the processes defined by (X3) and (Z3) one
has

X3n(ω1)
d→ Wfmvv′ , n →∞ in Cb(R+)

for almost all ω1 ∈ Ω1, where Wfmvv′(x) = W (v2fm(x)) + W ′(v′2(1− fm(x))),
x ∈ R+.

Theorem 6. Suppose that (Y), (C), (Y’) and (C’) are satisfied.
(1) Let (A) be valid. Then for the processes defined by (X3) and (Z3’) one

has

X ′
3n(ω1)

d→ WfDD′ , n →∞ in Db(R+)

for almost all ω1 ∈ Ω1, where WfDD′(x) = WD(f(x)) + WD′((1 − f(x))),
x ∈ R+.

(2) Let (A1) be valid. Then for the processes defined by (X3) and (Z3’) one
has

X ′
3n(ω1)

d→ WfmDD′ , n →∞ in Db(R+)

for almost all ω1 ∈ Ω1, where WfmDD′(x) = WD(f(x)) + WD′((1 − fm(x))),
x ∈ R+.

We will illustrate our theorems by following examples. Let 0 < α,m < ∞.

Example 1. Let P1(Aij(n)) = pj(n) =
(
1− m

kn

)α

, for all i, j ∈ N. Then

for all x ∈ R+ it holds

E1f1n(x)

kn

=

(
1− m

kn

)[xkn]α

→ e−mαx, as n →∞.

So we have:
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If (Y) and (C), are satisfied, then by Theorem 1, for the processes defined

by (X1) and (Z1’) one has X ′
1n(ω)

d→ W1D, n → ∞ in D(R+) for almost all
ω1 ∈ Ω1, where W1DD′(x) = WD(e−mαx), x ∈ R+.

If (Y), (Y’), (S), and (S’) are satisfied, then by Theorem 5 for the processes

defined by (X3) and (Z3) one has X3n(ω1)
d→ W1vv′ , n → ∞ in Cb(R+) for

almost all ω1 ∈ Ω1, where W1vv′(x) = W (v2e−mαx) + W ′(v′2(1 − e−mαx)),
x ∈ R+.

Example 2. Let P1(Aij(n)) = pj(n) =
(
1− m

kn+(j−1)m

)α

for all i, j ∈ N

(kn > m). Then for all x ∈ R+ it holds

E1f1n(x)

kn

=

(
kn + ([knx]− 2)m

kn + ([knx]− 1)m

)α (
kn + ([knx]− 3)m

kn + ([knx]− 2)m

)α

. . .

(
kn −m

kn

)α

=

(
kn −m

kn + ([knx]− 1)m

)α

→
(

1

1 + mx

)α

, as n →∞.

If (Y) and (C), are satisfied, then by Theorem 2 for the processes defined by

(X1) and (Z1’) one has X ′
1n(ω1)

d→ W2D, n → ∞, in Db(R+) for almost all
ω1 ∈ Ω1, where W2D(x) = WD( 1

(1+mx)α ), x ∈ R+.

If (Y), (Y’), (S), and (S’) are satisfied, then by Theorem 5, for the processes

defined by (X3) and (Z3) one has X3n(ω1)
d→ W2σσ′ , n → ∞ in Cb(R

+) for

almost all ω1 ∈ Ω1, where W2vv′(x) = W ( v2

(1+mx)α ) + (W ′(v′2(1 − 1
(1+mx)α )),

x ∈ R+.

Example 3. Let P1(Aij(n)) = pj(n) =
(
1− m

kn−(j−1)m

)α

if kn > (j − 1)m

and P1(Aij(n)) = 0 if kn ≤ (j − 1)m, i, j ∈ N. Let 0 ≤ x < 1
m

. Then we
obtain

E1f1n(x)

kn

=

(
kn − [knx]m

kn − ([knx]− 1)m

)α (
kn − ([knx]− 1)m

kn − ([knx]− 2)m

)α

. . .

(
kn −m

kn

)α

=

(
kn − [knx]m

kn

)α

→ (1−mx)α , n →∞, x <
1

m
.

If (Y) and (C) are satisfied, then by Theorem 1, for the processes defined

by (X1) and (Z1’) one has X ′
1n(ω1)

d→ W3D, n →∞, in D(R+) for almost all
ω1 ∈ Ω1, where W3D(x) = WD((1−mx)αI[0, 1

m
)), x ∈ R+.

If (Y), (Y’), (S), and (S’) are satisfied, then by Theorem 5, for the processes

defined by (X3) and (Z3) one has X3n(ω1)
d→ W3vv′ , n → ∞ in Cb(R+) for

almost all ω1 ∈ Ω1, where W3vv′(x) = W (v2(1−mx)αI[0, 1
m

)) + W ′(v′2(1− (1−
mx)αI[0, 1

m
))) x ∈ R+.

Let α = 1. Let us speak of the sense of Example 1 and Example 3. Example
1 corresponds to the case when at the l-th step we replace m summands in the

sums S
(1n)
l−1 by zero regardless of whether a summand equals zero or not.
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Under Example 3, after each replacement, the number of Yni in S
(1n)
l−1 de-

creases by about m elements. So Example 3 corresponds to the case when at

the l-th step we replace about m nonzero summands in S
(1n)
l−1 by zero.

The same is true for S
(3n)
l . In this case, we replace summands of S

(1n)
l−1 by

Y ′
ni.

Now we will prove functional limit theorems for integrals of X ′
1n, X ′

2n and
X ′

3n which we will use in applications to models of a financial market. More
precisely we will consider the random processes:

(Wi) Zin(x) ≡ Zin(x ; ω1)(Y ) =

∫ t

0

X ′
in(x)dx =

1

kn

[knx]−1∑
j=0

S
(in)
j +

{knx}
kn

S
(in)
[knx],

x ∈ IR+, n ∈ IN, ω1 ∈ Ω1 and the random processes

(Wi’)

Z ′
in(x) ≡ Z ′

in(x ; ω1)(Y ) =
1

kn

[knx]∑
j=0

S
(in)
j , x ∈ IR+ , n ∈ IN , ω1 ∈ Ω1 ,

where i ∈ N.
Theorem 7. Assume that the conditions (Y) and (S) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (W1) weakly converge in

C[0, T ] as follows

Z1n(ω1)
d−→ W1, as n →∞

for almost all ω1 ∈ Ω1, where W1 is a gaussian random process with the co-
variance B1(t1, t2) = v2

∫ t1
0

∫ t2
0

f(max(x, y))dydx, t1, t2 ∈ [0, T ].
(2) Let (A1) be valid. Then the processes defined by (W1) weakly converge

in C[0, T ] as follows

Z1n(ω1)
d−→ Wm1, as n →∞

for almost all ω1 ∈ Ω1, where Wm1 is a gaussian random process with the
covariance Bm1(t1, t2) = v2

∫ t1
0

∫ t2
0

e−m max(x,y)dxdy, t1, t2 ∈ [0, T ].
Theorem 8. Assume that the conditions (Y), and (S) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (W2) weakly converge in

C[0, T ] as follows

Z2n(ω1)
d−→ W2, as n →∞

for almost all ω1 ∈ Ω1, where W2 is a gaussian random process with the co-
variance B2(t1, t2) = v′2

∫ t1
0

∫ t2
0

(1− f(min(x, y)))dydx, t1, t2 ∈ [0, T ].
(2) Let (A1) be valid. Then the processes defined by (W2) weakly converge

in C[0, T ] as follows

Z2n(ω1)
d−→ Wm2, as n →∞

for almost all ω1 ∈ Ω1, where Wm2 is a gaussian random process with the
covariance Bm2(t1, t2) = v′2

∫ t1
0

∫ t2
0

(1− e−m min(x,y))dydx, t1, t2 ∈ [0, T ].
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Remark 1. By changing of the integration order we obtain more simple
forms of the variance and the covariance function of Wi, i ∈ {1, 2}. The
variance of W1 is equal to

v1(t) = B1(t, t) = v2(

∫ t

0

f(x)xdx +

∫ t

0

dx

∫ t

x

f(y)dy) = 2v2

∫ t

0

f(x)xdx,

the covariance of W1 is equal to

B1(t1, t2) = v2

(∫ t1

0

f(x)xdx +

∫ t1

0

dx

∫ t2

x

f(y)dy

)
=

v2

(
t1

∫ t2

t1

f(x)dx + 2

∫ t1

0

f(x)xdx

)
, 0 ≤ t1 ≤ t2.

The variance of W2 is equal to

v2(t) = B1(t, t) = v2

(
t2 − 2t

∫ t

0

f(x)dx + 2

∫ t

0

f(x)xdx

)
,

the covariance of W2 is equal to

B2(t1, t2) = v2

(
t1t2 − (t1 + t2)

∫ t1

0

f(x)dx + 2

∫ t1

0

f(x)xdx

)
, 0 ≤ t1 ≤ t2.

Theorem 9. Assume that (Y), (Y’) ,(S) and (S’) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (W3) weakly converge in

C[0, T ] as follows

Z3n(ω1)
d−→ W3, as n →∞

for almost all ω1 ∈ Ω1, where W3 is a gaussian random process defined on
[0, T ] with the following covariance function under t1, t2 ∈ [0, T ], B3(t1, t2) =
B1(t1, t2) + B2(t1, t2).

(1) Let (A1) be valid. Then the processes defined by (W3) weakly converge
in C[0, T ] as follows

Z3n(ω1)
d−→ W3, as n →∞

for almost all ω1 ∈ Ω1, where W3 is a gaussian random process defined on
[0, T ] with the following covariance function under t1, t2 ∈ [0, T ], Bm3(t1, t2) =
Bm1(t1, t2) + Bm2(t1, t2).

Proof. Observe that

Z3n = Z1n(Y ) + Z2n(Y ′), n ∈ N,

and Z1n(Y ) and Z2n(Y ′) are independent random processes. So Theorem 9 is
following from Theorem 7 and Theorem 8.

Theorem 10. Assume that the conditions (Y), and (S) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (W1’) weakly converge

in L∞[0, T ] as follows

Z ′
1n(ω1)

d−→ W1, as n →∞
for almost all ω1 ∈ Ω1.
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(2) Let (A1) be valid. Then the processes defined by (W1’) weakly converge
in L∞[0, T ] as follows

Z ′
1n(ω1)

d−→ Wm1, as n →∞
for almost all ω1 ∈ Ω1.

Theorem 11. Assume that the conditions (Y), and (S) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (W2’) weakly converge

in L∞[0, T ] as follows

Z ′
2n(ω1)

d−→ W2, as n →∞
for almost all ω1 ∈ Ω1

(2) Let (A2) be valid. Then the processes defined by (W2’) weakly converge
in L∞[0, T ] as follows

Z ′
2n(ω1)

d−→ Wm2, as n →∞
for almost all ω1 ∈ Ω1

Theorem 10 and Theorem 11 follow from Theorem G.

Theorem 12. Assume that (Y), (Y’) ,(S) and (S’) are fulfilled.
(1) Let (A) be valid. Then the processes defined by (W3’) weakly converge

in L∞[0, T ] as follows

Z ′
3n(ω1)

d−→ W3, as n →∞
for almost all ω1 ∈ Ω1.

(1) Let (A1) be valid. Then the processes defined by (W3’) weakly converge
in L∞[0, T ] as follows

Z ′
3n(ω1)

d−→ Wm3, as n →∞
for almost all ω1 ∈ Ω1.

Proof. Observe that Z ′
3n = Z ′

1n(Y ) + Z ′
2n(Y ′), n ∈ N, and Z ′

1n(Y ) and
Z ′

2n(Y ′) are independent random processes. So Theorem 12 follows from The-
orem 10 and Theorem 11.

Remark 2. Since trajectories of Z ′
in are random step lines with jumps in

rational points, in Theorem 10, Theorem 11 and Theorem 12 instead L∞[0, T ]
we can consider closed subspace B of L∞[0, T ], containing such step lines. This
space is separable. Therefore the class of the functionals h : B → R+ such
that Eh(Zin) → Eh(Wi) as n →∞, is sufficiently wide.

Remark 3. We consider the case when 1Iji(n), Yni and Y ′
ni are defined on

the same probability space (Ω, A,P) and for all n ∈ N, 1Iji(n), Yni, Y ′
ni, i ∈ N

are independent random variables. In this case, the random processes Xin,
X ′

in, Zin, and Z ′
in will be denoted by X(i+3)n, X ′

(i+3)n, Z(i+3)n, and Z ′
(i+3)n.

Then Theorem 1 - Theorem 12 hold in the case when instead Xin, X ′
in, Zin,

and Z ′
in, we use X(i+3)n, X ′

(i+3)n, Z(i+3)n, and Z ′
(i+3)n, respectively. Of course,

in this case the phrase “for almost all ω1 ∈ Ω1” should be omitted. This follows
from the following assertion.

Let Vn(ω1), V : Ω → B, n ∈ N be random elements in a separable metrizable
space B with the parameter ω1 ∈ Ω1 which are Bochner measurable as functions



CONVERGENCE FOR STEP LINE PROCESSES 33

defined on Ω× Ω1 and such that Vn(ω1)
d→ V , n →∞ for almost all ω1 ∈ Ω1.

Define random elements V ′
n by L(V ′

n)(A) = E1L(Vn)(ω1)(A), where A is a

Borel subset of B. Then V ′
n

d→ V , n →∞.
Proof. Let f : B → R be a continuous bounded function. Then for almost

all ω1 ∈ Ω1 it holds Ef(Vn(ω1)) → Ef(V ), n →∞. So by Lebesgue Theorem,
E1Ef(Vn) → Ef(V ), as n → ∞. Observe that E1Ef(Vn) = Ef(V ′

n), n ∈ N.

Therefore Ef(V ′
n) → Ef(V ), n →∞ and. V ′

n
d→ V , as n →∞ in B.

Remark 4. We will suppose that I0i(n) = 1, i ∈ N. Consider the integer
valued random variables defined as

N1n(l) =
kn∑
i=1

1Ili(n)1I(l−1)i(n) · · · 1I1i(n), N2n(l) = kn −N1n(l), l, n ∈ N.

Next,

S
((6+i)n)
l =

Njn(l)∑
i=1

Yni, i ∈ {1, 2}, S
(9n)
l =

N1n(l)∑
i=1

Yni +

N2n(l)∑
i=1

Y ′
ni, l ∈ N.

Then for the processes defined by (Z(i + 6)′), (Z(i + 6)), (W (i + 6)) and
(W (i + 6)′) for i ∈ {1, 2, 3} we have: L(X ′

(i+3)n) = L(X ′
(i+6)n), L(X(i+3)n) =

L(X(i+6)n), L(Z ′
(i+3)n) = L(Z ′

(i+6)n) and L(Z(i+3)n) = L(Zi+6)n). The sums

S
((i+6)n)
l are sums with random index of summing (random sums). Thus, Re-

mark 2 may be considered as a functional limit theorem for random sums. See,
for example, Korolev and Kruglov [2] for limit theorems for random sums.

5. Applications to models of market pricing

Consider the market model with n agents, where n is large enough. At any
discrete time t ∈ {0, 1, . . . M} = T each agent buys or sells asset which is
called below a stock (which is called agents operation).

An agent operation in the market may take place in the moments j ∈
{0, 1, 2 . . .M} only. And operations consists that an agent buys or sells an
asset which is called below a stock. At the each moment j of the time i-th
agent can buy a stock with the probability p and sell the stock with the prob-
ability q = 1− p. If an agent buy a stock then the stock price is multiplied by
the number U , U > 1. If an agent sell a stock then the stock price is multiplied
by the number V , 0 < V < 1. So we suppose that the trading policy of an
i-th agent at the moment j ∈ T is a random variable with the distribution

ξij =

{
U with probability p
D with probability q

, 1 ≤ i ≤ n, 0 ≤ j ≤ m.

Thus, the random variable ξij is a trade policy of the i-th agent in the
moment j.

Introduce the parameter a and v > 0 by the following equalities

v2 = (U − V )2pq
av2 − 1 = Up + Dq

}
.
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It is easy to see that v2 = σ2(ξij). By analogy to the classical limit transition

we assume that σ2(ξji) =
σ2
0

n
, where σ2

0 is a volatility constant not depend-
ing from n. The parameter a named as relative risk characterizes difference
between ”market” measure (p, q) and ”risk-neutral” measure (p̃, q̃), i.e. the
numbers p̃ and q̃ are define by Up̃ + Dq̃ = 1, q̃ = 1 − q̃. Correspondingly to
the classical case we assume that

a = a(n) → µ− r

σ2
0

as, n →∞, µ− r ∈ R+, r > 0,

where µ is an expected rate of stock return and r is an interest rate of discount
bond: Bt = exp{rt}.

Next we assume that every agent makes equivalent contribution in to pricing
of stock S by his trading policy.

(G) At any fixed moment k ∈ T , each agent’s contribution in to pricing is
defined as an evolution of his trading policy during the time interval {0, 1, . . . k}

Zk(i) =
k∏

j=0

ξij, k = 0, 1, . . . , m.

The following assumption is more important in the construction of the mode.
(F) At any moment k ∈ T the value of stock is equal to geometric mean of

contribution in to pricing over n agents

Sk = S0

(
n∏

i=1

Zk(i)

)1/n

= S0

(
n∏

i=1

k∏
j=0

ξij

)1/n

,

where S0 is a starting point.
In accordance to the assumption of time parameterizations and to the as-

sumption (G) for the order of the model n we define the value of the stock at
the time moment t ∈ [0, T ] by

Sn(t) = S0

(
n∏

i=1

Z[nt](i)

)1/n

= S0




n∏
i=1

[nt]∏
j=0

ξij




1/n

.

So by this equality we have defined a family of step lines with jumps in
rational points, depending from the random parameter ω1 ∈ Ω1 which we
consider as elements in L∞[0, T ].

The market probability measure (p, q) induces the random process Sn =
Sn(p, q). Analogously, the risk-neutral measure (p̃, q̃), induces the random
process Sn = Sn(p̃, q̃). Recall that the rational value of the Standard European
Call Option CT with the maturity T for a strike K can be defined as

CT = E{e−rT (erT S̃(T )−K)+},
where the random process S(t), t ∈ [0, T ] is a limit of Sn(p̃, q̃) as n →∞.

Model 1. Changing of a trading policy. We will assume that our
market satisfies to the following property:
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(A3) Actions of each agent does not depends from actions of another agents
and trading policy evaluates by following: if the indicates Ii1 = 1, Ii2 =
1, · · · Iij = 1, then the trade policy of i-th agent is remaining the same and
is defining by the random variable ξi: ξik = ξi, k ≤ j; If the indicators
Ii1 = 1, Ii2 = 1, · · · Ii(j−1) = 1, but the indicator Iij = 0, then ξi is replaced
by independent copy ξ′i: ξik = ξ′i, k ≥ j. So the evolution consists that in a
random moment of a trade policy is changing. That is ξ′i replaces the random
variable ξi. This replacement can take place only one time.

Theorem 13. (The case of the market probability.)(1) Under assumption
(A), (A2), (G) and (F) the following convergence is valid as n →∞

Sn(p, q)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S(t) = S0 exp
{

(µ−r)t+W3(t)− σ2
0

2
t
}
,

t ∈ [0, T ] and W3 is a gaussian random process with the covariance function
B3(t1, t2) = σ2

0(B1(t1, t2) + B2(t1, t2)), t1, t2 ∈ [0, T ].
(2) Under assumption (A1), (A2), (G) and (F) the following convergence is

valid as n →∞

Sn(p, q)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S(t) = S0 exp
{

(µ−r)t+W3(t)− σ2
0

2
t
}
,

t ∈ [0, T ] and W3 is a gaussian random process with the covariance function
Bm3(t1, t2) = σ2

0(Bm1(t1, t2) + Bm2(t1, t2)), t1, t2 ∈ [0, T ].
Theorem 14. (The case of the risk-neutral probability.) (1) Under as-

sumption (A), (A2), (G) and (F) the following convergence is valid as n →∞

Sn(p̃, q̃)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S̃(t) = S0 exp
{

(W3(t) − σ2
0

2
t
}

t ∈ [0, T ] .
(2) Under assumption (A1), (A2), (G) and (F) the following convergence is

valid as n →∞

Sn(p̃, q̃)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S̃(t) = S0 exp
{

(W3(t) − σ2
0

2
t
}

t ∈ [0, T ].
Theorem 15. (The Black-Scholes Formula for the model.) Let (A) or (A1),

(A2), (G), (F), (X3) and (Z3) be valid. Denote the variance

v2(t) = E(W3(t))
2 = σ2

0

(∫ t

0

∫ t

0

(1− f(min(x, y)) + f(max(x, y)))dxdy

)
,

where t ∈ [0, T ], in the case (A), and

v2(t) = E(W3(t))
2 = σ2

0

(∫ t

0

∫ t

0

(1− e−min(x,y) + e−max(x,y))dxdy

)
, t ∈ [0, T ].
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in the case (A1).
Then the rational value of the Standard European Call Option is equal to

CT = S0 exp
{v2(T )

2
− σ2

0

2
T

}
Φ(ρ + v(T ))−K exp{−rT}Φ(ρ),

where

ρ =
ln S0 − ln K + rT − σ2

0T/2

v(T )
.

Model 2. Decreasing market. We consider the case of a decreasing
market, that is agents go out from a market. In this case the random variables
ξi are replaced by ξ′i = 1 and (an agent which gone out from market does not
can to influence on a stock price) and ln(ξi) is replacing by zeros. We consider
a leaving of agents from market as a replacement by zeros. So will assume that
it is valid the condition:

(A3) Actions of each agent does not depends from actions of another agents
and trading policy evaluates by following: if the indicates Ii1 = 1, Ii2 =
1, · · · Iij = 1, then the trade policy of i-th agent is remaining the same and
is defining by the random variable ξi: ξik = ξi, k ≤ j; If the indicators
Ii1 = 1, Ii2 = 1, · · · Ii(j−1) = 1, but the indicator Iij = 0, then ξi is replaced
by one: ξik = 1 for k ≥ j. That is at the moment j ith agent go out from a
market. And we have the following analogs of Theorem 13, Theorem 14 and
Theorem 15.

Theorem 16. (The case of the market probability.) (1) Under assumption
(A), (A3), (G) and (F) the following convergence is valid as n →∞

Sn(p, q)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S(t) = S0 exp
{

(µ− r)b(t) + W1(t)−
σ2
0

2
b(t)

}
, t ∈ [0, T ] and W1 is a gaussian random process with the covariance

function

B1(t1, t2) = σ2
0

∫ t1

0

∫ t2

0

f(max(x, y))dxdy, t1, t2 ∈ [0, T ]

and

b(t) =

∫ t

0

f(x)dx, t ∈ [0, T ].

(2) Under assumption (A1) (A3), (G) and (F) the following convergence is
valid as n →∞

Sn(p, q)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S(t) = S0 exp
{

(µ− r)b(t) + W1(t)−
σ2
0

2
b(t)

}
, t ∈ [0, T ] and W1 is a gaussian random process with the covariance

function

Bm1(t1, t2) = σ2
0

∫ t1

0

∫ t2

0

e−m max(x,y)dxdy, t1, t2 ∈ [0, T ]
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and

b(t) =

∫ t

0

e−mxdx, t ∈ [0, T ].

Theorem 17. (The case of the risk-neutral probability.) Under assumption
(A) or (A1), (A3), (G) and (F) the following convergence is valid as n →∞

Sn(p̃, q̃)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S̃(t) = S0 exp
{

W1(t) − σ2
0

2
b(t)

}

t ∈ [0, T ], and in the case (A) W1(t) and b(t) are defined in (1) of Theorem
16 and in the case (A1) W1(t) and b(t) are defined in (2) of Theorem 16.

Theorem 18. (The Black-Scholes Formula for the model.) Let (A) or (A1),
(A3), (G) and (F) be valid. Denote

v2(t) = E(W1(t))
2 = B1(t, t) = 2σ2

0

∫ t

0

∫ t

0

f(max(x, y))dxdy,

b(t) =

∫ t

0

f(x)dx

in the case (A), and

v2(t) = E(W1(t))
2 = B1(t, t) = 2σ2

0

∫ t

0

∫ t

0

e−m max(x,y)dxdy,

b(t) =

∫ t

0

e−mxdx

in the case (A1).
Then the rational value of the Standard European Call Option is equal to

CT = S0 exp
{v2(T )

2
− σ2

0

2
b(T )

}
Φ(ρ + v(T ))−K exp{−rb(T )}Φ(ρ),

where

ρ =
ln S0 − ln K + rb(T )− σ2

0b(T )/2

v(T )
.

Model 3. Increasing Market. We consider the case of an increasing
market, that is agents come to a market. In this case the random variables
ξi = 1 is replacing by ξ′i: an agents which come to a market begin to influence
on a stock price. And we will use the following condition

(A4) Actions of each agent does not depends from actions of another agents
and trading policy evaluates by following: if the indicates Ii1 = 1, Ii2 =
1, · · · Iij = 1, then the trade policy of i-th agent is equal to one: ξik = 1,
k ≤ j; If the indicators Ii1 = 1, Ii2 = 1, · · · Ii(j−1) = 1, but the indicator
Iij = 0, then ξik = ξi, k ≥ j. This means that at the jth moment ith agent
comes to a market.

As analogs of Theorem 13, Theorem 14 and Theorem 15 we have
Theorem 19. (The case of the market probability.) (1) Under assumption

(A), (A4), (G) and (F) the following convergence is valid as n →∞
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Sn(p, q)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S(t) = S0 exp
{

(µ− r)b(t) + W2(t)−
σ2
0

2
b(t)

}
, t ∈ [0, T ] and W2 is a gaussian random process with the covariance

function

B2(t1, t2) = σ2
0

(
t1t2 −

∫ t1

0

∫ t2

0

f(min(x, y))dxdy

)
, t1, t2 ∈ [0, T ],

and

b(t) = t−
∫ t

0

f(x)dx.

(2) Under assumption (A1), (A4), (G) and (F) the following convergence is
valid as n →∞

Sn(p, q)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S(t) = S0 exp
{

(µ− r)b(t) + W2(t)−
σ2
0

2
b(t)

}
, t ∈ [0, T ] and W2 is a gaussian random process with the covariance

function

Bm2(t1, t2) = σ2
0

(
t1t2 −

∫ t1

0

∫ t2

0

e−m min(x,y)dxdy

)
t1, t2 ∈ [0, T ]

and

b(t) = t−
∫ t

0

e−mxdx.

Theorem 20. (The case of the risk-neutral probability.)Under assumption
(A) or (A1, (A4), (G) and (F) the following convergence is valid as n →∞

Sn(p̃, q̃)
d→ S

in L∞[0, T ] for almost all ω1 ∈ Ω1, where S̃(t) = S0 exp
{

W2(t) − σ2
0

2
b(t)

}

t ∈ [0, T ] and in the case (A) W2(t) and b(t) are defined in (1) of Theorem 19
and in the case (A1) W2(t) and b(t) are defined in (2) of Theorem 19.

Theorem 21. (The Black-Scholes Formula for the model.) Let (A) or (A1),
(A4), (G) and (F) be valid. Denote

v2(t) = E(W2(t))
2 = σ2

0

(
t2 −

∫ t

0

∫ t

0

f(min(x, y))dydx

)
,

b(t) = t−
∫ t

0

f(x)dx.

in the case (A), and

v2(t) = E(W2(t))
2 = σ2

0

(
t2 −

∫ t

0

∫ t

0

e−m min(x,y)dydx

)
,

b(t) = t−
∫ t

0

e−mxdx.

in the case (A2).
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Then the rational value of the Standard European Call Option option is equal
to

CT = S0 exp
{v2(T )

2
− σ2

0

2
b(T )

}
Φ(ρ + v(T ))−K exp{−rb(T )}Φ(ρ),

where ρ =
ln S0−ln K+rb(T )−σ2

0b(T )/2

v(T )
.

The proofs of Theorem 13 – Theorem 21 are the same as the proofs of
Theorem 1, Theorem 2 and Theorem 3 [9] (see, also, [10]) with the difference
that is instead of Theorem 1 from [6] we use Theorem 10, Theorem 11 and
Theorem 12 respectively.
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