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ABSTRACT. In the present paper the (Hf, Lp)—type and (Hf’oo, Lp’oo)—
type boundedness for the commutators associated with the Littlewood-
Paley operators and b € BMO(R™) are obtained, where H; and H}"™
are, respectively, variants of the standard Hardy spaces and weak Hardy
spaces, and n/(n+¢) <p < 1.

1. Introduction
Let b € BMO(R") and T be the Calderon-Zygmund operator. The commu-
tator [b, T'] generated by b and T is defined by

b, T1f(x) = b(x)T f(x) — T(bf)(x).

A classical result of Coifman, Rochberg and Weiss [3] proved that the commu-
tator [b, T] is bounded on LP(R") (1 < p < o0). However, it was observed that
[b,T] is not bounded, in general, from H?(R") to LP(R™) and from L'(R")
to LY (R™) and from HP*°(R") to LP*>°(R") for p < 1. But, if HP(R") is
replaced by a suitable atom space Hy(R") and H?*(R™) by H"*(R") (see
[1][6]), then [b, T] maps continuously H} (R") into LP(R") and H;*°(R") into
LP>(R™) for p € (n/(n + 1),1]. In addition, we easily know that H}(R")
C HP(R") and H,"(R"™) C HP* (R™). The main purpose of this paper is to
consider the boundedness of the commutators related to Littlewood-Paley op-
erators and BMO(R") functions from HJ(R") to LP(R") and from H}™(R")
to LP*°(R") for p < 1. In fact, we prove that the commutators of Littlewood-
Paley operators are bounded from H}(R") to LP(R"™) and from H}"* (R") to
LP>(R"™) for p € (n/(n + ¢€),1]. We will work on R",n > 2. Let us first
introduce some definitions (see [1] [4] [6] [9]).
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Definition 1. Let b be a locally integrable function and 0 < p < 1. A
bounded measurable function a on R" is said to be a (p,b) atom if

i) supp a C B = B(xo,7),

i) lallp~ < B,

i) [a(y)dy = [ a(y)b(y)dy = 0;

A temperate distribution f is said to belong to Hy (R"), if, in the Schwartz
distributional sense, it can be written as

r) = Aaj(x)
=0
where a’s are (p, b) atoms, \; € C'and Y 2 [A;|P < oo. Moreover, ||f|[gr(gn) ~

1/p
(50 l)

Definition 2. Let b be a locally integrable function and 0 < p < 1. A
temperate distribution f is said to belong to the space H}"™(R") if there exists
a sequence of functions {fx}32 _ C L*°(R™) such that

a) f(z)=> 1 fr(x) in the Schwartz distribution sense;

b) Each fi can be decomposed into fr = >2°2, bF in L>(R") N HP(R"),
where b? satisfy the following properties:

b): Supp bF C B}, B}’s are the balls with

SUPZXBk < 00, sup2kpZ\Bk| < 00,
7j=1
where, and in what follows, x e denotes the characteristic function of the set
E

Y

b)y there exists a constant C' = C(n,p) > 0 such that
||bl’?||Loo < C2% for every k, 7,

Jin Vi (x)dz = [, U5 (x)b(x)dz = 0;
The quasinorm on the Space HP*(R™) is defined by

o0

FIpoo pny = inf sukapZ Bk
H HHP (R™) ZiifooZ;)olbf f kez j:1| ]’7

where the infimum is taken over all decompositions of f.

Definition 3. Let ¢ > 0, fixed a function v satisfied the following prop-
erties:

[ (x)dz =0,

(2) [v(x )I < C(L+ Jaf)= ),

(3) [o(x+y) — ola)] < ClylF(L + [2])~+1+9 when 2Jg| < |z;

Let b b a locally integrable function. The commutator of Littlewood-Paley
operator is defined by

1/2
t s dydt
y = — F, 2 1
g.u,b<f)(x) [/ /R’_:_*l (t + |.T _ y|> | b,t(xvy)| t1+n] ) B> 1,
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where
Fi(z,y) = - Uiy — 2) f(2)(b(z) — b(z))dz,

and ¢y (z) = t™"(x/t) for t > 0. We also define

gi()a) = [ [ =) wmﬁfﬁf] "

which is the Littlewood-Paley operator (see [8]).

2. Theorems and Proofs

Theorem 1. Let b€ BMO(R") and 1 > p > n/(n+e¢), and p > n/2. Then
the commutator gy , is bounded from Hy(R") to LP(R").

Proof. It suffices to show that there exists a constant C' > 0 such that for
every (p,b) atom a,

gp(a)l[r < C.
Let a be a (p,b) atom supported on a ball B = B(xq,r). We write

[ @@
- wpla)(x)Pdx *o(a)(@)Pda
/|50—oc0|<2r[g#’( >( )] +/x—a;0|>2r[g ( )( )]
=1 411,

For I, taking ¢ > 2, by Holder’s inequality and the L?-boundedness of g3, ,
when p > max(n/2,n/q) (see [2]), we see that

I <C||g;, 5(a)l[7q - |Blao, 2r)| '~/
<Cllall7.|B|' 7 < C.

For II, by the vanishing moment of a and Definition 3(3), we have

@ <[ [ [ (=) (w2

2 1/2
~ il — awlla o) - o)z ) 5]

<c|f [ () (e e

(|20 —2l/t)° >2dydt] 1/2

(T fao — gl ") &
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np 2
<C|B|€/n*1/p // i ¢
- ret Nt —yl) (o [g — y[)?01+e)

2 1/2
dydt
(/B |b(x) — b(z)|dz> t1+n}
t ny tl—n
<C|B e/n—1/p+1 //
= | | |: Ri’H t+ |$ _ y| (t + |$0 _ y|)2(n+1+5)

(,;| /(|b( ) = bo!+!bo—b(z)\)dz) \dyct] /2

0 t ny
<C|BIFm= P (|b() — bo| + |[b [/ t<t—”/ (—)
<C|B]| (Ib() = bo| + [[bl|Bas0) i R

dy o 1/2
(t +Tao — g5 )]

where by = [B(2o,7)| ™" [p,, ) b(y)dy, notice that

t_"/ t i dy < OM 1
re \t+ |z — Y] (t + |zg — y|)2nt1te) — (t + |xg — x])2(nt1te)
1

<C
- (t + |£L‘ _ Z|)2(n+1+5)
(where Mg denotes the Hardy-Littlewood maximal function of g) and

e tdt )
— — ol 2(nte)
e i

Then, we deduce
Grsl0)(z) < CIBE P (b() — bo] + (16 paro) e — o]+,
thus, by Holder’s inequality,

0 1/1’
11 <C B(x ,2k+17‘ 1=p {/ g (a)(x da:}
I | A TG

k=1

<CZ!B wo, 20 1r) [P | B P EIR Bl
k=1

P
(/ |z — x0|("+5)dx)
2k+1r>|x xo|>2Fr

+CZ|B 2k+1 |1 p|B| (e/n—1/p+1)p

p
(/ |b(x) — bol|x — m0|_("+€)dx>
2k+1p>|p—g0|>2kr
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For I, using the properties of BMO(R") (see [7]), we obtain

Iy O3 Blan, 270 PR bl B

<ClIbllBar0 Z krotnli=tmeelp/n)

<C|’b||BMO7

For I, similar to the estimate of 115, we obtain Iy < C|[b||%0:
Combining the estimates of I1; with Il5, we gain

1T < Cpbllpp0 < C.

This finishes the proof of Theorem 1.

Theorem 2. Let b€ L*(R") and p=n/(n+¢) and > 1. Then g, is
bounded from H}(R") to LP>°(R").

To prove the theorem, we recall the following lemma (see [8]):

Lemma. Let {f} be a sequence of measurable functions and p € (0, 1).
Assume that

H{zx € R" : |fi(x)| > A} < cA7P for any £ and A > 0.

Then, for every p-summable numerical sequence {Cy} we have

{xER": ZCkfk(a:) >)\} 2= pC’Z’ Crl?.

Proof of Theorem 2. It suffices to show that there exists a constant
C' > 0, such that for each (p,b) atom a and any A > 0, we have

Nz e R": g, p(a)(x) > A} <[] [

We write

N[{z € R": g, ,(a)(z) > A}
<N |{z € R": b(z)|gy,(a)(z) > A2} + X |{z € R™ gp(ab)(z) > A2}
=l +11I.

For I, by a € HP(R") and the boundedness of g% from HP(R") to LP(R")
(0 < p < 1)(see[5]), we have

I <CXN |{z € R : gi(a)(x) > A/(2[[bl|1e)}]
<C[bl[ 70

For II, note that ab/||b|| is also a (p,c0) atom in the space HP(R"), thus,
we gain

11 <N [{z € R : g (ab/[[b]| =) () > A/ 2|[bl[ =) }| < ClIB] [}
This finishes the proof of Theorem 2.
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Theorem 3. Let b€ BMO(R"),1>p>n/(n+¢) and pr > n/2. Then
g, is bounded from H}"(R") to LP>*(R").

Proof. Given f € HY™(R"), let f =372 fi=>0"_ 2.2, b} bean
atomic decomposition as in Definition 2. By a limiting argument, it suffices to
show that

A>0 k——N

sup)\p|{x€R”'gub<Z fk> ) > A < CCy

fore every N = 0,1,2,---, where C} = supy., 2" Z;; \BJ’“|
Given A > 0, we taking kg € Z such that 2F < \ < 2Fo+1 Let

N
Z fu = Z fu+ Z fe = F1 + F.
k=—N

k=ko+1
Note that
@) <C 30 23 W)l < C Z szXBk
k=—N  j=1
<C Z 2" Xuse Bk( ),
k=—N
thus

1/q

ko oo 1/q
<c 3o (S
k=—N j=1

ko
Sccll/q Z 2k—kp/q < 0011/112/60—]6010/!1

k=—N
SC’C’ll/q)\lfp/q, for any 1 < g < oc.
Since gy, ;, is bounded on LI(R") for 1 < g < oo (see [2]), we have
N |{zeR": g, (F)(x) > N2} < CNYR||f, < CCy;
For F,, let A;CB;€ be the ball with the same center as B]’~C and Aj times the

radius of B;“, where A;, > 2"! is a positive number to be determined later.
For brevity, let

ko
1Fle <C ) 2*
k_

VE
j=1

k
Bko,N - U Ak;B] .
ko+1<k<N,j>1
We write

Nz e R": g;b(Fg)(a:) > \/2}|
=N {x € Biov : Gy} (F2)(@) > A + NW{z & Bio v @ g, (F2)(7) > A}
=+ 11.
Let Ck |Bk| 1ka y)dy, first, we have
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I1 <N |{x & By, : [b(z) — CFlgi(F) () > A/2}|
+ X [{z & By : g;((b— CF)F2)(x) > A2} |
=I5+ 11,

11 <C / b(z) — CHP(g7 (Fy) () P
(Bko N)©

oy /, gy PO~ GO @Y

k=ko+1 j=1

let us now fix 5 and k, then

/ b(x) — CH{(g7(08) (@) P
(A Bk)e

o0

[b(x) = CF1P(g;(b5) ()P dx

=0 /21+1Ak3§\2lAkB§

o0

1-p p
< g (b)) ()P APy / b(x) — C¥|dx
Z (/2!+1Ak3f\2lAkB§< M( ])( )) 2l+1AkB;?\21AkBJ’? | ( ) j|

1=0
(where usual modification is made when p = 1)
=L,

let B, = [2+1 A, B¥| ! szlAka b(xz) — CF|dx, then

[e.9]

1-p
Sy oy i)
2041 A, BF\2L A, BY

1=0
by |z| > 2|y|, similar to the proof of Theorem 1, we have
gr () () < C2 ||~ | B,

thus

L SCZ Bf|21+1AkB]l§|p2k:p|B;c’(1+a/n)p‘21+1AI€BJI§|1—p(n+5)/n—p
=0

_CQkpA —(n+e)p/n) ‘Bk Z Bp2 (I4+1)(n—(n+e)p)
=0

<CI[b]|% 002" AP BE,

now we take A, = A2(:-=k0)/(n+2) "where A is fixed and large enough, then
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0o N
I <Clblyo > > 2| BAL P

=1 k=ko+1

N

SCOI Z AZ—P(TL-F&)
kJZko-‘rl

<C(CYy, since p >n/(n+¢).

Now, let us estimate I/, by the estimate of g;; similar to above, we reduce

N o)
IT, <\ {x & By Y. > ghl(b—CHbb)(x) > )\/2}‘
k=ko+1 j=1
N 00
<N {:c € Bion: Y, Y Cla|""928Br e/ (!B]’-“\l/ b(y) — c?\dy>
k=ko+1 j=1 By

> A/QH

N 00
<OV 33T 2B b)) A

k=ko+1 j=1

N
SC)\p_n/(n+a)||b||%/]\(;ga) . Cl Z 2k(n/(n+a)—p)
k=ko+1
<CC, \P—/ (n+e)gko(n/(nte)—p)
<CC,, since A < 2ko+L
combining the estimates of I1; with I15, we obtain
11 <CCh.

Finally, let us estimate I. We have

N [e's) N
I <)\P Z ZAmBﬂ < ONC, Z gn(k—ko)/(n+e)o—kp

k=ko+1 j=1 k=ko+1

<CC NP2 kop i 9(k=ko)(n/(n+e)—p) < C0,.
k=ko+1
Now, let us combine the estimates of I with I, and let N — oo, then, we
have obtained the conclusion of Theorem 3.
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