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Abstract. Assuming continuum hypothesis (CH), we construct a
maximal cofinitary group step by step. We also outline a way of con-
structing maximal cofinitary group by assuming the negation of CH and
Martin’s Axiom (MA).

1. Introduction.

A permutation g ∈ Sym(N) is cofinitary iff g has only finitely many fixed
points. A group G ≤ Sym(N) is cofinitary iff, for all g ∈ Gr{id}, g is a
cofinitary permutation. Different properties of maximal cofinitary groups has
been studied (see, e.g., [A], [T1], [T2], [Z1], [Z2] etc.). In [C], P. Cameron
pointed out that Zorn’s Lemma (or, Axiom of Choice) implies the existence of
maximal cofinitary group. However, questions can still be asked from various
directions. For example,

(1) instead of saying that Zorn’s Lemma implies existence of a maximal
cofinitary group, is there any concrete example of maximal cofinitary
group?

(2) can we construct a maximal cofinitary group without using Axiom of
Choice (or Zorn’s Lemma), or say, does there exist a Borel maximal
cofinitary group? etc.

In this notes, we give a concrete example of maximal cofinitary group under
CH. In fact, we will construct a maximal cofinitary groups under CH step by
step. We will also outline a way of constructing maximal cofinitary groups by
assuming ¬CH and MA. The set theory notation which we use in this paper
are standard, people can find them in a book like [K].
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2. Constructing a maximal cofinitaty group under CH.

Let G ≤ Sym(N) be a countable cofinitary group. Let f ∈ Sym(N)rG such
that 〈G, f〉 is cofinitary. Let WG = {wi(x) | i ∈ N} enumerate all words

g1x
n1g2...gtx

ntgt+1

which actually involve x such that gl ∈ Gr{id} except that possibly g1 = id
or gt+1 = id and ni ∈ Zr{0}. By induction, we construct a permutation
g ∈ Sym(N)rG such that 〈G, g〉 is cofinitary.

At the i–th stage, we do the following. Assume that g∗i−1 is a 1–1 finite
partial function we defined up to i− 1 stage.

If g∗i−1(i) is defined, then let g∗i (i) = g∗i−1(i).

Assume g∗i−1(i) is undefined. Then we do the following.

We want to define g∗i (i) which satisfies the following condition (α).

(α). For every conjugate subword w′
j of wj, j < i, without cancellation, the

following holds. Suppose that w′
j(g

∗
i−1)(l) is undefined, and w′

j(g
∗
i )(l) = l.

Then w′
j = uzu−1 without cancellation and 〈l, n〉 ∈ u−1(g∗i−1) for some n with

z(g∗i−1)(n) = n.

Lemma 2.1 Assume that w(x) ∈ WG is a fixed word and g∗i−1(i) is not
defined. Then for all but finitely many m ∈ N we can define g∗i (i) = m and
the condition (α) holds.

Proof We argue by induction on the length of the word w. Let m ∈ Nr
rang(g∗i−1) and consider

ḡi = g∗i−1 ∪ {〈i,m〉}.
Suppose that there exists a conjugate subword

w0 = g1x
n1g2...gtx

ntgt+1

of w and an integer lm such that

w0(g
∗
i )(lm) is undefined, and w0(ḡi)(lm) = lm,

and condition (α) fails.

Consider the computation of the second formula in more detail. There exists
some 1 ≤ j ≤ t such that

r = gj+1(g
∗
i−1)

nj+1gj+2...(g
∗
i−1)

ntgt+1(lm)

is defined, and either

• nj > 0 and there exists 0 ≤ k ≤ nj − 1 such that

(g∗i−1)
k(r) 6∈ dom(g∗i−1); or

• nj < 0 and there exists nj + 1 ≤ k ≤ 0 such that

(g∗i−1)
k(r) 6∈ rang(g∗i−1).

At the next step of the computation, we must use the new data 〈i, m〉 of ḡi.

Case (1). We must have that (g∗i−1)
k(r) = i and so

(ḡ)k+1
i (r) = m.
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We now consider various subcases.

Case 1.1. Suppose that k + 1 < nj. Then we have to choose that

m ∈ dom(g∗i−1) ∪ {i}.
Hence there are only finitely many choice for m ∈ N.

Case 1.2. Suppose that k + 1 = nj. Now we have to consider the rest of the
computation.

g1(ḡi)
n1 ...gj(m) = lm.

First suppose that j > 1. If nj−1 > 0, then we can continue the computation
iff

gj(m) ∈ dom(ḡi) = dom(g∗i−1) ∪ {n},
and hence there are only finitely many values for m. If nj−1 < 0, then we must
have that

gj(m) ∈ rang(ḡi) = rang(g∗i−1) ∪ {m}.
Since gj ∈ G which is a cofinitary group, there are only finitely many values
of m.

Now suppose that j = 1. Then it has to be that g1(m) = lm. There is an
apparent difficulty since we do not know how many possibilities there are for
lm. But since we know that

g1(ḡi)
n1g2...(ḡi)

ntgt+1(lm) = lm, and

g1(g
∗
i−1)

n1g2...(g
∗
i−1)

ntgt+1(lm) is undefined,

then this implies that either

(1a). gt+1(lm) ∈ rang(g∗i−1) ∪ dom(g∗i−1), or

(1b). gt+1(lm) = i, and w0(x) = g1xg2.

For (1a), it is clear that there are only finitely many possibilites for lm, and
hence only finitely many possibilities for m = g−1

1 (lm).

For (1b), since g1(m) = lm and g2(lm) = i, then

m = g−1
1 (g−1

2 (i)).

Again there are only finitely many values for m.

Case (2). We must have that g∗i−1(r) = m and so

(ḡi)
k−1(r) = i.

Case 2.1. Suppose that j < t. Then

(g∗i−1)
kgj+1(g

∗
i−1)

ni+1...gt+1(lm) = m.

Since rang((g∗i−1)
kgj+1...gt+1) is finite, there are only finitely many values for

m.

Case 2.2. Suppose that j = t. If k 6= 0, then

(g∗i1)
kgt+1(lm) = m.

Since rang((g∗i−1)
kgt+1) is finite, there are only finitely many values for m.

Now assume that k = 0. Then m = gt+1(lm). Once again, there is an
apparent difficulty, since we do not know how many possibilities there are for
lm. We have the following two subcases to consider:
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(2a). n1 < 0 in w0 = g1x
n1 ...gtx

ntgt+1.

(2b). n1 > 0 in w0 = g1x
n1 ...gtx

ntgt+1.

For (2a), since n1 < 0, then

lm ∈ g1(dom(ḡi)) = g1(dom(g∗i−1) ∪ {i}),
i.e., g−1

t+1(m) ∈ g1(dom(g∗i−1) ∪ {i}). Hence,

m ∈ gt+1g1(dom(g∗i−1) ∪ {i}).
Thus there are finitely many values for m.

Now we consider the subcase (2b). Since

w0 = g1x
n1 ...gtx

ntgt+1 = g1x(xn1−1g2...gtx
nt+1)x−1gt+1,

we may write that w0 = g1xzx−1gt+1. If z(g∗i−1)(i) = i and g1 = g−1
t+1, then we

are done. Assume otherwise. Then either z(g∗i−1)(i) 6= i or g1 6= g−1
t+1.

If z(g∗i−1)(i) 6= i, then there are two subcases:

(I). z(g∗i−1)(i) = k, for some k ∈ N, or

(II). z(g∗i−1)(i) is undefined.

For (I) we may assume that z(g∗i−1)(i) ∈ dom(g∗i−1) because otherwise the
computation stops. Therefore, we know that

g∗i−1(z(g∗i−1)(i)) 6= m, and g∗i−1(z(g∗i−1)(i)) ∈ rang(g∗i−1).

This implies that
lm ∈ Nrg1(rang(g∗i−1));

i.e.,
gt+1(m) ∈ Nrg1(rang(g∗i−1)).

Hence there are finitely many possibilities for m.

For (II), there are two different possibilities:

(IIa). z(ḡi)(i) = k for some i 6= k ∈ N,

(IIb). z(ḡi)(i) = i.

For (IIa), there are finitely many possibilities for m, by a similar argument
to the subcase (I).

Now suppose that (IIb) holds. By induction hypothesis, if m is a sufficiently
large integer, then there exists an expression z = uz0u

−1 and an integer c ∈ N
such that

(i). z0(g
∗
i−1)(c) = c, and

(ii). u−1(ḡi)(i) = c.

If there are infinitely many such m, we must have that g1 = gt+1, since G
is a cofinitary group. But now (α) holds for all those m such that (i) and (ii)
are true.

Finally suppose that z(g∗i−1)(i) 6= i and g1 6= g−1
t+1. Since G is a cofinitary

group, there are only finitely many possibilities for m.

We have completed the proof of the lemma. ¤
By this lemma, we know that we can define g∗i (i) which satisfies condition

(α).
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A similar argument shows that we can also define k = (g∗i )
−1(i) which sat-

isfies condition (α).

Let
ġi = g∗i−1 ∪ {〈i, g∗i (i)〉, 〈k, (g∗i )

−1(i)〉}.
Next we want to find a pair 〈n, f(n)〉 ∈ f with n > i such that

g∗i = ġi ∪ {〈n, f(n)〉}
satisfies condition (α). The following lemma guarantees that we can find such
pair.

Lemma 2.2 Let G be a cofinitary group and let f ∈ Sym(N)rG be such that
〈G, f〉 is also a cofinitary group. Assume that w(x) ∈ WG. Then for all but
finitely many 〈n, f(n)〉, ġi ∪ {〈n, f(n)〉} satisfies condition (α).

Proof Since 〈G, f〉 is a cofinitary group and f ∈ Sym(N)rG, we know that f
is a cofinitary permutation, i.e., f has finitely many fixed point.

Let
w0 = g1x

n1g2x
n2 ...gtx

ntgt+1

be a conjugate subword of w, where ni ∈ Zr {0} and gi 6= id except possibly
gi = id or gt+1 = id. Also let

g′ = ġi ∪ {〈n, f(n)〉},
w0(g

′)(ln) = ln, and

w0(ġi)(ln) is undefined.

Consider the point where 〈n, f(n)〉 is first used. So we have that

w0 = axeb, and b(ġi)(ln) ∈ {n, f(n)},
where a, b ∈ WG ∪G.

If b involves x, then either

n ∈ rang(b(ġi)), or

f(n) ∈ rang(b(ġi)), i.e., n ∈ f−1(rang(b(ġi)),

and so there are only finitely many possibilities for n. Thus without loss of
generality, we may assume that b = gt+1 in the following.

Case 1. Suppose that nt > 0.

First suppose that nt > 1. Then

f(gt+1(ln)) = f(n).

Hence if f(n) 6∈ dom(ġi)∪{n}, then the computation will stop. Since dom(ġi)
is finite and f is a cofinitary permutation, there are only finitely possibilities
for n.

Now assume that nt = 1. To make the computation continue, it has to be
that

gt(f(n)) ∈ dom(ġi) ∪ rang(ġi) ∪ {n, f(n)}.
Since gt 6= id and f ∩ gt is finite, there are only finitely many n’s such that

gt(f(n)) = f(n), or gt(f(n)) = n.

Hence there are only finitely many n’s to make the computation continue.
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So, without loss of generality, we may consider that

w0 = g1xg2.

Assume that there are infinitely many ln such that

g1{〈n, f(n)〉}g2(ln) = ln.

This implies that
g1fg2 = id.

Hence f = g−1
1 g−1

2 ∈ G which is a contradiction.

Case 2. Suppose that nt < 0.

First suppose that nt < −1. We know that if

n 6∈ rang(ġi) ∪ {f(n)}.
then the computation stops. There are only finitely many choice for n.

So without loss of generality, we may suppose that nt = −1. Then only

gt(n) ∈ dom(ġi) ∪ rang(ġi) ∪ {n, f(n)}
can make the computation continue. Since there are only finitely many n ∈ N
such that

gt(n) = n, or, gt(n) = f(n).

there are only finitely many possibilities for n.

We consider the last case

w0 = g1x
−1g2.

If there are infinitely many ln such that

w0(ln) = g1{〈n, f(n)〉}g2(ln) = ln,

then g1f
−1g2 = id. Hence f−1 = g−1

1 g−1
2 , i.e., f = g2g1 ∈ G. This is a

contradiction as well.

We have proved the lemma. ¤
Let

g∗i = ġi ∪ {〈n, f(n)〉}.
We finished the i–th stage construction.

Now let g =
⋃

i∈N g∗i .
We have proved the following.

Theorem 2.3 Let G be a countable cofinitary group and let f ∈ Sym(N)rG be
such that 〈G, f〉 is also a cofinitary group. Then we can recursively construct a
permutation g ∈ Sym(N)rG such that 〈G, g〉 is cofinitary and g∩f is infinite.

Proof We prove that 〈G, g〉 is cofinitary by induction on the length of the word
wi ∈ WG(i ∈ ω) that | fix(w(g)) |< ω.

First suppose that we cannot express wi = uzu−1 without cancellation.
Then w(g)(l) = l implies that wi(g

∗
i )(l) = l. It follows that

|fix(w(g))| < ω.
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Next suppose that we can express w = uzu−1 without cancellation. By
induction hypothesis |fix(z(g))| < ω, since

|fix(w(g))| = |fix(z(g))|
by condition (α). We know that |fix(w(g))| < ω.

It can be easily seen from Lemma 2.2 that g ∩ f is infinite.
¤

By CH, let {fα | ω ≥ α < ω1} enumerate all permutations in Sym(N). We
construct a maximal cofinitary group G as follows.

Let g = (01)(234)(5678).... Let Gn = 〈g〉 for any n ∈ N.

At the α–th stage, ω ≤ α < ω1, we consider the countable cofinitary group
G′

α =
⋃

β<α Gβ and fα.

Assume that fα 6∈ G′
α and 〈G′

α, fα〉 is cofinitary. Then, by Theorem 2.3, we
can construct a gα such that Gα = 〈G′

α, gα〉 is cofinitary, and gα∩fα is infinite.

Let G = ∪α<ω1Gα. Then G is a maximal cofinitary group.

Thus we finished our construction of a maximal cofinitary group under CH.

Remark. By results in section 7 of [M], and Lemma 2.1, Lemma 2.2, you
may think that we can prove that there is a Π1

1 maximal cofinitary group
under V=L. Unfortunately, it is not the case. Our construction only gives a
set of generators of a maximal cofinitary group. Thus the following problem
is open and probably hard to solve:

Open Problem 2.4 Does there exist a Borel (or, analytic, co-analytic,
closed) maximal cofinitary group? Or, does there exist a Borel (or, analytic,
co-analytic, closed) set of permutations which generate a maximal cofinitary
group?

For more explaination, see [GZ].

3. When CH fails.

In this section, we sketch a construction of a maximal cofinitary group by
MA and ¬ CH. The idea involved here is similar to the one in section 3. Thus,
we will just sketch the construction and point out the p. o. set and some key
results we are going to use here.

Definition 3.1 Let G ≤ Sym(N) be a cofinitary group. Then the partially
ordered set GG consists of all conditions of the form 〈s, F 〉 such that

• s is a 1-1 finite partial function from N to N,
• F is a finite subset of WG;

where WG consists of the words g1x
n1 ...gtx

ntgt+1 which actually involves x such
that gl ∈ Gr{id} except that possibly g1 = id or gt+1 = id, and ni ∈ Zr{0}.
If w(x) ∈ WG and s is a 1–1 finite partial function from N to N, then W (s)
denotes the partial function obtained by substituting s for x in w(x). We
define 〈s2, F2〉 ≤ 〈s1, F1〉 iff

(a). s1 ⊆ s2 and F1 ⊆ F2;



80 YI ZHANG

(b). For every conjugate subword w0 of w ∈ F , the following holds. Suppose
that w0(s1)(l) is undefined and w0(s2)(l) = l. Then w0 = uzu−1 without
cancellation and 〈l, n〉 ∈ u−1(s2) for some n with z(s1)(n) = n.

It is esily seen that the poset GG is c.c.c. More explainations about this
poset can be found in [Z1] and [Z2]. For example, the following theorem can
proved by some rather complicated density arguments which appeared in [Z1].

Lemma 2.2 (MA (κ)). Let G ≤ Sym(N) be any cofinitary permuation group,
where |G| ≤ κ and ω ≤ κ < 2ω. Then there exists a g ∈ Sym(N)rG such
that 〈G, g〉 = G ∗ 〈g〉 is a cofinitary permutation group. Here G ∗ 〈g〉 denotes
the free product of G and 〈g〉. Moreover, if f ∈ Sym(N)rG and 〈G, f〉 is a
cofinitary group, then |g ∩ f | = ω, i.e., {n ∈ N | g(n) = f(n)} is infinite.

Proof See the proofs of Theorem 2.6 and Lemmas 3.2, and 3.3 in [Z1]. ¤
Now, let {fα | ω ≥ α < 2ω} enumerate all permutations in Sym(N). We

construct a maximal cofinitary group G as follows.

Let g = (01)(234)(5678).... Let Gn = 〈g〉 for any n ∈ N.

At the α–th stage, ω ≤ α < 2ω, we consider the cofinitary group G′
α =⋃

β<α Gβ and fα.

Assume that fα 6∈ G′
α and 〈G′

α, fα〉 is cofinitary. Then, by Lemma 2.2, we
can construct a gα by MA such that Gα = 〈G′

α, gα〉 is cofinitary, and gα ∩ fα

is infinite.

Let G = ∪α<2ωGα. We know that G is a maximal cofinitary group of size
continuum. We thus finished our construction.
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