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Abstract. In [HLS], the authors showed that the Brauer monoid of
a finite Galois group can be written as a disjoint union of smaller pieces
(groups). Each group can be computed following Stimets by defining
a chain complex and checking its exactness. However, this method is
not so encouraging because of the difficulty of dealing with such compu-
tations even with small groups. Unfortunately, this is the only known
method so far. This paper is to apply Stimets’ method to some idem-
potent weak 2-cocycles defined on S3. In particular, the idempotent
2-cocycles whose associated graphs have two generators. Some nice re-
sults appear in the theory of noncommutative polynomials.

1. Preliminaries

Let K/F be a finite Galois extension of fields and let G be its Galois

group. A weak 2–cocycle is a function f : G × G → K satisfying

(i) fσ(τ, ν)f(σ, τν) = f(στ, ν)f(σ, τ)

(ii) f(σ, 1) = f(1, σ) = 1

for all σ, τ, ν ∈ G.

If we define an algebra Af associated with f to be the algebra generated

as a K-vector space by the indeterminates {xσ : σ ∈ G} with the relations

xσxτ = f(σ, τ)xστ and xσk = kσxσ for k ∈ K, x1 = 1, then Af is called

a weak crossed product. Condition (i) above guarantees the associativity

of Af .

In the classical theory f does not take the value 0, and in that case Af

is a central simple F -algebra. The set H = {σ ∈ G : f(σ, σ−1) �= 0} is a

subgroup of G called the inertial subgroup of f . We define an order “≤”
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on G/H by σH ≤ τH if and only if f(σ, σ−1τ) �= 0. This order is lower

subtractive, that is if σH ≤ τH then σH ≤ αH ≤ τH if and only if

σ−1αH ≤ σ−1τH. In this order, H is the unique minimal element (root)

and has the property f(H × H) ⊆ K∗ [HLS]. The weak crossed product

Af can be written as

Af =
⊕
σ∈H

Kxσ ⊕
⊕
σ �∈H

Kxσ = B ⊕ J

where J =
⊕

σ/∈H Kxσ is the radical of Af and B =
⊕

σ∈H Kxσ is a

classical crossed product algebra for f |H×H . In particular B is a central

simple KH–algebra.

Given a weak 2-cocycle f , define a function e : G × G → {0, 1} by

e(σ, τ) = 0 if and only if f(σ, τ) = 0. Then e is a weak 2-cocycle called

the idempotent weak 2-cocycle associated to f .

Two weak 2-cocycles f, g are called cohomologous (or equivalent) if

there is a function α : G → K∗ such that

f(σ, τ) =
α(σ)ασ(τ)

α(στ)
g(σ, τ) for all σ, τ ∈ G.

Any two cohomologous weak 2-cocycles have the same associated idem-

potent cocycle. Under the equivalence relation introduced above the set

of classes of weak 2-cocycles from G × G to K forms a monoid denoted

by M2(G,K). The subgroup of invertible elements of this monoid is the

usual cohomology group H2(G,K∗).
Let e be an idempotent weak 2-cocycle. If f is a weak 2-cocycle asso-

ciated to e then we can define a function g : G × G → K by

g(σ, τ) =

{
(f(σ, τ))−1 if f(σ, τ) �= 0

0 otherwise.

Then g is a weak 2-cocycle associated to e. If [ · ] denotes the equivalence

class in the relation above, let M2
e (G,K) = {[f ] ∈ M2(G,K) | [f ][e] = [f ]

and there is a weak 2-cocycle g such that [f ][g] = [e]}. Then M2
e (G,K) is

a group with identity [e] and M2(G,K) = ∪e M2
e (G,K) (disjoint) where

the union is over all idempotent weak 2-cocycles, [H1]. In a similar way,

we can define the group M i
e(G,K) of ith dimension.

The set of all idempotent cocycles on G × G with inertial subgroup

H is in 1 − 1 correspondence with all lower subtractive orders (graphs)

on G/H with unique root H. Whenever we refer to the graph for e, we

mean the graph associated to the weak 2-cocycle e. If [f ] ∈ M2
e (G,K)

then f and e have the same associated graph. The following results and

definitions are from [S1] and [S2]. Each idempotent 2-cocycle e with
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trivial inertial subgroup H determines a ring Re = Z{xσ : σ ∈ G}/Ie

where Ie is the ideal generated by {xσxτ − xστ | σ ≤ στ}. The ring Re

is called the derived ring of e. To define a graded Re–module, it is more

convenient to use the notation gi for the elements of the group G and

[g1, g2, . . . , gk] for the free generators of the Re–module, where gi ≤ gi+1

according to the relation defined above.

Define a graded Re–module M by M =
⊕

n∈Z
Mn where

Mn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⊕
g1<···<gn

Re[g1, . . . , gn] n ≥ 1, gi �= 1

Re n = 0

Z n = −1

0 n ≤ −2

with differentials dn[g1, . . . , gn] = xg1 [g
−1
1 g2, . . . , g

−1
1 gn] +

∑
(−1)i[g1, . . . ,

ĝi, . . . , gn]. We call the pair (M, d) the chain complex of e. This def-

inition can be given in a similar manner if H �= {1}. Suppose f is a

function from Gn to a field K which satisfies

(i) in case

f(g1, g2, . . . , gi−1, 1, gi+1, . . . , gn) �= 0,

we have f(g1, g2, . . . , gi−1, 1, gi+1, . . . , gn) = 1 for all g1, g2, . . . , gn

in G and all 1 ≤ i ≤ n,

(ii) f(1, 1, . . . , 1, g, 1, . . . , 1) = 1 for all g ∈ G, and

(iii) for each g1, g2, . . . , gn+1 in G,

f g1(g2, . . . , gn+1)
∏

i even

f(g1, . . . , gigi+1, . . . , gn+1)

= f(g1, . . . , gn)
∏
i odd

f(g1, . . . , gigi+1, . . . , gn+1)

if n is even, and

f g1(g2, . . . , gn+1)f(g1, . . . , gn)
∏

i even

f(g1, . . . , gigi+1, . . . , gn+1)

=
∏
i odd

f(g1, . . . , gigi+1, . . . , gn+1)

if n is odd. We then call f a weak n-cocycle. The first condition is

analogous to the standard degeneracy conditions used in homological

algebra, but still allows for the possibility that certain cochains may take

on non-invertible values.
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The second condition ensures that the cochains (cocycles) have a suf-

ficient amount of invertibility.

If f is a weak n-cocycle and there is another weak n-cocycle h and an

invertible cochain β : Gn−1 → K∗ such that f = ∂β · h, where

∂β(g1, . . . , gn)

= βg1(g2, . . . , gn)β(−1)n

(g1, . . . , gn−1)
∏

β(−1)i

(g1, . . . , gigi+1, . . . , gn),

then we say f is cohomologous to h and write f ∼ h. Let Mn(G,K) be

the monoid of weak n-cocycles modulo the equivalence relation ∼. Then

Mn(G,K) is called the weak Galois cohomology monoid. The class of

cocycles equivalent (cohomologous) to the identity are known as weak

coboundaries.

Since the groups M i
e(G,K) are components of the required monoid, we

are interested in computing these groups. Stimets ([S1],[S2]) has shown

that under a sharp condition (exactness of (M, d)) we have the follow-

ing isomorphism M i
e(G,K) � ExtiRe

(Z, K∗) for all i, where the groups

ExtiRe
(Z, K∗) are relatively easier to deal with because they are well

known and Re acts on K∗ in the obvious way. (See [S1],[S2] for details).

In this paper, we investigate exactness in some special cases. Exactness

is always guaranteed at M0 ([S1]). It is quite difficult to check exact-

ness in general but using the “contraction process” makes the situation

somewhat easier. If g1 < · · · < gn, call [g1, · · · , gn] (n)–cell in Mn.

Proposition 1.1 (Contraction process) (Stimets). Let Cn ∈ Mn, Cn−1

∈ Mn−1 be two cells such that Cn does not appear in the boundary of

Mn+1 and in the boundary of an n–cell not equal to Cn, the cell Cn−1

does not appear. But if Cn−1 appears in the boundary of Cn, then the

chain complex (M′, d) obtained by removing Cn and Cn−1 is exact at M ′
n

if and only if (M, d) is exact at Mn. Moreover, (M, d) and (M′, d) have

the same homology groups.

This procedure allows us to cancel cells gradually until we reach a point

after which we cannot proceed any further. Then we can investigate

exactness at fewer modules.

2. Contracting to a Simpler Graph

In some cases, we can simplify the given graph to a smaller one. This

section is devoted to demonstrating a class of graphs that can be con-

tracted to a specific form of Z4 and showing that such graphs possess

exact chain complex.
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Lemma 2.1. In the ring R = Z{x, y}/(x2 = y2), if α(x− 1) = β(y− 1),

then α = h(x + 1), β = h(y + 1) for some h ∈ R.

Proof. We claim that the set V = {yεxyxy . . . xyxi | ε ∈ {0, 1}, i ≥ 0}
forms a Z-basis for R. Clearly V generates R. We show the independence.

Let M be a free module on T = {Y εXY · · ·Y X i | ε ∈ {0, 1}, i ≥ 0}. The

module M can be viewed as a right R-module by defining the action:

(Y εXY1X · · ·XYjX
i) · x = Y εXY1X · · ·XYjX

i+1

(Y εXY1X · · ·XYjX
i) · y =

{
Y εXY1X · · ·XYj+1X

i−1 if i is odd

Y εXY1X · · ·XYj−1X
i+3 if i is even.

This action is well-defined and notice that

(Y εXY1X · · ·XYjX
i) · y2 = (Y εXY1X · · ·XYjX

iy) · y

=

{
Y εXY1X · · ·XYj+1X

i−1 · y if i is odd

Y εXY1X · · ·XYj−1X
i+3 · y if i is even

=

{
(Y εXY1X · · ·XYjXYj+1 · y)X i−1

Y εXY1X · · ·XYjX
i+2

= Y εXY1X · · ·XYjX
i+2

= (Y εXY1X · · ·XYjX
i) · x2.

So we can define a homomorphism ϕ : R → EndZ(M) by

ϕ(x) = right multiplication by x.

ϕ(y) = right multiplication by y.

Now, for zi ∈ V , if
∑

aizi = 0, then ϕ(
∑

aizi)(1) = 0 =
∑

aiZi =⇒ ai =

0 for all i, and we showed the claim. Now, we define a total order on the

basis elements as follows: To each yεxy1x · · · xyjx
i ∈ V , assign a degree

(ε, 2, 2, . . . , 2︸ ︷︷ ︸
j

, 1, 1, . . . , 1︸ ︷︷ ︸
i

) and let deg m = (1
2
) for all m ∈ Z

∗, deg 0 = 0.

If u, v ∈ V , we define u ≤ v if the length of the corresponding tuple of v

is greater than the length of the corresponding tuple of u. If they have

the same length, then compare the first numbers on the right, if they are

the same go to the next numbers and so on. Notice that⎛
⎝ε, 2, 2, . . . , 2︸ ︷︷ ︸

j

, 1, 1, . . . , 1︸ ︷︷ ︸
i

⎞
⎠ · x =

⎛
⎝ε, 2, 2, . . . , 2︸ ︷︷ ︸

j

, 1, 1, . . . , 1︸ ︷︷ ︸
i+1

⎞
⎠
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and

⎛
⎝ε, 2, 2, . . . , 2︸ ︷︷ ︸

j

, 1, 1, . . . , 1︸ ︷︷ ︸
i

⎞
⎠ · y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ε, 2, 2, . . . , 2︸ ︷︷ ︸

j−1

, 1, 1, . . . , 1︸ ︷︷ ︸
i+3

⎞
⎠ i is even

⎛
⎝ε, 2, 2, . . . , 2︸ ︷︷ ︸

j+1

, 1, 1, . . . , 1︸ ︷︷ ︸
i−1

⎞
⎠ i is odd.

This shows that multiplying an element of V by x or y increases the

degree. Since any monomial in V ends from the right with either y or

xi, i > 0, we can write any element in V as a sum f + gy where f and

g are sums of monomials of V ending with xi, i > 0. We say f is the

component of 1 and g is the component of y. Remember that in this form

any term in the sum g must end with x1. Let α = f1 + g1y, β = h1 + k1y

where f1, g1h1 and k1 are sums of elements in V which end with xi, i > 0.

Let f, g, h and k be of the largest degrees in f1, g1, h1 and k1 respectively.

The equation α(x − 1) = β(y − 1) gives that

fx + gyx − gy + lower terms in both components

= kx2 − h + hy − ky + lower terms in both components. (2.1)

Let us denote by (g) for the degree of g, (g, 2, 1) for the degree of gyx

and (k, 1, 1) for the degree of kx2. From (2.1), if we assume that g �= 0,

and h ends with x1, we get

Case 1. If (h) < (k) then (g) = (k) and (g, 2, 1) ≤ (k, 1, 1) (impossible).

Case 2. If (h) ≥ (k) then (g) = (h) and (g, 2, 1) ≤ max{(h), (k, 1, 1, )}
(impossible).

Now assume g �= 0 and h ends with xi, i > 1. This implies that g = k

and fx = hy. Let
∑t

�=0 h� be the component of 1 in β where h� ends with

xi, i > 1, for all 	 and ht = h. Equation(2.1) implies that there exists

hj for some j such that gyx = hjy or gyx = hj. The latter is clearly

impossible since hj ends with xi, i > 1. The first is also impossible since

hjy = h′
jx

iy =

{
h′

jyxi i is even

h′
jxyxi−1 i is odd ≥ 3,

and in both cases hjy ends with xr, r > 1. So, gyx �= hjy for all j.

Thus g must be 0 and either k = 0 or k = h. In the first case,∑t
�=0 h� = β where h� ends with xi, i > 1 for all 	. Equation (2.1)

implies that fx = hy. But hy always ends with x2i. so f ends with x2i−1

and f = uyx2i−1 for some u. So h =

{
ux2i

u′yx2i+1
.
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Figure 1

Cancel fx with hy in (2.1) we get the term of the highest degree in

the left hand side is f , but f = h�y for any 	. Therefore f = h which is

impossible. This forces h = k.

Hence the original equation takes the form f1(x−1) = h′(1+y)(y−1)

where h′ is the sum of either components. This implies that f1(x− 1) =

h′(y2 − 1) = h′(x2 − 1) = h′(x + 1)(x − 1) =⇒ α = h′(x + 1) and

β = h′(y + 1). �

Theorem 2.2. The chain complex of the idempotent weak 2-cocycle e

whose graph is given by:

over Z4 is exact.

Proof. We have M0 = Z{x, y}/(x2 = y2) = R, M1 = R[1] ⊕ R[2] ⊕ R[3].

M2 = R[1, 2] ⊕ R[3, 2], where x = x1, y = x3. We need to check the

exactness of the following chain complex:

0 −→ M2
d2−→ M1

d1−→ M0 −→ 0.

As stated earlier, we always have exactness at M0. Now d2(α[1, 2] +

β[3, 2]) = 0 =⇒ α(x1[1]−[2]+[1])+β(x3[3]−[2]+[3]) = 0 =⇒ αx1+α = 0,

−α − β = 0 and βx3 + β = 0 =⇒ α = β = 0 and d2 is injective. To

check exactness at M1, let z = a[1] + b[2] + c[3] ∈ ker d1, then z ∈ imd2

if and only if z′ = z + d2(b[1, 2]) = (a + bx1 + b)[1] + c[3] ∈ imd2. Let

−s = a + bx1 + b. Now, z′ ∈ ker d1 =⇒ s(x1 − 1) = c(x3 − 1). By the

lemma above, the unique solution for such an equation is s = h(x1 + 1)

and c = h(x3 +1) for some h ∈ R. So z′ = −h(x1 +1)[1]+h(x3 +1)[3] =

d2(−h[1, 2] + h[3, 2]). Hence z ∈ imd2, so imd2 = ker d1. �

Remark 2.3. We joint each weak 2–cocycle with a chain complex and a

unique graph, so excising cells in the complex is equivalent to cancelling

edges in the corresponding graph, and we are free to talk about one of

these two contractions instead of the other.
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Figure 2

Figure 3

Corollary 2.4. Let e be an idempotent weak 2-cocycle and let us denote

by Γe its lower subtractive graph on a finite group G with a derived ring

Z{x, y}/(x2 = y2). If Γe can be contracted to a graph of the form: with

σ2 = τ 2 = ν, then the chain complex of e is exact.

Proof. This is a direct consequence of Theorem 2.2 and Proposition 1.1.

�
Example 2.1. Consider the idempotent e which is given by its graph

over the quaternion group Q = {±1,±i, ±j,±k}:
It is easy to check that Re = Z{x, y}/(x2 = y2) where x = xi, y = xj.

d3[i, k,−i] = xi[j,−1] − [k,−i] + [i,−i] − [i, k]

d3[j,−k,−j] = xj[i,−1] − [−k,−j] + [j,−j] − [j,−k]

The cells [i, k,−i] and [j,−k,−j] can be excised with [i, k] and [−k,−j]

respectively. We now only have the relations:

d2[i,−1] = xi[i] − [−1] + [i]

d2[i,−i] = xi[−1] − [−i] + [i]

d2[j,−k] = xj[i] − [−k] + [j]

d2[j,−1] = xj[j] − [−1] + [j]

d2[j,−j] = xj[−1] − [−j] + [j]

d2[k,−i] = xk[j] − [−i] + [k]
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Figure 4

Notice that the cells [k,−i], [j,−j], [j,−k] and [i,−i] can be excised

with [k], [−j], [−k] and [−i] respectively. And then we are left with a

graph of the form: where i2 = j2 = −1. So, the chain complex of e is

exact.

Corollary 2.5. In the previous example M i
e(Q, K) � ExtiRe

(Z, K∗)
where Q =

{±1,±i,±j,±k} is the Galois group of the extension K/F for some base

field F .

3. S3 with Two Generators

We will need some lemmas before we state and prove the main result

in this work.

Lemma 3.1. There is no non-trivial solution for the equation α(x−1) =

β(y − 1) over the ring R = Z{x, y}/(yx = xy2).

Proof. First, we show that the set {xiyj|i, j ≥ 0} forms a basis for R over

Z. Let M be the free Z–module generated by {X iY j|i, j ≥ 0}. Define

the following action to make M a right R–module. X iY jx = X i+1Y 2j,

X iY jy = X iY j+1 for all i, j. This action is well-defined as we have seen

in Lemma 2.1 and we can define a homomorphism ϕ : R → EndZ(M) by

x 
→ multiplication from the right by x, y 
→ multiplication from the right

by y. So, for any combination t =
∑

aijx
iyj = 0, we have ϕ(t)(1) = 0

or
∑

aijX
iY j = 0 and hence aij = 0 for all i, j. Let xsyt be denoted by

(s, t).

We define a degree function on the basis elements in R by (s, t) < (s′, t′)
if s < s′. If s = s′, then (s, t) < (s′, t′) if t < t′. Notice that multiplying

by x, y from the right gives (s, t)x 
→ (s + 1, 2t), (s, t)y 
→ (s, t + 1).

Let α = (s1, t1) + (s2, t2)+ lower degrees, where (s1, t1) > (s2, t2), β =

(s′, t′)+ lower degrees. α(x − 1) = β(y − 1) gives that (s1 + 1, 2t1) −
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(s1, t1)+(s2 +1, 2t2)+ lower degrees = (s′, t′ +1)− (s′, t′)+ lower degrees

=⇒ (s1 + 1, 2t1) = (s′, t′ + 1), that is, s′ = s1 + 1 and t′ = 2t1 − 1. We

claim that (s′, t′) > max{(s1, t1), (s2 + 1, 2t2)}. Clearly s′ > s1 since

s′ = s1 + 1. s2 ≤ s1 =⇒ s2 + 1 ≤ s′, if s2 + 1 < s′, we are done. So,

let s2 + 1 = s′, thus, s1 = s2. This implies t1 > t2 . . . (*). Assume that

t′ ≤ 2t2, so 2t1 − 1 ≤ 2t2 or t2 ≥ t1 which contradicts (*). �

Lemma 3.2. In the ring R = Z{x, y}/(xyx = y2), α(x − 1) = β(y − 1)

implies that α = k0(x
n−1 + xn−2 + · · · + 1)(1 + xy) and β = k0(1 − xn +

(xn−1 + xn−2 + · · · + 1)y), for any k0 ∈ R and n ∈ N.

Proof. Using an idea similar to what is in Lemma 3.1, we can show that

S = {yεxi1yxi2y · · · yxi� , ε ∈ {0, 1}, ij, 	 ∈ Z
+ for j �= 	, i� ∈ {0, 1, . . . }}

forms a Z-basis for R. Assign to each element yεxi1yxi2y . . . yxi� a degree

(ε, i1, i2, . . . , i�) if i� > 0 and (ε, i1, i2, . . . , i�−1) for yεxi2y . . . yxi�−1y. If f

ends from the right with xi, i > 0, denote by (f) for degree of f , (f + k)

for fxk, (f, 1) for fyx. Notice also that we can express any element in R

as f0 + g0y where f0 and g0 are sums of monomials from S ending with

xi, i > 0. Call f0 the component of 1 and g0 the component of y.

Let f, g, h and k be of the largest degree in α, β in both components.

So

(f + gy + · · · )(x − 1) = (h + ky + · · · )(y − 1) (3.1)

=⇒ fx + gyx − gy+ lower terms = kxyx − h + hy − ky+ lower terms

=⇒
(i) (g) = (h − k)

(ii) max((f + 1), (g, 1)) = max((k + 1, 1), (h)).

We discuss the following cases:

Case 1. If g = 0 then h = k and (f + 1) = (k + 1, 1) (impossible).

Case 2. labelcs2.6 If g �= 0 and (h) < (k) then (g) = (k) and from (ii)

(f + 1) = (k + 1, 1) (impossible).

Case 3. If g �= 0 and (h) > (k) then (g, 1) = (k +1, 1) =⇒ g = mkx and

h = rkx for some m, r ∈ Z
∗. Substituting in the equation (3.1) yields

m = 1 = −r and so, g = kx = −h. Let g′, k′, h′ be of the next largest

degree (g′) < (g), (k′) < (k), (h′) < (h), then we get

fx + kxyx + g′yx − kxy − g′y + lower terms

= −kxy + kx + h′y + kxyx − ky + k′xyx + lower terms =⇒
(i)′ (g′) = (h′ − k)

(ii)′ max((f + 1), (g′, 1)) = max((k + 1), (k′ + 1, 1)).
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Again if g′ = 0 then since h′ = k = tfx, t ∈ Z
∗ and equation (3.1)

gives fx+ lower terms = tfx2+ lower terms =⇒ f = 0 and hence h′ =

k = f = g′ = g = h = 0.

If g′ �= 0, then (h′) ≤ (k) =⇒ (g′) = (k) and hence (g′) = (k′ + 1) =⇒
g′ = sk = tk′x, s, t ∈ Z

∗. As above we find s = t = 1. Repeat this step to

get gi = kix, ki+1 = kix where (ki+1) > (ki) and equation (3.1) becomes

(F+k0(x
n+xn−1+· · ·+x)y)(x−1) = (−k0x

n+H ′+k0(x
n−1+· · ·+1)y)(y−1)

(3.2)

where F is the sum of components of 1 in α, H ′ the sum of components

of 1 in β that have degrees less than h. Let A := (xn−1 + · · · + 1), so

equation (3.2) reads

(F + k0Axy)(x − 1) = (−k0x
n + H ′ + k0Ay)(y − 1) =⇒

Fx − F + k0Axyx − k0Axy

= H ′y − H ′ + k0Axyx − k0x
ny − k0Ay + k0x

n =⇒
Fx − F = H ′y − H ′ − k0y + k0x

n

(since − xn − A = −Ax − 1) =⇒
k0 = H ′ =⇒

F (x − 1) = k0(x
n − 1) =⇒

F (x − 1) = k0(x
n−1 + · · · + 1)(x − 1) = k0A(x − 1) =⇒

F = k0A.

Therefore

α(x − 1) = (k0A + k0Axy)(x − 1) = k0A(1 + xy)(x − 1) (3.3)

and

β(y − 1) = (−k0x
n + k0 + k0Ay)(y − 1) = k0(−xn + 1 + Ay)(y − 1)

= k0(−xny + xn + y − 1 + Axyx − Ay)

= k0(−Axy − y + xn + y − 1 + Axyx)

(−xny − Ay = −Axy − y)

= k0((x
n − 1) + Axy(x − 1))

= k0(A(x − 1) + Axy(x − 1))

= k0A(1 + xy)(x − 1) = α(x − 1).

�
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Lemma 3.3. In the ring R = Z{x, y}/(xyx = yxy), the solutions of

α(x − 1) = β(y − 1) are α = h(xy − y + 1) and β = h(yx − x + 1) for

some h ∈ R.

Proof. Since xyx = yxy in R, any element in R can be written in a unique

way as a combination of elements of the form xi1yj1xi2yj2 . . . xi�yj� where

i1, j� ≥ 0, i2, . . . , i�−1 ≥ 2, j1, . . . j�−1 ≥ 1, i� ≥ 2 if j� > 0 and i� ≥ 1 if

j� = 0. The form yxy is always replaced by xyx. This set of monomials

forms a Z-basis for R by applying the same trick in Lemma 3.1. Assign

to each such element xi1yj1xi2yj2 . . . xi�yj� a degree (i1, j2, i2, j2, . . . , i�, j�)

and notice that

(i1, j1, i2, j2, . . . , i�, j�)x =

{
(i1, j1, . . . , i� + 1, 0) if j� = 0

(i1, j1, . . . , i�, j�, 1, 0) if j� �= 0

(n1, m1, . . . ,mt−1, nt,mt)y =

=

⎧⎪⎪⎨
⎪⎪⎩

(n1,m1, . . . , nt,mt + 1) if mt �= 0

(n1,m1, . . . ,mt−1, nt, 1) if mt = 0 and nt > 1

(n1,m1, . . . , nt−1 + 1, 1,mt−1, 0) if mt = 0 and nt = 1

Obviously, these two terms can not be equal except if mt = 0 and nt =

1. If j� = 0 then the equality implies (h′xi�−1yxi�)x = (h′xi�−1−1yi�+1x)y

for some h′ ∈ R. If j� �= 0 then the equality gives j� = mt−1 = 1 and

i� = nt−1 + 1. So, (h′′xi1y)x = (h′′xi�−1yx)y for some h′′ ∈ R. But in

the first case we note that h′xi�−1yxi� = h′xi�−1−1yi�xy, so in all cases if

(i1, j1, i2, j2, . . . , i�, j�)x = (n1,m1, . . . ,mt−1, nt,mt)y then there is h ∈ R

such that hxy = (i1, j1, i2, j2, . . . , i�, j�), hyx = (n1,m1, . . . ,mt−1, nt,mt).

Now, let α =
∑r

i=1 αi, β =
∑s

i=1 βi, so by a suitable rearrangement,

α(x−1) = β(y−1) implies that α1x = β1y =⇒ α1 = h1xy and β1 = h1yx

and hence h1xyx − h1xy + α2x − α2 + α3x − α3 + · · · = h1yxy − h1yx +

β2y − β2 + β3y − β3 + . . . =⇒ α2x = −h1yx or α2 = −h1y. Similarly, we

find β2 = −h1x, α3 = h1, β3 = h1, α4 = h2xy, β4 = h2yx, . . . =⇒ α =∑q
i=1 hi(xy−y+1) and β =

∑q
i=1 hi(yx−x+1) for some integer q. Take

h =
∑q

i=1 hi. �

Definition 3.1. Let e be a weak 2–cocycle and let Γe be its graph. Then,

we call the elements of G of level 1 generators of Γe. That is the elements

lie right above the root of Γe are called generators.

Note that generators of the graph certainly generate the group itself.
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Figure 5

Theorem 3.4. Let e be an idempotent 2-cocycle whose graph has two

generators over S3 = {σ, τ |σ2τ = τσ, σ3 = τ 2 = 1}. Then e admits an

exact chain complex.

Proof. Using a computer program, it can be shown that there are nine

distinct lower subtractive graphs with two generators over S3. Five of

them are trees which admit exact graded modules (see [S2]). The re-

maining four are:

By excising cells, we end up with M i
j = 0 for all j > 2, i = 1, 2, 3, 4.

Let 0 → M i
2

di
2→M i

1

di
1→M i

0 → Z → 0 be the chain complex of ei, i =

1, 2, 3, 4, which we get after excision. We always have exactness at M i
0.

At M i
2, it is easy to show that di

2 is injective for all i. To show exactness

at M3
1 , let z = a[σ2τ ] + b[σ2] + c[σ] + d[στ ] ∈ ker d3

1, so z ∈ imd3
2 if and

only if z′ = z + d3
2(c[σ

2, σ] + d[σ2, στ ]) = α[σ2τ ] + β[σ2] ∈ imd3
2, for some

α, β ∈ R3. But z ∈ ker d3
1 =⇒ z′ ∈ ker d3

1 =⇒ α(x−1) = β(y−1) =⇒ by

Lemma 3.1 α = β = 0. Thus, z ∈ imd3
2 if and only if 0 ∈ imd3

2 which is

always true. A similar idea can be applied to show exactness at M2
1 . For

M4
1 , let u = p[σ2τ ] + q[σ2] + r[τ ] + s[στ ] ∈ ker d4

1, so u ∈ imd4
2 if and only

if u′ = γ[σ2τ ]− δ[τ ] ∈ imd4
2 for some γ, δ ∈ Re4 . Since u′ ∈ ker d4

1 =⇒ by

Lemma 3.3 γ = h(xy − y + 1), δ = h(yx − x + 1) for some h ∈ Re4 =⇒
u ∈ imd4

2 if and only if u′ = h(xy− y +1)[σ2τ ]−h(yx−x+1)[τ ] ∈ imd4
2,

but clearly d4
2{h(1 − y)[σ2τ, σ2] + h[σ2, στ ] − h[τ, στ ]} = u′. For M1

1 ,

let z = a[σ2τ ] + b[σ2] + c[σ] + d[στ ] ∈ ker d1
1 ⇒ z ∈ imd1

2 if and only

if z′ = z + d1
2(c[σ

2, σ] + d[σ2, στ ]) = α(σ2τ) − β[σ2] ∈ imd1
2 for some

α, β ∈ Re1 . Since z ∈ ker d1
1 ⇒ z′ ∈ ker d1

1 and α(x− 1) = β(x− 1) in the

ring Z{x, y}/(xyx = y2) = Re1 . This implies that α = k0(x
n−1 + · · · +

1)(1+xy), β = k0(1−xn+(xn−1+· · ·+1)y) (by Lemma 3.2). So z ∈ imd1
2
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if and only if z′ = k0A(1 +xy)[σ2τ ]− k0(1−xn +Ay)[σ2] ∈ imd1
2. Notice

that 1−xn = A−Ax. So z′ ∈ imd1
2 if and only if z′′ = k0A((1+xy)[σ2τ ]−

(1 − x + y)[σ2]) ∈ imd1
2. But z′′ = d1

2(x[σ2, στ ] + [σ2τ, σ] − [σ2, σ]). �

Corollary 3.5. For any idempotent weak 2-cocycle e over S3 with two

generators, M i
e(S3, K) ≈ Exti

Re
(Z, K∗).
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