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Abstract. Let M be a semifinite von Neumann algebra in a Hilbert space
H and τ be a normal faithful semifinite trace on M. Let Mpr denote the set
of all projections in M, e denote the unit of M, and ‖ · ‖ denote the C∗-norm
on M.

The set of all τ -measurable operators M̃ with sum and product defined as
the respective closures of the usual sum and product, is a *-algebra. The sets

U(ε, δ)={x ∈ M̃ : ‖xp‖ ≤ ε and τ(e− p) ≤ δ for some p ∈Mpr}, ε>0, δ>0,

form a base at 0 for a metrizable vector topology tτ on M̃, called the measure
topology. Equipped with this topology, M̃ is a complete topological *-algebra.
We will write xi

τ−→ x in case a net {xi}i∈I ⊂ M̃ converges to x ∈ M̃ for the
measure topology on M̃. By definition, a net {xi}i∈I ⊂ M̃ converges τ -locally

to x ∈ M̃ (notation: xi
τ l−→ x) if xip

τ−→ xp for all p ∈ Mpr, τ(p) < ∞; and
a net {xi}i∈I ⊂ M̃ converges weak τ -locally to x ∈ M̃ (notation: xi

wτl−→ x) if
pxip

τ−→ pxp for all p ∈Mpr, τ(p) < ∞.

Theorem 1. Let xi, x ∈ M̃.
1. If xi

τ l−→ x, then xiy
τl−→ xy and yxi

τ l−→ yx for every fixed y ∈ M̃.
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2. If xi
wτl−→ x, then xiy

wτl−→ xy and yxi
wτl−→ yx for every fixed y ∈ M̃.

Theorem 2. If {xi}i∈I ⊂ M̃ is bounded in measure and if xi
τ l−→ x ∈ M̃,

then xiy
τ−→ xy for all τ -compact y ∈ M̃.

Theorem 3. Let x, y, xi, yi ∈ M̃ and let a set {xi}i∈I be bounded in mea-

sure. If xi
τ l−→ x and yi

τ l−→ y, then xiyi
τ l−→ xy.

If M is abelian, then the weak τ -local and τ -local convergencies on M̃
coincides with the familiar convergence locally in measure. If τ(e) = ∞, then
the boundedness condition cannot be omitted in Theorem 2.

If M is B(H) with standard trace, then Theorem 2 for sequences is a ”Basic
lemma”of the theory of projection methods: If y is compact and xn → x

strongly, then xny → xy uniformly, i.e. ‖xny−xy‖ → 0 as n →∞. Theorem
3 means that the mapping

(x, y) 7→ xy : (B(H)1 × B(H) → B(H))

is strong-operator continuous (B(H)1 denotes the unit ball of B(H)).

The author is greatly indebted to O.E.Tikhonov for drawing author’s atten-
tion to the problem of the τ -local continuity of operator functions.

1. Introduction

Let M be a semifinite von Neumann algebra of operators in a Hilbert

space H and τ be a distinguished normal faithful semifinite trace on M.

Let Mpr denote the lattice of all projections in M, e denote the identity,

and M1 denote the unit ball of M in the C∗-norm ‖ · ‖ on M. The

closed, densely defined linear operator x in H with domain D(x) is said

to be affiliated with M if and only if u∗xu = x for all unitary operators

u in the commutant M′ of M. If x is affiliated with M then x is said to

be τ -measurable if and only if, for every ε > 0 there exists a projection

p ∈Mpr for which p(H) ⊆ D(x) and τ(e− p) < ε. We denote by M̃ the

set of all τ -measurable operators. With sum and product defined as the

respective closures of the usual sum and product, M̃ is a *-algebra. The

sets

U(ε, δ)={x∈M̃ : ‖xp‖ ≤ ε and τ(e− p) ≤ δ for some p ∈Mpr},
where ε> 0, δ > 0, form a base at 0 for a metrizable vector topology tτ
on M̃, called the measure topology ([8]; [11, p. 18]). Equipped with this

topology, M̃ is a complete topological *-algebra in which M is dense.

We will write xi
τ−→ x in case a net {xi}i∈I ⊂ M̃ converges to x ∈ M̃

for the measure topology on M̃.
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A subset X of M̃ is bounded in measure, if it is bounded with respect

to this topology on the vector space of M̃, that is in case for every

neighborhood U of 0 there is an α > 0 such that αX ⊂ U [8, p. 106].

IfM is B(H), the von Neumann algebra of all bounded linear operators

in H is equipped with the usual standard trace, then M̃ coincides with

M and in this case the measure topology coincides with the ‖·‖-topology.

If M is abelian, then M may be identified with L∞(Ω, µ) and τ(f) =∫
Ω

f dµ where (Ω, µ) is a localizable measure space. In this case, M̃ is the

space S0(Ω) consisting of those measurable complex-valued functions on

Ω which are bounded except on a set of finite measure and the measure

topology on M̃ may be identified simply with the familiar topology of

convergence in measure.

If x is any self-adjoint operator in H and if

x =

∫

R
λ dex

λ

is its spectral representation, we will write χT (x) for the spectral pro-

jection of x corresponding to the Borel subset T ⊂ R. In particular

ex
λ = χ(−∞,λ](x). If x is closed, densely defined linear operator affiliated

with M and |x| =
√

x∗x, then the spectral resolution χ•(|x|) is con-

tained in M and x ∈ M̃ if and only if there exists λ ∈ R such that

τ(χ(λ,∞)(|x|)) < ∞.

For p, q ∈ Mpr we write p ∼ q (the Murray – von Neumann equiva-

lence), if u∗u = p and uu∗ = q for some u ∈M.

A linear set D in H is said to be associated with M if u(D) ⊂ D for

every unitary operator u in M′. If D is a closed linear manifold then D
is associated with M if and only if the projection onto D lies in M [9,

p. 403]. For every x ∈ M̃ the projection onto the closure of the range of

x lies in M. It is equal to the left support projection

sl(x) = ∧{q ∈Mpr : qx = x}

and sl(x) ∼ sl(x
∗).

The two-sided ideal of τ -compact operators

M̃0 = {x ∈ M̃ : τ(χ(λ,∞)(|x|)) < ∞ for all λ > 0}

is closed in measure topology [12]. If M is B(H) with standard trace,

then M̃0 is precisely the ideal of compact operators. Let

Mpr
0 = M̃0

⋂
Mpr = {p ∈Mpr : τ(p) < ∞}.
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Definition 1 (cf. [3, p. 114]). A net {xi}i∈I ⊂ M̃ is said to converge

τ -locally to x ∈ M̃ (notation: xi
τ l−→ x) if xip

τ−→ xp for all p ∈Mpr
0 .

Definition 2 (cf. [3, p. 114]; [5, p. 746]). A net {xi}i∈I ⊂ M̃ is said

to converge weak τ -locally to x ∈ M̃ (notation: xi
wτl−→ x) if pxip

τ−→ pxp

for all p ∈Mpr
0 .

It is clear that

xi
τ−→ x =⇒ xi

τ l−→ x =⇒ xi
wτl−→ x for xi, x ∈ M̃.

If M is B(H) with standard trace, then τ -local (respectively, weak

τ -local) convergence coincides with strong-operator (respectively, weak-

operator) convergence. If τ(e) < ∞, then M̃ consists of all densely

defined closed linear operators affiliated with M and weak τ -local con-

vergence is precisely the convergence in measure topology on M̃. More-

over, the measure topology is a minimal one in the class of all topologies

which are Hausdorff, metrizable, and compatible with the ring structure

of M̃ [1, Theorem 2].

2. Main Results

Further we assume that τ(e) = ∞.

Theorem 1. Let xi, x ∈ M̃.

1. If xi
τ l−→ x, then xiy

τl−→ xy and yxi
τ l−→ yx for every fixed y ∈ M̃.

2. If xi
wτl−→ x, then xiy

wτl−→ xy and yxi
wτl−→ yx for every fixed y ∈ M̃.

Proof. Let xi, x, y ∈ M̃ and let p ∈ Mpr
0 . Since sl(yp) ∼ sl(py

∗) ≤ p,

one has sl(yp) ∈Mpr
0 .

1. Suppose that xi
τ l−→ x. One has

yxi
τ l−→ yx and xiyp = xisl(yp)yp

τ−→ xsl(yp)yp = xyp,

since the multiplication operations z 7→ yz (M̃ → M̃) and z 7→ zyp (M̃ →
M̃) are continuous in the measure topology.

2. One has r = p∨ q ∈Mpr
0 for p, q ∈Mpr

0 , since p∨ q− p ∼ q− p∧ q

[8, p. 105]. By [3, p. 114] xi
wτl−→ x if and only if pxiq

τ−→ pxq for all

p, q ∈Mpr
0 . Indeed, from rxir

τ−→ rxr it follows that

pxiq = p · rxir · q τ−→ p · rxr · q = pxq.

Therefore,

pxiyp = pxisl(yp)yp
τ−→ pxsl(yp)yp = pxyp.



CONTINUITY OF MULTIPLICATION 21

Now the convergence yxi
wτl−→ yx follows from the fact that the mapping

z 7→ z∗ (M̃ → M̃) is weak τ -local continuous and by taking adjoints.

Theorem 2. If {xi}i∈I ⊂ M̃ is bounded in measure and if xi
τ l−→ x ∈

M̃, then xiy
τ−→ xy for all y ∈ M̃0.

Proof. Step 1. Without loss of generality we may assume that y ∈
M̃0 is self-adjoint and non-negative. Indeed, let y ∈ M̃0 and y∗ = u|y∗|
be the polar decomposition of y∗. Then y = |y∗|u∗ and from xi|y∗| τ−→
x|y∗| it follows that xiy

τ−→ xy, since the multiplication operation z 7→
zu∗ (M̃ → M̃) is continuous in the measure topology.

Step 2. Fix non-negative y ∈ M̃0 and ε, δ > 0. A subset X of M̃ is

bounded in measure if and only if for every d > 0 there exists a constant

c < ∞ such that X ⊂ U(c, d) [8, p. 106]. Let n ∈ N and

y1,n =

∫

[0,n−1)

λ dey
λ, y2,n =

∫

[n−1,n)

λ dey
λ, y3,n =

∫

[n,∞)

λ dey
λ.

Then y = y1,n + y2,n + y3,n and for zi = xi − x one has

xiy − xy = ziy1,n + ziy2,n + ziy3,n, i ∈ I. (1)

The set {zi}i∈I is bounded in measure. There exists a constant c > 0

such that

{zi}i∈I ⊂ U(c, δ). (2)

Let

n1 = min{k ∈ N : 2εk ≥ c}.
Since ‖y1,n‖ < n−1, one has y1,n

τ−→ 0 as n →∞. Since

τ(sl(y3,n)) = τ(χ[n,∞)(y)) → 0 as n →∞,

one has y3,n
τ−→ 0 as n → ∞. Therefore y1,n + y3,n

τ−→ 0 as n → ∞.

Then there exists m ∈ N such that

y1,n + y3,n ⊂ U(n1
−1, δ) for all n ≥ m. (3)

Recall that

U(ε1, δ1)U(ε2, δ2) ⊂ U(ε1ε2, δ1 + δ2) for all ε1, δ1, ε2, δ2 > 0 (4)

by [8, p. 107], [11, p. 18]. Now by (2) and (3) one has

ziy1,n + ziy3,n ∈ U(2ε, 2δ) for all i ∈ I, n ≥ m. (5)
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Step 3. Let m be as above, λk > 0 and pk ∈ Mpr
0 (k = 1, . . . , j),

pkpl = 0 for k 6= l, such that

y2
2,m =

∫

[m−1,m)

λ2 dey
λ ≤

j∑

k=1

λ2
kpk

(one can choose pk as spectral projections of y). There exists z ∈ M1

such that

y2,m = (

j∑

k=1

λkpk) · z

[4, Chap. 1, Sect. 1, Lemma 2]. Since zi
τ l−→ 0, one has zipk

τ−→ 0 for

all k = 1, . . . , j. Now

ziy2,m =

j∑

k=1

λkzipkz
τ−→ 0,

because the multiplication operation t 7→ tz (M̃ → M̃) is continuous in

the measure topology. Therefore, there exists i0 ∈ I such that

ziy2,m ∈ U(ε, δ) for all i ∈ I, i ≥ i0. (6)

Step 4. Recall that

U(ε1, δ1) + U(ε2, δ2) ⊂ U(ε1 + ε2, δ1 + δ2) for all ε1, δ1, ε2, δ2 > 0 (7)

by [8, p. 107], [11, p. 18]. The assertion of Theorem 2 follows from (1),

(5) and (6), since

xiy − xy ∈ U(3ε, 3δ) for all i ∈ I, i ≥ i0.

Theorem 3. Let x, y, xi, yi ∈ M̃ and let a set {xi}i∈I be bounded in

measure. If xi
τ l−→ x and yi

τ l−→ y, then xiyi
τ l−→ xy.

Proof. For every p ∈Mpr
0 one has

xiyip− xyp = xi(yip− yp) + (xi − x)yp, i ∈ I. (8)

Fix ε, δ > 0. By assumption of the theorem, there exists a constant c > 0

such that

{xi}i∈I ⊂ U(c, δ). (9)

Since yip− yp
τ−→ 0, there exists i1 ∈ I such that

yip− yp ∈ U(2εc−1, δ) for all i ∈ I, i ≥ i1. (10)

Now by (9), (10) and (4) one has

xi(yip− yp) ∈ U(2ε, 2δ) for all i ∈ I, i ≥ i1. (11)
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Since xi − x
τl−→ 0 and yp ∈ M̃0 , it follows by Theorem 2 that there

exists i2 ∈ I such that

(xi − x)yp ∈ U(ε, δ) for all i ∈ I, i ≥ i2. (12)

There exists i0 ∈ I such that i0 ≥ i1 and i0 ≥ i2. Now by (8), (11), (12)

and (7) one has

xiyip− xyp ∈ U(3ε, 3δ) for all i ∈ I, i ≥ i0.

This proves the theorem.

Example 1. If M is abelian, then the weak τ -local and τ -local con-

vergencies on M̃ coincides with the familiar convergence locally in mea-

sure (i.e., in other words, convergence in measure on every set of finite

measure). The boundedness condition for {xi}i∈I cannot be omitted in

Theorem 2. Indeed, let Ω = (0,∞) equipped with the Lebesgue measure

µ. Define the functions

y(t) = min{1, t−1}; xn(t) = t χ[n,2n](t) (t ∈ (0,∞), n ∈ N).

Then

i) xn
τl−→ 0 as n →∞;

ii) {xn}∞n=1 is not bounded in measure;

iii) y ∈ M̃0

⋂M1;

iv) since (xny)(t) = χ[n,2n](t) for every t ∈ (0,∞), n ∈ N, xny does

not converge in measure topology.

Example 2. If M is B(H) with standard trace, then Theorem 2 for

sequences is a ”Basic lemma”of the projection methods [2, pp. 18–19] (the

boundedness condition for {xn}∞n=1 follows from the principle of uniform

boundedness):

If y is compact and xn → x strongly, then xny → xy uniformly, i.e.

‖xny − xy‖ → 0 as n →∞.

Theorem 3 means that the mapping

(x, y) 7→ xy : (B(H)1 × B(H) → B(H))

is strong-operator continuous [7, pp. 115–117].

Remark. The second part of Theorem 1 was already used in [6] and

[10].
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[2] Böttcher A. ... [et al.]; edited by P. Lancaster, Lectures on operator theory and
its applications. Fields Institute monographs. Providence, Rhode Island, Amer.
Math. Soc. 1996. 340 p.

[3] Ciach L.J., Some remarks on the convergence in measure and on a dominated se-
quence of operators measurable with respect to a semifinite von Neumann algebra,
Coll. Math. LV (1988), 109–121.

[4] Dixmier J. Les algebres d’operateurs dans l’espace Hilbertien (algebres de von
Neumann). Paris, Gauthier-Villars, 1969. 367 p.

[5] Dodds P.G., Dodds T.K., and de Pagter B. Non-commutative Köthe duality,
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