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Abstract. Using the notion of radially Clarke-Rockafellar subdif-

ferentiable functions (RCRS-functions), we characterize strictly pseudo-

convex functions with respect to the Clarke-Rockafellar subdifferential

in two different ways, and we study a maximization problem involving

RCRS-strictly pseudoconvex functions over a convex set.

1. Introduction

Generalized convexity has proved to be a good tool in the study of some

economic problems and in mathematical programming. Strict pseudo-

convexity is a kind of generalized convexity that appeared recently as an

important part of the class of pseudoconvex functions. The former class

has been characterized by many authors (see for instance [1, 2, 4, 7, 10]).

In this paper we will refine these results in section 2, using the Clarke

Rockafellar subdifferential. While, in section 3 we give a necessary and

sufficient condition for a point to be a maximum of a strictly pseudocon-

vex function over a convex set.

Let us recall some definitions and well known results in connection

with what we shall do in the sequel. By X we mean a Banach space and
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by X∗ its topological dual, while 〈., .〉 is the duality pairing between X

and X∗. For x and y in X, the closed segment [x, y] is the set [x, y] =

{ x+ t(y−x); t ∈ [0, 1] }. By [x, y) we denote the set [x, y]\{y}. Given a

lower semi-continuous (l.s.c.) function f : X → R∪{+∞} whose domain

domf =
{

x ∈ X; f(x) < +∞
}

is nonempty. The Clarke-Rockafellar generalized directional derivative

f ↑(x, v) of f at x ∈ domf along the direction v is defined by:

f ↑(x, v) = sup
ε>0

lim sup
y→f x, t↘0

inf
u∈B(v,ε)

t−1
[

f(y + tu) − f(y)
]

, (1)

where by y →f x, we mean y → x and f(y) → f(x). Here, by B(v, ε) we

denote the open ball centered at v with radius ε. The Clarke-Rockafellar

subdifferential of f at x ∈ domf is defined by

∂f(x) =
{

x∗ ∈ X∗ : 〈x∗, v〉 ≤ f ↑(x, v) ∀v ∈ X
}

.

We adopt the convention ∂f(x) = ∅ when x 6∈ domf .

A function f is said to be quasiconvex if for any x, y ∈ X and λ ∈ [0, 1]

we have

f(λx + (1 − λ)y) ≤ max{ f(x), f(y) }. (2)

f is said to be strictly quasiconvex if the inequality (2) is strict when x 6=
y. f is said to be pseudoconvex(with respect to the Clarke-Rockafellar

subdifferential) if for any x and y in X the following implication holds:
(

∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 ≥ 0
)

=⇒ f(x) ≤ f(y). (3)

The relation between pseudoconvexity and quasiconvexity has been de-

scribed in [2, 4, 7, 10] by the following result.

Theorem 1. Let f : X 7→ R ∪ {+∞} be a l.s.c. function. Consider

the propositions:

i) f is pseudoconvex.

ii) f is quasiconvex and (0 ∈ ∂f(x) =⇒ x is a global

minimum of f).

Then i) implies ii). If moreover, f is radially continuous, then ii) implies

i).

Generally, in generalized convexity, there is a close link between the

kind of convexity of a function and a corresponding kind of monotonicity

of its subdifferential. Recall that a multifunction T : X → X∗ is said to

be pseudomonotone if for any x, y ∈ X, we have:

[∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0] =⇒ ∀y∗ ∈ T (y) : 〈y∗, y − x〉 ≥ 0. (4)



CLARKE-ROCKAFELLAR SUBDIFFERENTIAL 57

We have the following classical result:

Theorem 2. [2, 4, 7, 11] Let f : X → R∪{+∞} be a l.s.c. function.

Consider the propositions:

i) f is pseudoconvex.

ii) ∂f is pseudomonotone.

Then i) implies ii). If moreover, f is radially continuous, then ii) implies

i).

In this paper, we want to characterize strictly pseudoconvex func-

tions with respect to the Clarke-Rockafellar subdifferential in two dif-

ferent ways. For this, we introduce the so what we call radially Clarke-

Rockafellar subdifferentiable functions (RCRS-functions).

Let f : X 7→ R ∪ {+∞} be a l.s.c. function. We say that f is radially

Clarke-Rockafellar subdifferentiable if for all x, y ∈ X with x 6= y, there

is x0 ∈ (x, y) such that ∂f(x0) 6= ∅. Recall that an extended-real valued

function f : X 7→ R ∪ {+∞} is said to be radially continuous if for all

x, y ∈ X f is continuous on [x, y].

2. Characterization of RCRS-strict pseudoconvex

functions

In this section, we get analogous results to theorem 1 and theorem 2

for RCRS-strictly pseudoconvex functions.

An extended-real valued function f : X 7→ R ∪ {+∞} is said to be

radially non constant if for all x, y ∈ X with x 6= y, f 6≡ constant on

[x, y].

Definition 3. A function f : X 7→ R ∪ {+∞} is said to be strictly

pseudoconvex(with respect to the Clarke-Rockafellar subdifferential) if

for any different points x, y ∈ X, the following implication holds:
(

∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 ≥ 0
)

=⇒ f(x) < f(y). (5)

We can check immediately that a strict pseudoconvex function is pseu-

doconvex while the converse is not true in general as we can see for

example for the function

f(x) =

{
√

| x | −1 if x ∈] −∞,−1] ∪ [1, +∞[,

0 if x ∈ [−1, 1].
(6)

We can describe the relation between strict pseudoconvexity and strict

quasiconvexity via the following result:
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Theorem 4. Let f : X 7→ R ∪ {+∞} be a l.s.c. function such that

f is radially Clarke-Rockafellar subdifferentiable. Consider the following

assertions:

i) f is strictly pseudoconvex.

ii) f is strictly quasiconvex and (0 ∈ ∂f(x) =⇒ x is a

strict global minimum of f).

Then i) implies ii). If moreover, f is radially continuous, then ii) implies

i).

Proof. Let f be a strictly pseudoconvex function, then by theorem 1,

f is quasiconvex. Let us prove now that f is strictly quasiconvex. Since

f is quasiconvex, then according to Diewert [5], it suffices to prove that

f is radially non constant. By the contrary, assume that there exists a

closed segment [x, y] (x 6= y) on which f is constant. Let z ∈ (x, y). Then

applying the strict pseudoconvexity property on x and z, we deduce

∀z∗ ∈ ∂f(z) 〈z∗, x − z〉 < 0.

Using the same argument for z and y, we obtain

∀z∗ ∈ ∂f(z) 〈z∗, y − z〉 < 0.

Therefore,

∀z∗ ∈ ∂f(z), 〈z∗, x − y〉 < 0 and 〈z∗, x − y〉 > 0.

Consequently, for all z ∈ (x, y) we have ∂f(z) = ∅. But this contradicts

the fact that f is a RCRS-function. Thus, f is strictly quasiconvex. On

the other hand, f is pseudoconvex. Therefore,

0 ∈ ∂f(x) =⇒ x is a strict global minimum of f.

Conversely, assume that f satisfies the condition ii) and f is radially

continuous. Then by theorem 1, f is pseudoconvex.

Let us prove now that f is strictly pseudoconvex. Assume by contra-

diction that there exist x 6= y in X and x∗ ∈ ∂f(x) such that

〈x∗, y − x〉 ≥ 0 and f(x) ≥ f(y).

Then, It follows by pseudoconvexity property that

f(x) = f(y) and ∀z ∈ [x, y], f(z) ≥ f(x) ≥ f(y).

On the other hand, f is quasiconvex. Therefore,

f(z) = f(x) = f(y), ∀z ∈ [x, y].

Consequently, f is not radially non constant on X. But this contradicts

the fact that f is strictly quasiconvex. Thus, we achieve the proof.
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Analogously to pseudomonotone multioperators, we define strictly pseu-

domonotone multioperators as follows:

Definition 5. A multioperator T : X → X∗ is said to be strictly

pseudomonotone if for any different points x and y in X, the following

implication holds:

∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0 =⇒ ∀y∗ ∈ T (y) : 〈y∗, y − x〉 > 0. (7)

We have also a relation between strict pseudoconvexity of functions

and strict monotonicity of their corresponding Clarke-Rockafellar subd-

ifferentials.

Theorem 6. Let f : X 7→ R ∪ {+∞} be a l.s.c. function such that

f is radially Clarke-Rockafellar subdifferentiable. Consider the following

assertions

i) f is strictly pseudoconvex.

ii) ∂f is strictly pseudomonotone.

Then i) implies ii). if moreover, f is radially continuous, then ii) implies

i).

Proof. The first implication can be easily proved, nevertheless we

include it here for completeness. Assume that f is strictly pseudoconvex.

Let us prove by the contrary that ∂f is strictly pseudomonotone. Suppose

that there exist two different points x, y ∈ X, x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y)

such that

〈x∗, y − x〉 ≥ 0 and 〈y∗, x − y〉 ≥ 0.

Since f is strictly pseudoconvex, then

f(x) < f(y) and f(x) > f(y).

Contradiction. Thus, ∂f is strictly pseudomonotone.

Conversely, assume that f satisfies the condition ii) and f is radially

continuous. Let us prove that f is strictly pseudoconvex. By the contrary,

assume that there exist two different points x and y in X, and x∗ ∈ ∂f(x)

such that both inequalities

〈x∗, y − x〉 ≥ 0 and f(x) ≥ f(y)

hold. Then

〈x∗, z − x〉 ≥ 0 ∀z ∈ [x, y]. (8)

By theorem 2, it follows that f is pseudoconvex. Therefore,

f(x) ≤ f(z) ∀z ∈ [x, y].
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By theorem 1, f is quasiconvex. Consequently, we can easily see that

f must be constant on [x, y]. On the other hand, by (8) and the strict

pseudomonotonicity of ∂f , we have:

〈z∗, z − x〉 > 0, ∀z ∈ (x, y) ∀z∗ ∈ ∂f(z). (9)

Pick z0 ∈ (x, y) such that ∂f(z0) 6= ∅ (such a z0 exists since f is a RCRS-

function). Choose any z∗0 ∈ ∂f(z0). Then, 〈z∗0 , z0 − x〉 > 0. Therefore,

〈z∗0 , y − z0〉 > 0. Consequently, there is ε > 0 such that

〈z∗0, y
′ − z0〉 > 0 ∀y′ ∈ B(y, ε).

By the pseudoconvexity of f , it follows that y is a global minimum of f .

Hence, z0 is also a global minimum of f . Thus, 0 ∈ ∂f(z0) and this is in

contradiction with (9).

3. Maxima of strongly RCRS-strict pseudoconvex

functions

In this section, we study a maximization problem over a convex set

involving a certain class of RCRS-strictly pseudoconvex functions called

class of strongly RCRS-strictly pseudoconvex functions.

Let f : X 7→ R∪ {+∞} be a l.s.c. function. We say that f is strongly

radially Clarke-Rockafellar subdifferentiable if for all x, y ∈ X with x 6= y

and for all c : f(x) < c < f(y), there is x0 ∈ (x, y) such that f(x0) = c

and ∂f(x0) 6= ∅.

Let C be a nonempty convex set of X. Consider the following maxi-

mization problem:

(P) max
x∈C

f(x),

where the function f is assumed to be strictly pseudoconvex, l.s.c. and

strongly radially Clarke-Rockafellar subdifferentiable.

Theorem 7. Consider x̄ ∈ C such that

−∞ ≤ inf
C

f < f(x̄). (10)

Then x̄ is a maximum of f over C if and only if for all x ∈ C such that

f(x) = f(x̄) and all x∗ ∈ ∂f(x) we have:

〈x∗, y − x〉 < 0 ∀y ∈ C \ {x}. (11)

Proof. Assume that x̄ is a solution of the problem (P). Let x ∈ X

such that f(x) = f(x̄) and let x∗ ∈ ∂f(x). Then

f(y) ≤ f(x), ∀y ∈ C.
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Since f is strictly pseudoconvex, then

〈x∗, y − x〉 < 0, ∀y ∈ C \ {x}.

Conversely, suppose that there exists z ∈ C such that f(z) > f(x̄). By

the hypotheses, there is z0 ∈ C such that f(z0) < f(x̄). Since f is

strongly radially Clarke-Rockafellar subdifferentiable, then there is some

x0 ∈ (z0, z) such that f(x0) = f(x̄) and ∂f(x0) 6= ∅. Pick any x0
∗ ∈

∂f(x0). Then

〈x∗
0, z − x0〉 < 0 and 〈x∗

0, z0 − x0〉 < 0.

Which is impossible. To prove that (11) holds when x̄ is a maximum,

we use only the strict pseudoconvexity of f , the other conditions that

appear in theorem 7 are needed only to prove that (11) implies that x̄ is

a maximum. This result is a refinement of both theorem 2.1 of [8] where

the function was supposed to be convex continuous and of theorem 4.1

of [7] where the function was assumed to be pseudoconvex and radially

continuous.
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