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Abstract. We are interested in the approximation in the L
∞-norm

of variational inequalities with two-sided obstacle. We show that the

order of convergence will be the same as that of variational inequalities

with one obstacle. We also give multilevel projective algorithm and

discuss its convergence.

1. Introduction

Let K be a closed convex set in H1
0 (Ω) defined by

K = {v ∈ H1
0 (Ω) : Φ ≤ v ≤ Ψ in Ω},

where Ω ⊂ R2 is a bounded convex polygon, Φ,Ψ ∈ W 2,s(Ω)(s > 2) are

two given functions that satisfy Φ|Ω̄ < Ψ|Ω̄ and Φ|∂Ω < 0 < Ψ|∂Ω. We

consider the following two-sided obstacle problem: find u ∈ K such that

a(u, v − u) ≥ f(v − u), ∀v ∈ K, (1)
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where a(u, v) =
∫

Ω
∇u ·∇vdx, f(·) = (f, ·), f ∈ Ls(Ω) and (·, ·) is the L2

inner product.

Theorem 1. Problem (1) has a unique solution u ∈ H1
0 (Ω) ∩W 2,s(Ω).

The proof is similar to variational inequalities with one obstacle(see [6]).

Remark 1. u, Φ, Ψ are Hölder continuous functions by W 2,s(Ω) ↪→

C0,α(Ω) with 0 < α < 1.

A lot of results on L∞-error estimate for the finite element approxima-

tion of obstacle problems have been obtained(see [1, 4, 5, 7, 8, 10]). In

this paper, we will discuss L∞-error estimate for the finite element ap-

proximation of problem (1) by using the results of variational inequalities

with one obstacle. Based on results in [13] we establish a rate of conver-

gence h2|logh|, provided Φ,Ψ ∈ W 2,∞(Ω) and f ∈ L∞(Ω). This result

has be established in a different way (see [4]). At last, we will present a

multilevel projective algorithm (see[14]) and discuss its convergence.

2. Preliminaries

In this section, we will construct two variational inequalities with lower

and upper obstacles respectively which have the same solution as problem

(1). Firstly, we make some preparations.

Set three sets as follows:

W1 = {x ∈ Ω : u(x) = Φ(x)},

W2 = {x ∈ Ω : u(x) = Ψ(x)}

and

W3 = Ω − (W1 ∪W2).

It’s easy to see that W1,W2 is two disjoint closed sets and then write

r = dist(W1,W2) > 0. (2)

Lemma 1. There exist three open sets W̃i, i = 1, 2, 3, which have the

following properties:

W1 ⊂ W̃1, W2 ⊂ W̃2, W̃3 ⊂ W3,

W̃1

⋂

W̃2 = ∅

and
3

⋃

i=1

W̃i = Ω.
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Moreover, there is a partition of unity {θi}
3
i=1 satisfying 0 ≤ θi ∈ C∞(Ω̄),

θi = 0 on Ω\W̃i and
∑3

i=1 θi = 1.

Proof. Let ΓH = {Ω′
i}

k
i=1 be a set of coarse mesh of Ω with mesh size

H < r/2 − 4δ. Here r is defined in (2), δ << r is a positive number,

and Ω′
i, i = 1, 2, . . . , k, are disjoint open sets satisfy ∪k

i=1Ω̄
′
i = Ω̄. Then

we refine ΓH to get Γh, a set of fine mesh with mesh size h < δ/2. Let

Ωi, i = 1, 2, · · · , k, be the enlarged subdomains of Ω′
i defined by

Ωi = Ω′
i

⋃

{τ
⋃

((Ω̄′
i

⋂

τ̄ )\∂Ω)|τ ∈ Γh and dist(τ,Ω′
i) < δ/2}.

The union of Ωi cover Ω with overlap size 2δ and diam(Ωi) < r/2. Fol-

lowing [2], let {θ̃i}
k
i=1 be a partition of unity satisfying θ̃i ∈ C∞(Ω̄),

θ̃i ≥ 0, θ̃i = 0 in Ω\Ωi and
∑k

i=1 θ̃i = 1. Classify {Ωi}
k
i=1 into three

groups: for i = 1, 2, W̃i =
⋃

Ω̄j

T

Wi 6=∅{Ωj}, W̃3 =
⋃

Ω̄j

T

(W1
S

W2)=∅{Ωj}.

Let θi =
∑

Ωj⊂W̃i
θ̃j(i = 1, 2, 3), the lemma can be easily verified. �

Lemma 2. Let u be the solution of (1), then

−4u = f a.e. in W̃3, (3)

where W̃3 are defined as in Lemma 1.

Proof. From the definition of W̃3 we known that Φ < u < Ψ in W̃3. Let

D(W̃3) denote the set of infinitely differentiable functions with compact

support ⊂⊂ W̃3. For any ṽ ∈ D(W̃3), extend it by zero to Ω\W̃3, we can

take positive q sufficiently small such that v = u± qṽ ∈ K. From (1) we

have

a(u, ṽ) = (f, ṽ).

What’s more,

a(u, ṽ) =

∫

Ω

∇u∇ṽdx = −

∫

Ω

u4ṽdx = −

∫

Ω

4uṽdx,

where the last equal follows from the definition of weak derivative. There-

fore
∫

Ω

(−4u− f)ṽdx =

∫

W̃3

(−4u− f)ṽdx = 0.

By the arbitrary of ṽ, we have −4u = f in W̃3. �

Remark 2. Use the same technique in Lemma 2, we can also get −4u ≥

f in W̃1 and −4u ≤ f in W̃2.

Let K1 = {v ∈ H1
0 (Ω) ∩H2(Ω) : v ≥ Φ}, K2 = {v ∈ H1

0 (Ω) ∩H2(Ω) :

v ≤ Ψ}.
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Remark 3. v ∈ K1(or K2) is Hölder continuous function by embedding

theorem, therefore v is bounded.

Lemma 3. a(u, w) ≥ f(w) if w ∈ H1
0 (W̃1) and u + w ∈ K1, where u is

the solution of (1), and w is extended by zero to Ω\W̃1 .

Proof. For 0 ≤ q ≤ 1, we consider the two cases: if w(x) ≥ 0, then

(u+qw)(x) ≥ u(x) ≥ Φ(x); if w(x) < 0, then (u+qw)(x) ≥ (u+w)(x) ≥

Φ(x). So we have u + qw ≥ Φ for 0 ≤ q ≤ 1. Furthermore, from the

definition of W̃1, we know that dist(W̃1,W2) ≥ r/2 and it is easy to

verify that u < Ψ on ¯̃
1W . Since w is bounded by Remark 3, there exists

a sufficiently small positive q ≤ 1 such that Ψ ≥ u + qw ∈ K. Take

v = u+ qw in (1), then we have a(u, w) ≥ f(w). �

We now construct two variational inequalities with one obstacle. De-

fine

f (1) =

{

−4u x ∈ W̃2,

f otherwise
(4)

and

f (2) =

{

−4u x ∈ W̃1,

f otherwise,
(5)

where u ∈ W 2,s(Ω) is the solution of problem (1). It is obvious that f (1)

and f (2) ∈ Ls(Ω). From Lemma 2 and Remark 2, we have

f (1) ≤ f ≤ f (2) a.e. in Ω. (6)

Problem I: Find u1 ∈ K1 such that

a(u1, v − u1) ≥ f (1)(v − u1), ∀v ∈ K1. (7)

Problem II: Find u2 ∈ K2 such that

a(u2, v − u2) ≥ f (2)(v − u2), ∀v ∈ K2. (8)

Remark 4. Problems (7), (8) have unique solutions in W 2,s(Ω) (see [6]).

Lemma 4. Problems (1), (7) and (8) have the same solution.

Proof. For simplicity, we only prove problems (1) and (7) have the same

solution. Let u be solution of (1). For any v ∈ K1, vi = θi(v − u) ∈

H1
0 (Ω)

⋂

H2(Ω), i = 1, 2, 3, have supports ⊂ W̃i respectively and the

restriction of vi are in H1
0 (W̃i) ∩H

2(W̃i). Here θi, i = 1, 2, 3, are defined

as in Lemma 1. Obviously, v − u =
∑3

i=1 vi and

a(u, v − u) = a(u, v1) + a(u, v2) + a(u, v3). (9)
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It’s easy verify that u + v1 ∈ K1. So by Lemma 3 and (4) we have

a(u, v1) ≥ f(v1) =
∫

Ω
fv1dx =

∫

W̃1
fv1dx =

∫

W̃1
f (1)v1dx =

∫

Ω
f (1)v1dx =

f (1)(v1). By Lemma 2 and (4), we can directly verify that

a(u, v3) = (−4u, v3) =

∫

Ω

−4uv3dx =

∫

W̃3

−4uv3dx

=

∫

W̃3

f (1)v3dx =

∫

Ω

f (1)v3dx = f (1)(v3).

Similarly, a(u, v2) = f (1)(v2). So we have

a(u, v − u) ≥ f (1)(v1 + v2 + v3) = f (1)(v − u).

Thereby, u is a solution of problem (7). By the uniqueness of the solution

of problem (1) and problem (7), the lemma is proved. �

3. Main Results

Let a triangulation Th be defined over Ω, satisfying the shape regularity

and maximum angle conditions(see [1]). Let Ṽh = Ṽh(Th) denote the

space of continuous piecewise linear functions over Th. Take Vh = Ṽh ∩

H1
0 (Ω). For v ∈ C0(Ω̄), let πh(v) ∈ Ṽh be nodal interpolation of v, that

is, v = πh(v) holds at each vertex. Let Φh = πh(Φ),Ψh = πh(Ψ). Take

Kh = {v ∈ Vh : Φh ≤ v ≤ Ψh},

K
(1)
h = {v ∈ Vh : v ≥ Φh}

and

K
(2)
h = {v ∈ Vh : v ≤ Ψh}.

The correspondent discrete problem of (1) is: find uh ∈ Kh such that

a(uh, vh − uh) ≥ f(vh − uh), ∀vh ∈ Kh. (10)

And the correspondent discrete problems of (7) and (8) are: find u
(i)
h ∈

K
(i)
h , i = 1, 2, such that

a(u
(i)
h , vh − u

(i)
h ) ≥ f (i)(vh − u

(i)
h ), ∀vh ∈ K

(i)
h , (11)

respectively. We assume, for i = 1, 2, that

||u− u
(i)
h ||∞ ≤ Chµ|logh|γ, 0 ≤ µ, γ ≤ 2. (12)

We will use the assumption (12) to estimate the error bound of ||u−uh||∞.

Denote {xi : i = 1, 2, . . . , mh} the interior node set and {xi : i =

mh + 1, . . . , nh} the boundary node set of Th. Let {ϕ
(i)
h }nh

i=1 be the nodal

basis for Ṽh with ϕ
(i)
h (xj) = δij. Ph be a canonical function from Ṽh

to Rmh . Namely, for any vh =
∑nh

i=1 yiϕ
(i)
h , let y = Phvh with yT =
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(y1, . . . , ymh
). Let Ah = (aij)mh×mh

be the stiffness matrix given by

aij =
∫

Ω
∇ϕ

(j)
h ∇ϕ

(i)
h dx. To obtain our main results, we need the following

lemmas.

Lemma 5. (see [9, 11]) If the triangulation Th satisfies maximal angle

condition, Ah is M-matrix.

Lemma 6. If the triangulation Th satisfies maximal angle condition,

Ahe ≥ 0,

where e = (1, 1, . . . , 1)T ∈ Rmh .

Proof. By maximal angle condition, a(ϕi, ϕj) ≤ 0 for i 6= j(see [3, 13]).

So we have for i = 1, 2, . . . , mh,

(Ahe)i =

mh
∑

j=1

aij =

mh
∑

j=1

a(ϕj, ϕi)

≥

mh
∑

j=1

a(ϕj, ϕi) +

nh
∑

j=mh+1

a(ϕj, ϕi) = a(1, ϕi) = 0.

The lemma is followed. �

Lemma 7. [12] Let sets I ⊂ {1, 2, . . . , mh}, J = {1, 2, . . . , mh}\I. For

any y, ȳ ∈ Rmh , if yI ≤ ȳI and (Ahy)J ≤ (Ahȳ)J , we have that

y ≤ ȳ,

where Ah is the stiffness matrix given before.

Take z = Phuh, z
(i) = Phu

(i)
h (i = 1, 2), φ = PhΦh and ψ = PhΨh.

Discrete problems (10) and (11) are equivalent to the following three

algebraic problems respectively:














(Ahz)i = gi if φi < zi < ψi,

(Ahz)i ≥ gi if zi = φi,

(Ahz)i ≤ gi if zi = ψi,

φ ≤ z ≤ ψ;

(13)











(Ahz(1))i = g
(1)
i if z

(1)
i > φi,

(Ahz(1))i ≥ g
(1)
i if z

(1)
i = φi,

z(1) ≥ φ;

(14)











(Ahz(2))i = g
(2)
i if z

(2)
i < ψi,

(Ahz(2))i ≤ g
(2)
i if z

(2)
i = ψi,

z(2) ≤ ψ,

(15)
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where

g =
(

(f, ϕ
(1)
h ), . . . , (f, ϕ

(mh)
h )

)T

and

g(i) =
(

(f (i), ϕ
(1)
h ), . . . , (f (i), ϕ

(mh)
h )

)T

, i = 1, 2.

By (6) we know

g(1) ≤ g ≤ g(2). (16)

Lemma 8. If the assumption (12) holds, we have

z(1) − Chµ|logh|γe ≤ z, (17)

where e = (1, 1, . . . , 1)T ∈ Rmh .

Proof. By the assumption (12), we have

u
(1)
h − Chµ|logh|γ ≤ u ≤ Ψ,

and therefore

z(1) − Chµ|logh|γe ≤ ψ.

Define I, J by

I = {i | z
(1)
i = φi} ∪ {i | zi = ψi},

J = {1, 2, . . . , mh}\I,

respectively. It’s easy to verify that

z
(1)
j − Chµ|logh|γ ≤ zj, j ∈ I. (18)

From (13), (14), (16) and Lemma 6, we have that

(Ahz)J ≥ gJ (19)

and

A(z(1) − Chµ|logh|γe)J ≤ (Az(1))J = g
(1)
J ≤ gJ . (20)

The lemma follows from (18), (19), (20) and Lemma 7. �

Lemma 9. If the assumption (12) holds, then

z(2) + Chµ|logh|γe ≥ z.

The proof is similar to that of Lemma 8, we omit it here.

By Lemmas 8 and 9, we have

u
(1)
h − Chµ|logh|γ ≤ uh ≤ u

(2)
h + Chµ|logh|γ.

Then, the following theorem becomes obvious.
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Theorem 2. If the assumption (12) holds, we have

||u− uh||∞ ≤ Chµ|logh|γ.

When s = ∞, [13] has obtained the estimate

||u− u
(i)
h ||∞ ≤ Ch2|logh|, for i = 1, 2.

Therefore by Theorem 2, we have the following theorem.

Theorem 3. If s = ∞ in problem (1), we have

||u− uh||∞ ≤ Ch2|logh|.

4. Multilevel Projective Algorithm

In the sequel, we assume s = ∞ in problem (1). We consider a sequence

of regular triangulations Thk
of the polygonal domain Ω determined as

follows. Suppose Th1 is given and let Thk
, k ≥ 2, be obtained from Thk−1

via a systematic subdivision. Edge midpoints in Thk−1
are connected by

new edges to form Thk
. Let hk be the mesh size of Thk

and satisfy

hk = 2−(k−1)h1, k = 1, 2, . . . .

Let Vhk
denote the space of continuous piecewise linear functions with

respect to Thk
that vanish on ∂Ω. Note that

Thk−1
⊂ Thk

⇒ Vhk−1
⊂ Vhk

.

Similarly, we use mhk
denote the number of the interior nodes of Thk

.

Next we will discuss how to solve the discrete problem (13) on the mul-

tilevel mesh.

Let K(0) be a vector space associated with Kh defined as follows:

K(0) = {y ∈ Rmh |φ ≤ y ≤ ψ}.

Let PK(0) be the projective operator from Rmh into K(0). Therefore, for

any y ∈ Rmh,

(y − PK(0)y, ȳ − PK(0)y)E ≤ 0, for all ȳ ∈ K(0),

where (·, ·)E is Euclidean inner product. Now we can define an operator

PGh : Rmh 7→ Rmh by

PGh(y) = PK(0)(y − ρh(A
hy − g)),

where

ρh =
1

λmax(Ah)
.
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Here, λmax(A
h) and λmin(Ah) are the biggest eigenvalue and the smallest

eigenvalue of Ah respectively. Notice that λmax(A
h) = O(1), λmin(Ah) =

O(h2), and the condition number of Ah, Λ(Ah), satisfies

Λ(Ah) =
λmax

λmin

= O(
1

h2
) = O(mh).

Denote || · || the Euclidean norm of Rmh , then we have the following

theorem.

Theorem 4. z ∈ K(0) solves the discrete problem (13), then for any

y ∈ Rmh ,

||PGh(y) − z|| ≤ (1 −
1

Λ(Ah)
)||y − z||,

||(PGh)l(y) − z|| ≤ (1 −
1

Λ(Ah)
)l||y − z||,

here l is a positive integer.

The proof of the theorem is similar to that in [14].

Now we define the intergrid transfer operators. Let Ihk

hk−1
: Rmhk−1 7→

Rmhk defined by Ihk

hk−1
(y) = Phk

(
∑mhk−1

i=1 yiϕ
(i)
hk−1

) for y ∈ Rmhk−1 . In the

following, we will give the multilevel projective algorithm.

Algorithm MP:

Step 1: Solve the exact solution z̃h1 of problem (13) on the coarsest

mesh;

Step 2: For k ≥ 2, the approximate solution on the kth level is gotten

by

z̃hk
= (PGhk)τkIhk

hk−1
(z̃hk−1

),

where the positive integer τk is chosen such that

(1 −
1

Λ(Ahk)
)τk ≤

1

5 + 2
√

1 +m/2
.

Here m is the maximal number of triangles sharing a common vertex.

Now we give the convergence results of algorithm MP.

Theorem 5. If z̃hk
, (k = 1, . . .), is generated by algorithm MP, we have

||zhk
− z̃hk

|| ≤ Ch|logh|,

where zhk
∈ Khk is the exact solution of problem (13) on k-th level.

Theorem 6. If z̃hk
, (k = 1, . . .), is generated by algorithm MP, we have

||uhk
−Qhk

(z̃hk
)||L2(Ω) ≤ Ch2|logh|,
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where uhk
∈ Vhk

is the exact solution of problem (10) on k-th level,

Qhk
: Rmhk 7→ Vhk

, is defined by

Qhk
(y) =

mhk
∑

i=1

yiϕ
(i)
hk
, for any y ∈ Rmhk .

The proofs can be seen in [14]. We omit them here.
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