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QUANTIZATIONS OF BRAIDED DERIVATIONS.
1. MONOIDAL CATEGORIES

(submitted by V. V. Lychagin)

Abstract. For monoidal categories we describe braidings and quantizations. We

use them to find quantizations of braided symmetric algebras and modules, braided

derivations, braided connections, curvatures and differential operators.

1 Introduction

We consider quantizations q, braidings σ and quantizations of braidings σq of monoidal
categories. We mainly work with braidings that are symmetries.

We consider σ-symmetric algebras A, modules, co- and bialgebras and internal
homomorphisms and find quantizations of these.

Internal homomorphisms of σ-symmetric modules has a braided Lie structure with
respect to the braided commutator. Quantizations of the internal homomorphisms
has the quantized braided Lie structure and can be realized within the original braided
Lie structure by what we call dequantization.

We investigate braided derivations of σ-symmetric algebras and modules. The
σ-bracket of two braided derivations is a braided derivation. We show that there is a
braided Lie structure on the braided derivations.

A quantizations the braided derivations provides an isomorphism of the modules
of braided derivations and quantized braided derivations. We also show that the
quantizations of braided derivations has the braided Lie structure with respect to the
quantizations of the braiding which can be realized within the original braided Lie
structure by dequantization.

We define braided connections in modules and braided curvatures. We prove that
the braided curvature is A-linear, skew σ-symmetric and is an A-module homomor-
phism.

We find quantizations of braided connections and braided curvatures. The quan-
tization of the braided curvature is A-linear, skew σq-symmetric and an A-module
homomorphism with respect to the quantized braiding.
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Finally we consider braided differential operators. We show that there is a braided
Lie structure on the braided differential operators. A quantization the braided differ-
ential operators provides an isomorphism of the original braided differential operators
and quantized ones. The quantization of the braided Lie structure can be realized
within the original one by dequantization.

This paper is the first in a trilogy.
We have found explicit descriptions of all quantizations and braidings in the

monoidal category of modules graded by a finite commutative monoid, [7]. We have
proved the same as for any monoidal category for this category, but the picture is
somewhat more visible in this case. That is, we have a complete description for braided
derivations of graded algebras and graded modules, braided connections, braided cur-
vature, quantizations and so on. This is to be found in the second paper Quantizations
of braided derivations. 2. Graded modules, [8].

In [7] we showed that the Fourier transform establishes an isomorphism between
the categories of Ĝ-graded modules and G-modules where G is a finite abelian group
and Ĝ is the dual of G. Using this we find a description of all quantizations and braid-
ing also for the monoidal category of modules with action by a finite abelian group
G. Again, we have a complete and explicit description for σ-derivations of algebras
and modules, braided connections, curvature, differential operators and quantizations
of these structures. This is to be found in the third paper Quantizations of braided
derivations. 3. Modules with action by a group, [9].

There are many interesting applications of these results. One of the more inter-
esting applications is quantizations of braided Lie algebras. In the paper [10], which
is to be published, we show quantizations of semisimple Lie algebras by quantizations
of derivations, for example an alternative quantization of sl 2 (C).

Note that in all three papers we assume that the associativity constraint is trivial.

2 Quantizations and σ-commutativity

In this section we shall recall some results needed later. We have to define quanti-
zations and σ-commutativity of algebras, modules, co- and bialgebras and internal
homomorphisms. Most of this was done by V. V. Lychagin and many results are
found in [17].

2.1 Quantizations

A quantization [17] of a monoidal category C is a natural isomorphism of the tensor
bifunctor

q : ⊗ → ⊗,

qX,Y : X ⊗ Y → X ⊗ Y,

X, Y ∈ Ob (C), which preserves the unit and associativity so that the following dia-
gram
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X ⊗ (Y ⊗ Z)
α- (X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z)

1⊗ qY,Z

?
(X ⊗ Y )⊗ Z

qX,Y ⊗ 1

?

X ⊗ (Y ⊗ Z)

qX,Y⊗Z

? α- (X ⊗ Y )⊗ Z

qX⊗Y,Z

?

(1)

commutes for all X, Y, Z ∈ Ob (C). We call this the coherence condition for quanti-
zations.

The composition of two quantizations q1 and q2 is a quantization and the inverse
q−1 of a quantization q is a quantization.

2.2 Braidings

A braiding [18] of a monoidal category C is a natural isomorphism

σ : ⊗ → ⊗ ◦ τ

σ = σX,Y : X ⊗ Y → Y ⊗X,

X, Y ∈ Ob (C), which preserves the unit and associativity such that the following
diagrams

X ⊗ (Y ⊗ Z)
α- (X ⊗ Y )⊗ Z

X ⊗ (Z ⊗ Y )

1⊗ σ

?
Z ⊗ (X ⊗ Y )

σ

?

(X ⊗ Z)⊗ Y

α

? σ ⊗ 1- (Z ⊗X)⊗ Y

α

?

,

X ⊗ (Y ⊗ Z)
α- (X ⊗ Y )⊗ Z

(Y ⊗ Z)⊗X

σ

?
(Y ⊗X)⊗ Z

σ ⊗ 1

?

Y ⊗ (Z ⊗X)

α(−1)

? 1⊗ σ- Y ⊗ (X ⊗ Z)

α(−1)

?

(2)

commute. This is the coherence condition on braidings.
The braiding σ is a symmetry if

σY,X ◦ σY,Z = Id, (3)

and a monoidal category equipped with such is called symmetric. We shall work only
with symmetries.
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When the associativity constraint is trivial, the coherence condition gives what we
call the bihomomorphism conditions for any braiding σ

(σX,Z ⊗ 1) ◦ (1⊗ σY,Z) = σX⊗Y,Z , (i)

(1⊗ σX,Z) ◦ (σX,Y ⊗ 1) = σX,Y⊗Z , (ii)

X,Y, Z ∈ Obj (C).
The trivial braiding is the twist, τ : X ⊗ Y → Y ⊗X.
Any braiding composed with the twist, τ ◦σ, is a quantization since the coherence

condition for quantizations then is satisfied.
Quantizations act on the set of braidings as follows

(σq)X,Y = q−1
Y,X ◦ σX,Y ◦ qX,Y ,

and σq is also a braiding.

2.3 Algebras

Let A be an algebra in a monoidal category C with multiplication

µ : A⊗A → A

and unit η : e → A.
Given a braiding σ we say that A is σ-commutative or σ-symmetric, [16], [12], if

µ = µ ◦ σ.

Note that when the associativity constraint is trivial, the bihomomorphism conditions
for the σ-commutativity of algebras is

µ ◦ (µ⊗ 1) ◦ (σx,z ⊗ 1) ◦ (1⊗ σy,z) = µ ◦ σxy,z ◦ (µ⊗ 1) , (4)

µ ◦ (1⊗ µ) ◦ (1⊗ σx,z) ◦ (σx,y ⊗ 1) = µ ◦ σx,yz ◦ (1⊗ µ) , (5)

for x, y, z ∈ A.
Given a quantization q we define a quantization Aq of the algebra A as the same

object A equipped with a new multiplication

µq = µ ◦ qA,A : A⊗A → A.

Aq =
(
A,µq, η

)
is an algebra.

If an algebra A in a monoidal category is σ-commutative, then it’s quantization
Aq is σq-commutative [17].

2.4 Modules

Let (A,µ) be an algebra in a monoidal category C. Let E be a left A-module with
action

νl : A⊗ E → E

in a monoidal category. If not stated otherwise, assume that all modules are left
modules.
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By a quantization Eq of the A-module E we mean the same object E equipped
with a new action

νl
q = νl ◦ qA,E : A⊗ E → E.

Eq =
(
E, νl

q

)
is also a left A-module in C.

Let A be a σ-symmetric algebra and E be an A-A-bimodule. Given a braiding σ

we say that E is σ-commutative if νl = νr ◦ σA,E and νr = νl ◦ σE,A [16], that is,

A⊗ E
νl

- X

E ⊗A

σ

? νr
- X

=

?

(6)

and

E ⊗A
νr

- X

A⊗ E

σ

? νl
- X

=

?

(7)

commutes. If σ is a symmetry then an A-module E is left σ-commutative if and only
if it is right σ-commutative, that is (6) and (7) implies each other. This means that
when σ is a symmetry we need only to consider left modules, not bimodules.

When the associativity constraint is trivial, the bihomomorphism conditions for
any the σ-commutativity of modules is

M ◦ (M ⊗ 1) ◦ (σ ⊗ 1) ◦ (1⊗ σ) = M ◦ σ ◦ (M ⊗ 1) , (8)

M ◦ (1⊗M) ◦ (1⊗ σ) ◦ (σ ⊗ 1) = M ◦ σ ◦ (1⊗M) , (9)

where M is µ, νlor νr, depending on the triplet of A and E.
For any A-A-bimodule E the σ-symmetric part is

Eσ =
{
x ∈ E|νl (a⊗ x) = νr ◦ σA,E (a⊗ x) , νr (x⊗ a) = νl ◦ σE,A (x⊗ a) , ∀a ∈ A

}
.

The quantization of a right A-module E with the action

νr : E ⊗A → E,

is done by giving E the new action

νr
q = νr ◦ qE,A : E ⊗A → E.

A quantization of a A-A-bimodule is the same object E equipped with two new
actions Eq =

(
E, νl

q, ν
r
q

)
. Eq is an Aq −Aq-bimodule in C.

E is σ-commutative, then Eq is σq-commutative;

νl ◦ qA,E = νl
q = νr

q ◦ (σq)A,E

and similarly νr
q = νl

q ◦ (σq)E,A.
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Let Eσ be the symmetric part of the A-A-bimodule E. Consider the quotient
bimodule E/Eσ = E

(0)
σ and define E

(1)
σ as the preimage of (E/Eσ)σ with respect

to the canonical projection E → E/Eσ. Proceeding, we get a filtration of E by
bimodules E

(i)
σ , i = −1, 0, 1, . . ., E

(−1)
σ = 0. We call the bimodule

E∗
σ = ∪E(i)

σ

a differential approximation of the A-A-bimodule E.

2.5 Coalgebras

Let A be a coalgebra in C with comultiplication ∆ : A → A⊗A and counit ε : A → e.
A is σ-cocommutative if

∆ = σ−1 ◦∆.

Define a quantization Aq of the coalgebra A as the same object A equipped with
a new comultiplication defined by

∆q = q−1
A,A ◦∆ : A → A⊗A.

Aq = (A, ∆q, ε) is a coalgebra.

2.6 Bialgebras

Let A be an algebra in C. Then the tensor square A ⊗ A can be considered as an
algebra with multiplication

µ⊗2
σ = (µ⊗ µ) ◦ (1⊗ σ ⊗ 1) .

Let A be a coalgebra in C. Then the tensor square A⊗A can be considered as a
coalgebra with comultiplication

∆⊗2
σ = (1⊗ σ ⊗ 1) ◦∆⊗∆.

A σ-bialgebra (A,µ, ∆) in a monoidal category C is an algebra (A,µ) and a coal-
gebra (A,∆) such that the diagonal

∆ : (A,µ) → (
A⊗A,µ⊗2

σ

)

and counit are algebra morphisms and the multiplication

µ :
(
A⊗A, ∆⊗2

σ

) → (A, ∆)

and unit are coalgebra morphisms.
The quantization Aq =

(
A, µq, ∆q

)
is a bialgebra in C, [16].

2.7 Internal homomorphisms

For a closed monoidal category C and any two objects X and Y in C there is the inter-
nal homomorphism bifunctor hom and the internal homomorphism object hom (X,Y ),

hom : X ⊗ Y → hom (X,Y )
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together with the composition

µh : hom (Y, Z)⊗ hom (X, Y ) → hom (X, Z) ,

g ⊗ f 7−→ g ◦ f = g ∗ f.

The collection of internal homomorphisms is an ”algebra” with respect to ∗.
If C is equipped with a braiding σ, then the composition of internal homomor-

phisms is called σ-symmetric if
µh = µh ◦ σ.

The morphism
evX,Y : hom (X, Y )⊗X → Y

is called the evaluation map if any morphism f : X ⊗ Z → Y can be represented by
the composition

f = evX,Y ◦
(
f̂ ⊗ idX

)

for a unique morphism f̂ : Z → hom (X, Y ). That is

Mor (Z, hom (X,Y )) ∼= Mor (Z ⊗X,Y ) .

The evaluation map also can be considered as a result of the multiplication µh,

evX,Y (f ⊗ x) = f (x) = f ∗ x,

x ∈ X, f ∈ hom (X, Y ).
Given a quantization q, define a quantization of the internal homomorphisms to

be a quantization as an algebra and we equip the internal homomorphisms with a
new multiplication. Namely a quantization is a natural isomorphism

Qq : hom (X, Y ) → hom (X,Y )

defined by
Qq (f) ∗ x = f ∗q x

for all f ∈ hom (X, Y ) and x ∈ hom (1, X), where

f ∗q g = µh
(
qhom(X,Y ),hom(Y,Z) (f ⊗ g)

)
= µh

q (f ⊗ g) .

For any quantization we have

Qq (f) ∗Qq (f) = Qq (f ∗q g) , (10)

Qq (x) = x. (11)

3 Braided Lie structure of internal homomorphisms

We shall describe the module structure and braided Lie algebra structure of the
internal homomorphisms. We describe the same for the quantizations of the internal
homomorphisms.
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3.1 Module structure of hom (E, E ′)

Let σ be a braiding in a monoidal category C.
Let A be a σ-commutative algebra, let E and E′ be left A-modules and let

hom (E, E′) be the set of internal homomorphisms.
The set hom (E, E′), is an A-A-bimodule with the left and right multiplications

defined by

νl
a (f) (x) = νl (a⊗ f) (x) = af (x) ,

νr
a (f) (x) = νr (f ⊗ a) (x) = f (ax) ,

a ∈ A, x ∈ E.

Proposition 1 Let σ be a symmetry and E and E′ be σ-commutative A-A-modules.
Then hom (E, E′) is σ-commutative as a module, that is, the diagrams

A⊗ hom(X, Y )
νl
- hom(X,Y )

hom(X, Y )⊗A

σ

? νr
- hom(X,Y )

=

?

(12)

and

hom(X, Y )⊗A
νr
- hom(X,Y )

A⊗ hom(X, Y )

σ

? νl
- hom(X,Y )

=

?

(13)

commute.

Proof. Write the actions as

evE,E′ ◦
(
νl ⊗ 1

)
= vl

E′ ◦ (1⊗ evE,E′) : A⊗ hom (E, E′)⊗ E → E′,

evE,E′ ◦ (νr ⊗ 1) = evE,E′ ◦
(
1⊗ vl

E

)
: hom (E,E′)⊗A⊗ E → E′.

Then

νl (a⊗ f) (x) = νl
E′ ◦ (1⊗ evE,E′) (a⊗ f ⊗ x)

= νr
E′ ◦ σ ◦ (1⊗ evE,E′) (a⊗ f ⊗ x)

= evE,E′ ◦ (1⊗ νr
E) ◦ (1⊗ σ) ◦ (σ ⊗ 1) (a⊗ f ⊗ x)

= evE,E′ ◦
(
1⊗ νl

E

) ◦ (σ ⊗ 1) (a⊗ f ⊗ x)

= νr ◦ σA,hom(E,E′) (a⊗ f) (x) ,
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and

νr (f ⊗ a) (x) = evE,E′ ◦
(
1⊗ vl

E

)
(f ⊗ a⊗ x)

= evE,E′ ◦ (1⊗ vr
E) ◦ (1⊗ σ) (f ⊗ a⊗ x)

= νr
E′ ◦ (evE,E′ ⊗ 1) ◦ (1⊗ σ) (f ⊗ a⊗ x)

= νl
E′ ◦ σ ◦ (evE,E′ ⊗ 1) ◦ (1⊗ σ) (f ⊗ a⊗ x)

= νl
E′ ◦ (1⊗ evE,E′) ◦ (σ ⊗ 1) ◦ (1⊗ σ) ◦ (1⊗ σ) (f ⊗ a⊗ x)

= νl
E′ ◦ (1⊗ evE,E′) ◦ (σ ⊗ 1) (f ⊗ a⊗ x)

= νl ◦ σ (f ⊗ a) (x) ,

a ∈ A, f ∈ hom (E,E′), x ∈ E.

3.2 Braided commutators and Lie structure of hom (E,E)

Let σ be a braiding, A be an σ-symmetric algebra and E be a left σ-symmetric
A-module. Consider hom (E, E).

Definition 2 Define the σ-bracket or σ-commutator of hom (E,E)

cσ : hom (E,E)⊗ hom (E, E) → hom (E, E)

by
cσ = [ , ]σ = µh − µh ◦ σ.

Proposition 3 Let σ be a symmetry. The σ-bracket satisfies the conditions,

cσ ◦
(
νl ⊗ 1

)
(a⊗ f ⊗ g) =

(
νl ◦ (1⊗ cσ)− νl ◦ (evE,E ⊗ 1) ◦ σ

)
(a⊗ f ⊗ g) ,

cσ ◦
(
1⊗ νl

)
(f ⊗ a⊗ g) =

(
νl ◦ (1⊗ cσ) ◦ (σ ⊗ 1) + νl ◦ (evE,E ⊗ 1)

)
(f ⊗ a⊗ g) ,

a ∈ A, f, g ∈ hom (E,E).

Proof.

cσ ◦
(
νl ⊗ 1

)
= µh ◦ (

νl ⊗ 1
)− µh ◦ σ ◦ (

νl ⊗ 1
)

= νl ◦ (
1⊗ µh

)− µh ◦ (
1⊗ νl

) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

= νl ◦ (
1⊗ µh

)− µh ◦ (νr ⊗ 1) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

−νl ◦ (
1⊗ µh

) ◦ (σ ⊗ 1) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

= νl ◦ (
1⊗ µh

)− µh ◦ σ ◦ (
νl ⊗ 1

)− νl ◦ (
1⊗ µh

) ◦ (1⊗ σ)

= νl ◦ (1⊗ cσ)− νl ◦ (evE,E ⊗ 1) ◦ σ,

and

cσ ◦
(
1⊗ νl

)
= µh ◦ (

1⊗ νl
)− µh ◦ σ ◦ (

1⊗ νl
)

= µh ◦ (νr ⊗ 1) + νl ◦ (
1⊗ µh

) ◦ (σ ⊗ 1)

−νl ◦ (
1⊗ µh

) ◦ (1⊗ σ) ◦ (σ ⊗ 1)

= νl ◦ (evE,E ⊗ 1) + νl ◦ (1⊗ cσ) ◦ (σ ⊗ 1) .
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Proposition 4 The σ-bracket is σ-invariant,

µh ◦ σ ◦ (cσ ⊗ 1) = µh ◦ (1⊗ cσ) ◦ (σ ⊗ 1) ◦ (1⊗ σ) .

Proof.

µh ◦ σ ◦ (cσ ⊗ 1) = µh ◦ σ ◦ ((
µh − µh ◦ σ

)⊗ 1
)

= µh ◦ σ ◦ (
µh ⊗ 1

)− µh ◦ σ ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) ,

and

µh ◦ (1⊗ cσ) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

= µh ◦ (
1⊗ (

µh − µh ◦ σ
)) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

= µh ◦ (
1⊗ µh

) ◦ (σ ⊗ 1) ◦ (1⊗ σ)− µh ◦ (
1⊗ µh

) ◦ (1⊗ σ) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

= µh ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) ◦ (1⊗ σ)− µh ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

= µh ◦ σ ◦ (
µh ⊗ 1

)− µh ◦ σ ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) .

Proposition 5 Let σ be a symmetry. The σ-commutator satisfies skew σ-symmetricity,
that is, the diagram

hom(X,X)⊗ hom(X,X)
cσ- hom(X, X)

hom(X,X)⊗ hom(X,X)

σ

? −cσ- hom(X, X)

=

?

(14)

commutes, equivalently
cσ = −cσ ◦ σ.

Proof.

cσ ◦ σ (f ⊗ g) = µh ◦ σ (f ⊗ g)− µh ◦ σ ◦ σ (f ⊗ g)

= µh ◦ σ (f ⊗ g)− µh (f ⊗ g)

= −cσ (f ⊗ g) ,

f, g ∈ hom (E, E).

Proposition 6 Let σ be a symmetry. Then hom (E, E) equipped with the σ-commutator
satisfies the σ-Jacobi identity,

cσ ◦ (1⊗ cσ) = cσ ◦ (cσ ⊗ 1) + cσ ◦ (1⊗ cσ) ◦ (σ ⊗ 1) .

Proof. The Jacobi identity applied to three elements in hom (E, E) is satisfied when

cσ ◦ (1⊗ cσ)

= µh ◦ (
1⊗ µh

)
(a)

− µh ◦ (
1⊗ µh

) ◦ (1⊗ σ) (b)

−µh ◦ σ ◦ (
1⊗ µh

)
(c)

+µh ◦ σ ◦ (
1⊗ µh

) ◦ (1⊗ σ) (d)
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is equal to

cσ ◦ (cσ ⊗ 1) + cσ ◦ (1⊗ cσ) ◦ (σ ⊗ 1)

= µh ◦ (
µh ⊗ 1

)
(e)

−µh ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) (f)

−µh ◦ σ ◦ (
µh ⊗ 1

)
(g)

+µh ◦ σ ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) (h)

+µh ◦ (
1⊗ µh

) ◦ (σ ⊗ 1) (i)

−µh ◦ (
1⊗ µh

) ◦ (1⊗ σ) ◦ (σ ⊗ 1) (j)

−µh ◦ σ ◦ (
1⊗ µh

) ◦ (σ ⊗ 1) (k)

+µh ◦ σg,hf ◦
(
1⊗ µh

) ◦ (1⊗ σ) ◦ (σ ⊗ 1) , (l)

which is the case since
(a) = (e) ;

µh ◦ (
1⊗ µh

)
= µh ◦ (

µh ⊗ 1
)
,

(b) = (k) ;

µh ◦ (
1⊗ µh

) ◦ (1⊗ σ) = µh ◦ σ ◦ (
1⊗ µh

) ◦ (σ ⊗ 1)

= µh ◦ (
1⊗ µh

) ◦ (1⊗ σ) ◦ (σ ⊗ 1) ◦ (σ ⊗ 1) ,

(c) = (j) ;
µh ◦ σ ◦ (

1⊗ µh
)

= µh ◦ (
1⊗ µh

) ◦ (1⊗ σ) ◦ (σ ⊗ 1) ,

(d) = (h) ;

µh ◦ σ ◦ (
1⊗ µh

) ◦ (1⊗ σ) = µh ◦ σ ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1)

µh ◦ (
1⊗ µh

) ◦ (1⊗ σ) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

= µh ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) ◦ (1⊗ σ) ◦ (σ ⊗ 1) ,

(f) + (i) = 0;

µh ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) = µh ◦ (
1⊗ µh

) ◦ (σ ⊗ 1) ,

and (g) + (l) = 0;

µh ◦ σ ◦ (
µh ⊗ 1

)
= µh ◦ σ ◦ (

1⊗ µh
) ◦ (1⊗ σ) ◦ (σ ⊗ 1) ,

since
µh ◦ σ ◦ (

µh ⊗ 1
)

= µh ◦ (
µh ⊗ 1

) ◦ (σ ⊗ 1) ◦ (1⊗ σ) ,

and

µh◦σ◦(
1⊗ µh

)◦(1⊗ σ)◦(σ ⊗ 1) = µh◦(
1⊗ µh

)◦(1⊗ σ)◦(σ ⊗ 1)◦(1⊗ σ)◦(σ ⊗ 1) .

This is shown by using the identities (4), (5) and the fact that, σ satisfies the Yang-
Baxter equation,

(1⊗ σ) ◦ (σ ⊗ 1) ◦ (1⊗ σ) = (σ ⊗ 1) ◦ (1⊗ σ) ◦ (σ ⊗ 1) .
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Remark 7 In the proof of the propositions 5 and 6 we can assume that the internal
homomorphisms are equipped with the σ-commutative composition µh = µh◦σ instead
of using the fact that σ is a symmetry.

Definition 8 A σ-Lie algebra is an algebra equipped with a skew σ-symmetric σ-
commutator that is σ-invariant and satisfies the σ-Jacobi identity.

This is the definition of braided Lie algebras as introduced by D. Gurevich, [4].
By the propositions 4, 5 and 6 we have proved the following.

Theorem 9 Let σ be a symmetry and an algebra A and a left A-module E be σ-
symmetric. Then hom (E, E) is a σ-Lie algebra.

3.3 Quantization of hom (E,E)

We will define the quantization of the internal homomorphisms and describe the
structure on the set of all such, also within the original internal homomorphisms.

Definition 10 Given a quantization q and f ∈ hom (E, E), its quantization is defined
by

fq (x) = Qq (f) (x)
def
= evE,E ◦ q (f ⊗ x) , (15)

x ∈ E.

It is easy to see that Qq (f) is an internal homomorphism of the quantized Aq-
module Eq.

Let f and g be internal homomorphisms. The quantization of composition of
internal homomorphisms is

f ∗q g = µh
q (f ⊗ g) . (16)

The collection of all Qq (f), f ∈ hom (E, E), equipped with the quantization of
the composition is denoted by homq (Eq, Eq).

By proposition 1 is homq (Eq, Eq) a σq-symmetric module if E is a σ-symmetric
A-A-bimodule.

By theorem 9, if σ is a symmetry is homq (Eq, Eq) a σq-Lie algebra with respect
to the σq − q-bracket (or simply σq-bracket when it is clear that the multiplication or
composition is the quantized multiplication).

Let γ be a braiding and p any quantization. Define the γ − p-bracket on internal
homomorphisms,

cp
γ = [−,−]γp = µh

p − µh
p ◦ γ. (17)

Lemma 11 The σq − q-bracket satisfies

cq
σq

= cσ ◦ q.

Proof.

cq
σq

= µh
q − µh

q ◦ σq = µh
q − µh ◦ q ◦ q−1 ◦ σ ◦ q = µh ◦ q − σ ◦ µh ◦ q = cσ ◦ q.
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The inverse of the quantization of f ∈ homq (Eq, Eq) is denoted by

Q−1
q (f) = fc,

and is called the dequantization of f .

Lemma 12 The composition of internal homomorphisms satisfies

fc ∗q gc = (f ◦ g)c , (18)

f, g ∈ homq (Eq, Eq).

Proof.

fc ∗q gc (x) = Q−1
q (f) ∗q Q−1

q (g) (x)

= evE,E ◦ q−1 ◦ (1⊗ evE,E) ◦ (
1⊗ q−1

) ◦ (q ⊗ 1) (f ⊗ g ⊗ x)

= evE,E ◦ q−1 ◦ (
µh ⊗ 1

) ◦ (
q−1 ⊗ 1

) ◦ (q ⊗ 1) (f ⊗ g ⊗ x)

= Q−1
q (f ◦ g) (x)

= (f ◦ g)c ,

Note,
ac = a,

for a ∈ Aq.
The set of all Q−1

q (f), f ∈ homq (Eq, Eq), is equipped with the bracket cq
σq

and
the A-module structure

a ∗q fc = νl ◦ q (a⊗ fc) , (19)

a ∈ A.
The dequantization of a internal homomorphism operates on A in the classical

manner, but satisfies somewhat different properties than the classical, as the following
theorem states. (See also [14])

Theorem 13 Let σ be a symmetry. The σq-Lie algebra structure of homq (Eq, Eq)
can be realized within the classical, hom (E, E), by dequantization as follows.

Let f, g ∈ homq (Eq, Eq), a ∈ Aq. Then linearity is

(f + g)c = fc + gc, (i)

A-module structure,
(a ◦ f)c = a ∗q fc, (ii)

and the braided commutator satisfies

Q−1
q ◦ cσq = cq

σq
◦ (

Q−1
q ⊗Q−1

q

)
. (iii)

Proof. (i):
Q−1

q (f + g) = Q−1
q (f) + Q−1

q (g) .

(ii): By lemma 12,
ac ∗q fc = a ∗q fc = (a ◦ f)c .
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(iii):
[
Q−1

q (f) , Q−1
q (g)

]σq

q
(x)

= evE,E ◦ q−1 ◦ (1⊗ evE,E) ◦ (
1⊗ q−1

) ◦ (q ⊗ 1) (f ⊗ g ⊗ x)

−evE,E ◦ q−1 ◦ (1⊗ evE,E) ◦ (
1⊗ q−1

) ◦ (q ⊗ 1) ◦ (σq ⊗ 1) (f ⊗ g ⊗ x)

= evE,E ◦ q−1 ◦ (
µh ⊗ 1

) ◦ (
q−1 ⊗ 1

) ◦ (q ⊗ 1) (f ⊗ g ⊗ x)

−evE,E ◦ q−1 ◦ (
µh ⊗ 1

) ◦ (
q−1 ⊗ 1

) ◦ (q ⊗ 1) ◦ (σq ⊗ 1) (f ⊗ g ⊗ x)

= Q−1
q ([f, g]σq ) (x) ,

x ∈ E, f, g ∈ homq (Eq, Eq).

4 Braided derivations in monoidal categories

Let C be a monoidal category equipped with a braiding σ.
Let A be a σ-symmetric algebra in C with the multiplication µ, and E and E′ be

A-A-modules.
Denote by homσ (E,E′) = (hom (E,E′))σ the σ-symmetric part of the A − A-

bimodule hom (E,E′). The modules

(hom (E,E′))(i)σ = Diffσ
i (E,E′)

are called the braided or σ-differential operators, see [16].

4.1 Braided derivations of algebras

With an additional condition we define σ-derivations of algebras.

Definition 14 Define σ-derivations or braided derivations of A with values in a A-
A-bimodule E as

Derσ (E) = {f ∈ Diffσ
1 (A,E) |f (1) = 0} .

An internal homomorphism f : A → E is a σ-derivation if and only if f : A →
Eσ ⊂ E and f satisfies the braided or σ-Leibniz rule, [17],

evA,E ◦ (1⊗ µ) (f ⊗ a⊗ b) (20)

=
(
νr ◦ (evA,E ⊗ 1) + νl ◦ (1⊗ evA,E) ◦ (σ ⊗ 1)

)
(f ⊗ a⊗ b) ,

evA,E ◦ (1⊗ µ) ◦ (σ ⊗ 1) (a⊗ f ⊗ b) (21)

=
(
νl ◦ (1⊗ evA,E) + νr ◦ (evA,E ⊗ 1) ◦ (σ ⊗ 1)

)
(a⊗ f ⊗ b) .

If the braiding is a symmetry, then the two Leibniz rules implies each other.
From now on, assume that every braiding σ is a symmetry. We can then assume

E is a left A-module.

Proposition 15 Derσ (E) has a left A-module structure defined by

νl (a⊗ ∂) (b)
def
= νl

E ◦ (1⊗ evA,E) (a⊗ ∂ ⊗ b) = a∂ (b) , (22)

∂ ∈ Derσ (E), a, b ∈ A, νl
E is the action of A on E.
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Proof. We need to show that νl
a (∂) is a σ-derivation, that is satisfies the σ-Leibniz

rule, and using the σ-Leibniz rule for ∂,

a∂ (bc) =
(

νl
E ◦

(
1⊗ νl

E

) ◦ (1⊗ evA,A ⊗ 1)
+νl

E ◦
(
1⊗ νl

E

)
(1⊗ 1⊗ evE,E) ◦ (1⊗ σ ⊗ 1)

)
(a⊗ ∂ ⊗ b⊗ c) ,

a, b, c ∈ A, ∂ ∈ Derσ (E), and

νl
E ◦

(
1⊗ νl

E

) ◦ (1⊗ evA,A ⊗ 1) + νl
E ◦

(
1⊗ νl

E

)
(1⊗ 1⊗ evE,E) ◦ (1⊗ σ ⊗ 1)

= νl
E ◦

(
νl

E ⊗ 1
) ◦ (1⊗ evA,A ⊗ 1)

+νl
E ◦ ((µ ◦ σ)⊗ 1) ◦ (1⊗ 1⊗ evE,E) ◦ (1⊗ σ ⊗ 1)

= νl
E ◦ (evA,A ⊗ 1) ◦ (

νl ⊗ 1⊗ 1
)

+νl
E ◦

(
1⊗ νl

E

) ◦ (1⊗ 1⊗ evE,E) ◦ (σ ⊗ 1⊗ 1) ◦ (1⊗ σ ⊗ 1)

= νl
E ◦ (evA,A ⊗ 1) ◦ (

νl ⊗ 1⊗ 1
)

+νl
E ◦ (1⊗ evE,E) ◦ (

1⊗ νl ⊗ 1
) ◦ (σ ⊗ 1⊗ 1) ◦ (1⊗ σ ⊗ 1) ,

and the condition,
νl (a⊗ ∂) (1) = a∂ (1) = 0,

is satisfied.
If we consider Diffσ

1 (A,E) and not Derσ (E) then there is a right A-module
structure.

Proposition 16 Diffσ
1 (A,E) has in addition to the left A-module structure defined

by (22), a right A-module structure defined by

νr (∂ ⊗ a) (b)
def
= evA,E ◦ (1⊗ µ) (∂ ⊗ a⊗ b) = ∂ (ab) ,

∂ ∈ Diffσ
1 (A, E) , a, b ∈ A.

Proof. The σ-Leibniz rule for ∂a is,

∂a (bc) =
(

νr
E ◦ (evA,E ⊗ 1) ◦ (νr ⊗ 1⊗ 1)

+νl
E ◦ (1⊗ evA,E) ◦ (σ∂a,b ⊗ 1) ◦ (νr ⊗ 1⊗ 1)

)
(∂ ⊗ a⊗ b⊗ c) . (23)

Using the σ-Leibniz rule for ∂,

∂a (bc) = evA,E ◦ (1⊗ µ) ◦ (1⊗ 1⊗ µ) (∂ ⊗ a⊗ b⊗ c)

= evA,E ◦ (1⊗ µ) ◦ (1⊗ µ⊗ 1) (∂ ⊗ a⊗ b⊗ c)

=
(

νr
E ◦ (evA,E ⊗ 1) ◦ (1⊗ µ⊗ 1)

+νl
E ◦ (1⊗ evA,E) ◦ (σ ⊗ 1) ◦ (1⊗ µ⊗ 1)

)
(∂ ⊗ a⊗ b⊗ c) ,
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a, b, c ∈ A, ∂ ∈ Diffσ
1 (A,E), we see that (23) is satisfied as

νl
E ◦ (1⊗ evA,E) ◦ (σ ⊗ 1) ◦ (1⊗ µ⊗ 1)

= νl
E ◦ (1⊗ evA,E) ◦ (

1⊗ νl ⊗ 1
) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)

= νl
E ◦

(
1⊗ νl

) ◦ (1⊗ 1⊗ evA,E) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)

= νl
E ◦ (µ⊗ 1) ◦ (1⊗ 1⊗ evA,E) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)

= νl
E ◦ (µ⊗ 1) ◦ (σ ⊗ 1) ◦ (1⊗ 1⊗ evA,E) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)

= νl
E ◦ (1⊗ evA,E) ◦ (µ⊗ 1⊗ 1) ◦ (σ ⊗ 1) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)

= νl
E ◦ (1⊗ evA,E) ◦ (σ ⊗ 1) ◦ (

νl ⊗ 1⊗ 1
) ◦ (σ ⊗ 1⊗ 1)

= νl
E ◦ (1⊗ evA,E) ◦ (σ ⊗ 1) ◦ (νr ⊗ 1⊗ 1) ◦ (σ ⊗ 1⊗ 1) ◦ (σ ⊗ 1⊗ 1)

= νl
E ◦ (1⊗ evA,E) ◦ (σ ⊗ 1) ◦ (νr ⊗ 1⊗ 1) .

For the rest of the paper, consider the σ-derivations of a σ-symmetric algebra A

with values in A, denoted by
Derσ (A) .

Proposition 17 The σ-commutator of two σ-derivations of A is a σ-derivation of
A,

cσ : Derσ (A)⊗Derσ (A) → Derσ (A) .

Proof. The σ-Leibniz rule is satisfied for the σ-commutator of two σ-derivations,

cσ (∂1 ⊗ ∂2) (ab) = µh (∂1 ⊗ ∂2) (ab)− µh ◦ σ (∂1 ⊗ ∂2) (ab)

= cσ (∂1 ⊗ ∂2) (a) b + µ ◦ (1⊗ evA,A) (σ (cσ (∂1 ⊗ ∂2)⊗ a)⊗ b) ,

a, b ∈ A, ∂1, ∂2 ∈ Derσ (A), as we see,

evA,A ◦ (1⊗ evA,A) ◦ (1⊗ 1⊗ µ)− evA,A ◦ (1⊗ evA,A) ◦ (σ ⊗ 1⊗ 1) ◦ (1⊗ 1⊗ µ)
= evA,A ◦ (1⊗ µ) ◦ (1⊗ evA,A ⊗ 1) + evA,A ◦ (1⊗ µ) ◦ (1⊗ 1⊗ evA,A) ◦ (1⊗ σ ⊗ 1)
−evA,A ◦ (1⊗ µ) ◦ (1⊗ evA,A ⊗ 1) ◦ (σ ⊗ 1⊗ 1)
−evA,A ◦ (1⊗ µ) ◦ (1⊗ 1⊗ evA,A) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)
= µ ◦ (evA,A ⊗ 1) ◦ (1⊗ evA,A ⊗ 1) + µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) ◦ (1⊗ evA,A ⊗ 1)
+µ ◦ (evA,A ⊗ 1) ◦ (1⊗ 1⊗ evA,A) ◦ (1⊗ σ ⊗ 1)
+µ ◦ (1⊗ evA,A) ◦ (1⊗ 1⊗ evA,A) ◦ (σ ⊗ 1⊗ 1) ◦ (1⊗ σ ⊗ 1)
−µ ◦ (evA,A ⊗ 1) ◦ (1⊗ evA,A ⊗ 1) ◦ (σ ⊗ 1⊗ 1)
−µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) ◦ (1⊗ evA,A ⊗ 1) ◦ (σ ⊗ 1⊗ 1)
−µ ◦ (evA,A ⊗ 1) ◦ (1⊗ 1⊗ evA,A) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)
−µ ◦ (1⊗ evA,A) ◦ (1⊗ 1⊗ evA,A) ◦ (σ ⊗ 1⊗ 1) ◦ (1⊗ σ ⊗ 1) ◦ (σ ⊗ 1⊗ 1)
= µ ◦ (evA,A ⊗ 1) ◦ (cσ ⊗ 1⊗ 1) + µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) ◦ (

µh ⊗ 1⊗ 1
)

−µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) ◦ (
µh ⊗ 1⊗ 1

) ◦ (σ ⊗ 1⊗ 1)
= µ ◦ (evA,A ⊗ 1) ◦ (cσ ⊗ 1⊗ 1) + µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) ◦ (cσ ⊗ 1⊗ 1) .

Furthermore,

cσ (∂1 ⊗ ∂2) (1) = µh (∂1 ⊗ ∂2) (1)− µh ◦ σ (∂1 ⊗ ∂2) (1) = 0.

Corollary 18 Let the braiding σ be a symmetry. Then Derσ (A) equipped with the
σ-commutator is a σ-Lie algebra.
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4.2 Braided derivations of modules

Let A be a σ-symmetric algebra and let E be a σ-symmetric A-module.

Definition 19 An operator ∂ : E → E is said to be a σ-derivation of E over ∂A ∈
Derσ (A) if ∂ satisfy the σ-Leibniz rule with respect to ∂A

∂ (ax) = ∂A (a)x + νl
E ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) (∂ ⊗ a⊗ x) , (24)

x ∈ E, a ∈ A and νl
E is the action of A on E.

The pair (∂, ∂A) is called a σ-derivation of E over A. (We could also call this pair
a σ-D-module, [13].)

The morphism π : (∂, ∂A) → ∂A we call the projection from the σ-derivations of
E over A to the σ-derivations of A.

The set of σ-derivations of E over A is denoted by Der(σ,A) (E).

Proposition 20 Der(σ,A) (E) has a left A-module structure defined by

νl
a (∂) (x)

def
= νl

E ◦ (1⊗ evE,E) (a⊗ ∂ ⊗ x) = a∂ (x) ,

∂ ∈ Der(σ,A) (E), a ∈ A, x ∈ E.

Proof. Just repeat the proof of proposition 15.
If we consider Diffσ

1 (E, E) and not Der(σ,A) (E) then there is a right A-module
structure.

Proposition 21 Diffσ
1 (E, E) has in addition a right A-module structure defined by

νr
a (∂) (x)

def
= evE,E ◦

(
1⊗ νl

E

)
(∂ ⊗ a⊗ x) = ∂ (ax) ,

∂ ∈ Diffσ
1 (E,E), a ∈ A, x ∈ E.

Proof. Just repeat the proof of proposition 16.

Proposition 22 The σ-commutator of two (σ, A)-derivations of E is a (σ, A)-derivation
of E,

cσ : Der(σ,A) (E)⊗Der(σ,A) (E) → Der(σ,A) (E) .

Proof. Simply repeat the proof of proposition 17.

Corollary 23 Let the braiding σ be a symmetry. Then the (σ, A)-derivations of E

equipped with the σ-commutator is a σ-Lie algebra.

We get the following sequence of σ-symmetric left A-modules and σ-Lie algebras

0 → hom (E, E) → Der(σ,A) (E) π→ Derσ (A) .
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4.3 Quantization of braided derivations of algebras

Consider derivations of a σ-symmetric algebra A.

Definition 24 Given a quantization q and ∂ ∈ Derσ (A) define the quantization of
∂ by

Qq (∂) (a) = evA,A ◦ q (∂ ⊗ a) ,

a ∈ A.

Sometimes we use the notation ∂q = Qq (∂).
Qq (∂) is an operator of the quantized algebra Aq. Denote by Derσq (Aq) the set

of all Qq (∂), ∂ ∈ Derσ (A), equipped with the quantized composition.

Theorem 25 Given a braiding σ, let σq be the quantization of σ. The operator

Qq : (Derσ (A) , cσ) →
(
Derσq (Aq) , cq

σq

)
, (25)

∂ ∈ Derσ (A) 7−→ Qq (∂) ∈ Derσq (Aq) ,

is an isomorphism of modules between the σ-derivations of A and the σq-derivations
of Aq

Proof. We need to show that the σq-Leibniz rule is satisfied

Qq (∂) (a ∗q b) = Qq (∂) (a) ∗q b + µA ◦ q ◦ (1⊗ evA,A) ◦ (1⊗ q) ◦ (σq ⊗ 1) (∂ ⊗ a⊗ b)

since

evA,A ◦ (1⊗ µA) ◦ q ◦ (1⊗ q)
= (µA ◦ (evA,A ⊗ 1) + µA ◦ (1⊗ evA,A) ◦ (σ ⊗ 1)) ◦ q ◦ (1⊗ q)
= (µA ◦ (evA,A ⊗ 1) + µA ◦ (1⊗ evA,A) ◦ (σ ⊗ 1)) ◦ q ◦ (q ⊗ 1)
= (µA ◦ q ◦ (evA,A ⊗ 1) + µA ◦ (1⊗ evA,A) ◦ q ◦ (σ ⊗ 1)) ◦ (q ⊗ 1)
=

(
µA ◦ q ◦ (evA,A ⊗ 1) + µA ◦ q ◦ (1⊗ evA,A) ◦ (1⊗ q) ◦ (

q−1 ⊗ 1
) ◦ (σ ⊗ 1)

) ◦ (q ⊗ 1)
= µA ◦ q ◦ (evA,A ⊗ 1) ◦ (q ⊗ 1) + µA ◦ q ◦ (1⊗ evA,A) ◦ (1⊗ q) ◦ (σq ⊗ 1)

where

qA⊗Derσ(A),B ◦
(
σDerσ(A),A ⊗ 1

)
=

(
σDerσ(A),A ⊗ 1

) ◦ qDerσ(A)⊗A,B

by naturality.
Note that the σq-Leibniz rule is satisfied for the σq-commutator of two σq-derivations

which follows from proposition 22.
By proposition 1 is Derσq (Aq) a σq-symmetric module and by theorem 9 a σq-Lie

algebra with respect to the σq − q-bracket.

By theorem 13 the σq-Lie algebra structure of
(
Derσq (Aq) , cq

σq

)
can be realized

within the classical one by dequantization.
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4.4 Evaluations and commutators

For both σ- and σq-derivations, evaluating a derivation of some element corresponds
to taking the braided bracket of the derivation and that element.

Proposition 26 Let A be σ-commutative algebra, ∂ ∈ Derσ (A) and a ∈ A. Then

∂ (a) = cσ (∂ ⊗ a) .

Let
∂q = Qq (∂c) ∈ Derσq (Aq)

and a ∈ Aq. Then
∂q (a) = cq

σq
(∂q ⊗ a) .

Proof. Let ∂ ∈ Derσ (A) and a ∈ A, b ∈ A. The σ-Leibniz rule is

∂ (ab) = ∂ (a) b + µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) (∂ ⊗ a⊗ b)

and since
∂ (ab) = evA,A ◦ (νr ⊗ 1) (∂ ⊗ a⊗ b) ,

when we consider ∂ simply as an internal homomorphism, and

µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) (∂ ⊗ a⊗ b) = evA,A ◦
(
νl ⊗ 1

) ◦ (σ ⊗ 1) (∂ ⊗ a⊗ b) ,

clearly, by rearranging the Leibniz rule we get

∂ (a) = cσ (∂ ⊗ a) .

Let ∂ ∈ Derσ (A). By the σq-Leibniz rule we have

evA,A ◦ (1⊗ µ) (Qq (∂)⊗ a⊗ b)

= (µ ◦ (evA,A ⊗ 1) + µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1)) (∂ ⊗ a⊗ b) .

Since

evA,A ◦ (1⊗ µ) (Qq (∂)⊗ a⊗ b) = evA,A ◦ (νr ⊗ 1) (Qq (∂)⊗ a⊗ b)

and
µ ◦ (1⊗ evA,A) ◦ (σ ⊗ 1) = evA,A ◦

(
νl ⊗ 1

) ◦ (σ ⊗ 1) ,

clearly, by rearranging, the evaluation of Qq (∂) on a ∈ Aq is

evA,A (Qq (∂)⊗ a) =
(
νr − νl ◦ σ

)
(Qq (∂)⊗ a)

= cq
σq

(Qq (∂)⊗ a) .
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4.5 Quantization of braided derivations of modules

Consider derivations of a σ-symmetric algebra A and a σ-symmetric A-module E.
Let (∂, ∂A) ∈ Der(σ,A) (E).

Definition 27 Given a quantization q, define the quantization of (∂, ∂A) by

Qq (∂) (x) = evA,A ◦ q (∂ ⊗ x) ,

x ∈ E. If x ∈ A, then this is the quantization of ∂A defined in section 4.3.

Qq (∂) is an operator of the quantized module Eq. Denote by Der(σq,Aq) (Eq) the
set of all Qq (∂), ∂ ∈ Der(σ,A) (E), equipped with the quantized composition.

Theorem 28 Given a braiding σ, let σq be the quantization of σ. The operator

Qq :
(
Der(σ,A) (E) , cσ

)
→

(
Der(σq,Aq) (Eq) , cq

σq

)
, (26)

∂ ∈ Der(σ,A) (E) 7−→ Qq (∂) ∈ Der(σq,Aq) (Eq) ,

is an isomorphism of modules between the σ-derivations of E over A and the σq-
derivations of Eq over Aq.

By proposition 1 is Der(σq,Aq) (Eq) a σq-symmetric module and by theorem 9 a
σq-Lie algebra with respect to the σq − q-bracket.

By theorem 13 the σ-Lie algebra of the structure of
(
Der(σq,Aq) (Eq) , cq

σq

)
can be

realized within the classical one by dequantization.

5 Braided connections and curvatures

Let σ be a symmetry, A be a σ-symmetric algebra and E a σ-commutative A-module.

Definition 29 A σ-connection in E is a A-module homomorphism ∇

∇ : Derσ (A) → Der(σ,A) (E) ,

such that
π ◦ ∇ = Id.

Definition 30 A σ-connection ∇ is flat if it is a σ-Lie algebra homomorphism, that
is,

∇ ◦ cσ = cσ ◦ (∇⊗∇) .

Definition 31 In general, define the σ-curvature of ∇ to be

K∇ : Derσ (A)⊗Derσ (A) → hom (E,E) ,

K∇ = cσ ◦ (∇⊗∇)−∇ ◦ cσ.
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Theorem 32 The σ-curvature K∇ is a σ-homomorphism of E, that is,

evE,E ◦
(
K∇ ⊗ νl

)
= νl ◦ (1⊗ evE,E) ◦ (σ ⊗ 1) ◦ (K∇ ⊗ 1⊗ 1) , (i)

which maps Derσ (A)⊗Derσ (A)⊗A⊗ E to E, and it is skew σ-symmetric,

K∇ = −K∇ ◦ σ. (ii)

Furthermore K∇ satisfies

K∇ ◦
(
νl ⊗ 1

)
= νl ◦K∇, (iii)

K∇ ◦
(
1⊗ νl

)
= νl ◦K∇ ◦ (σ ⊗ 1) . (iv)

Proof. (i): Note that

evE,E ◦
(
K∇ ⊗ νl

)
= evE,E ◦

(
1⊗ νl

) ◦ (K∇ ⊗ 1⊗ 1) .

Then
evE,E ◦

(
K∇ ⊗ νl

)
= νl ◦ (1⊗ evE,E) ◦ (σ ⊗ 1) ◦ (K∇ ⊗ 1⊗ 1)

if and only if

evE,E ◦
(
1⊗ νl

)
= νl ◦ (1⊗ evE,E) ◦ (σ ⊗ 1) : hom (E, E)⊗A⊗ E → E.

By proposition 1 and by the symmetry of σ,

vl
E′ ◦ (1⊗ evE,E′)◦

(
σhom(E,E′),A ⊗ 1

)
= evE,E′ ◦

(
1⊗ vl

E

)
: hom (E, E′)⊗A⊗E → E′

for σ-commutative A-modules E and E′.
(ii):

−K∇ ◦ σ = −cσ ◦ (∇⊗∇) ◦ σ +∇ ◦ cσ ◦ σ

= −cσ ◦ σ ◦ (∇⊗∇) +∇ ◦ cσ ◦ σ

= cσ ◦ (∇⊗∇)−∇ ◦ cσ

= K∇,

by proposition 5.
(iii):

K∇ ◦
(
νl ⊗ 1

)
= cσ ◦ (∇⊗∇) ◦ (

νl ⊗ 1
)−∇ ◦ cσ ◦

(
νl ⊗ 1

)

= cσ ◦
(
νl ⊗ 1

) ◦ (1⊗∇⊗∇)−∇ ◦ cσ ◦
(
νl ⊗ 1

)

= νl ◦ (1⊗ cσ) ◦ (1⊗∇⊗∇)− νl ◦ (evA,A ⊗ 1) ◦ σ ◦ (1⊗∇⊗∇)

−∇ ◦ νl ◦ (1⊗ cσ) +∇ ◦ νl ◦ (evA,A ⊗ 1) ◦ σ

= νl ◦ (1⊗ cσ) ◦ (1⊗∇⊗∇)− νl ◦ (1⊗∇) ◦ (1⊗ cσ)

= νl ◦K∇,

if and only if

νl ◦ (evA,A ⊗ 1) ◦ σ ◦ (1⊗∇⊗∇) = ∇ ◦ νl ◦ (evA,A ⊗ 1) ◦ σ,
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which clearly is satisfied.
(iv):

K∇ ◦
(
1⊗ νl

)
= cσ ◦ (∇⊗∇) ◦ (

1⊗ νl
)−∇ ◦ cσ ◦

(
1⊗ νl

)

= cσ ◦
(
1⊗ νl

) ◦ (∇⊗ 1⊗∇)−∇ ◦ cσ ◦
(
1⊗ νl

)

= νl ◦ (1⊗ cσ) ◦ (σ ⊗ 1) ◦ (∇⊗ 1⊗∇) + νl ◦ (evA,A ⊗ 1) ◦ (∇⊗ 1⊗∇)

−∇ ◦ νl ◦ (1⊗ cσ) ◦ (σ ⊗ 1)−∇ ◦ νl ◦ (evA,A ⊗ 1)

= νl ◦ (1⊗ cσ) ◦ (1⊗∇⊗∇) ◦ (σ ⊗ 1)− νl ◦ (1⊗∇) ◦ (1⊗ cσ) ◦ (σ ⊗ 1)

= νl ◦K∇ ◦ (σ ⊗ 1) .

Note that
σ ◦ (∇⊗ 1) = (1⊗∇) ◦ σ

by the naturality of braidings.

5.1 Quantization of braided connections and curvatures

Let ∇ be a σ-connection in E. Then the quantization of ∇,

Qq (∇) = ∇q : Derσq (Aq) → Der(σq,Aq) (Eq) .

is defined by
∇q

def
= Qq ◦ ∇ ◦Q−1

q , (27)

that is, the following diagram commutes

Der(σ,A)(E) ¾∇ Derσ(A)

Der(σq,Aq)(Eq)

Qq

?
¾∇q

Derσq (Aq)

Qq

?

.

Proposition 33 The quantization ∇q is a σq-connection in Eq.

Proof. Clearly,
πq ◦ ∇q = Id,

as
πq = Qq ◦ π ◦Q−1

q .

Let ∇q be a σq-connection in Eq. Then the σq − q-curvature of ∇q (or simply
σq-curvature when it is clear that the multiplication or composition is the quantized
multiplication),

Kq
∇q

: Derσq (Aq) ·σq Derσq (Aq) → EndAq (Eq) ,

is defined by
Kq
∇q

= cq
σq
◦ (∇q ⊗∇q)−∇q ◦ cq

σq
.

Let us state the properties of the σq − q-curvature.
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Theorem 34 The σq − q-curvature is a σq-homomorphism, that is,

evE,E ◦
(
Kq
∇q
⊗ νl

q

)
= νl

q ◦ (1⊗ evE,E) ◦ (σq ⊗ 1) ◦
(
Kq
∇q
⊗ 1⊗ 1

)
, (i)

which maps Derσq (Aq)⊗Derσq (Aq)⊗Aq ⊗ Eq to Eq, and is skew σq-symmetric,

Kq
∇q

= −Kq
∇q
◦ σq. (ii)

Furthermore Kq
∇q

satisfies

Kq
∇q
◦ (

νl
q ⊗ 1

)
= νl

q ◦
(
1⊗Kq

∇q

)
, (iii)

Kq
∇q
◦ (

1⊗ νl
q

)
= νl

q ◦Kq
∇q
◦ (σq ⊗ 1) , (iv)

∀a ∈ A.

Proof. (i): See the proof of (i) of theorem 32.
(ii):

Kq
∇q

= cq
σq
◦ (∇q ⊗∇q)−∇q ◦ cq

σq

= −cq
σq
◦ σq ◦ (∇q ⊗∇q) +∇q ◦ cq

σq
◦ σq

= −K∇q ◦ σq.

(iii):

Kq
∇q
◦ (

νl
q ⊗ 1

)

= cq
σq
◦ (∇q ⊗∇q) ◦

(
νl

q ⊗ 1
)−∇q ◦ cq

σq
◦ (

νl
q ⊗ 1

)

= cq
σq
◦ (

νl
q ⊗ 1

) ◦ (1⊗∇q ⊗∇q)−∇q ◦ cq
σq
◦ (

νl
q ⊗ 1

)

= νl
q ◦

(
1⊗ cq

σq

)
◦ (1⊗∇q ⊗∇q)− νl

q ◦ (evA,A ⊗ 1) ◦ σq ◦ (1⊗∇q ⊗∇q)

−∇q ◦ νl
q ◦

(
1⊗ cq

σq

)
+∇q ◦ νl

q ◦ (evA,A ⊗ 1) ◦ σq

= νl
q ◦

(
1⊗ cq

σq

)
◦ (1⊗∇q ⊗∇q)− νl

q ◦ (1⊗∇q) ◦
(
1⊗ cq

σq

)

= νl
q ◦

(
1⊗Kq

∇q

)

if and only if,

νl
q ◦ (evA,A ⊗ 1) ◦ σq ◦ (1⊗∇q ⊗∇q) = ∇q ◦ νl

q ◦ (evA,A ⊗ 1) ◦ σq,

which clearly is satisfied. (iv):

Kq
∇q
◦ (

1⊗ νl
q

)
= cq

σq
◦ (∇q ⊗∇q) ◦

(
1⊗ νl

q

)−∇q ◦ cq
σq
◦ (

1⊗ νl
q

)

= νl
q ◦

(
1⊗ cq

σq

)
◦ (σq ⊗ 1) ◦ (1⊗∇q ⊗∇q) + νl

q ◦ (evA,A ⊗ 1) ◦ (1⊗∇q ⊗∇q)

−∇q ◦ νl
q ◦

(
1⊗ cq

σq

)
◦ (σq ⊗ 1)−∇q ◦ νl

q ◦ (evA,A ⊗ 1)

= νl
q ◦

(
1⊗ cq

σq

)
◦ (σq ⊗ 1) ◦ (1⊗∇q ⊗∇q)−∇q ◦ νl

q ◦
(
1⊗ cq

σq

)
◦ (σq ⊗ 1)

= νl
q ◦Kq

∇q
◦ (σq ⊗ 1) .

We have the following condition for the braided curvature of dequantizations of
braided derivations.
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Theorem 35 The σq-curvature of the connection ∇q defined by

K∇q
= cσq

◦ (∇q ⊗∇q)−∇q ◦ cσq
, (28)

and the σq − q-curvature Kq
∇ of the σ-connection ∇ of E defined by

Kq
∇ = cq

σq
◦ (∇⊗∇)−∇ ◦ cq

σq
, (29)

are related as follows,

Q−1
q ◦K∇q

= Kq
∇ ◦

(
Q−1

q ⊗Q−1
q

)
. (30)

Proof. Proof of (30):

K∇q
= cσq

◦ (∇q ⊗∇q)−∇q ◦ cσq

= Qq ◦ cq
σq
◦ (

Q−1
q ⊗Q−1

q

) ◦ ((
Qq ◦ ∇ ◦Q−1

q

)⊗ (
Qq ◦ ∇ ◦Q−1

q

))

−Qq ◦ ∇ ◦Q−1
q ◦Qq ◦ cq

σq
◦ (

Q−1
q ⊗Q−1

q

)

= Qq ◦ cq
σq
◦ (∇⊗∇) ◦ (

Q−1
q ⊗Q−1

q

)−Qq ◦ ∇ ◦ cq
σq
◦ (

Q−1
q ⊗Q−1

q

)

= Qq ◦Kq
∇ ◦

(
Q−1

q ⊗Q−1
q

)
.

6 Braided differential operators

We shall see how the picture is for braided differential operators.

6.1 Braided differential operators in algebras

Let σ be a braiding and A be a σ-symmetric algebra.
Recall that the module

(hom (A,A))(k)
σ = Diffσ

k (A,A)

is called the braided or σ-differential operators in A order at most k.
An equivalent and more familiar way to define a σ-differential operator of order

at most k is the linear map
f : A → A,

such that

cσ ◦ (1⊗ cσ) ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ cσ


 (a0 ⊗ a1 ⊗ · · · ⊗ ak ⊗ f) = 0 (31)

∀a0, . . . , ak ∈ A. Denote by Diffσ
k (A,A) the set of σ-differential operators of order

at most k. Note,

f ∈ Diffσ
k (A,A) ⇔ cσ (f ⊗ a) ∈ Diffσ

k−1 (A,A) , ∀a ∈ A.

Let Diffσ (A, A) = ∪Diffσ
k (A,A).

From [15] we have the following two results.
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Proposition 36 The σ-commutator of two σ-differential operators:

f ∈ Diffσ
i (A,A) and g ∈ Diffσ

j (A,A)

is a σ-differential operator of order at most i + j − 1,

cσ (f ⊗ g) ∈ Diffσ
i+j−1 (A,A) .

The next result also follows from theorem 9.

Corollary 37 If σ is a symmetry and an algebra A is σ-symmetric then Diffσ (A,A)
is a σ-Lie algebra.

Proposition 38 There is an A−A-module structure on Diffσ (A,A) defined by

νl
a (f) (b) = νl (a⊗ f) (b) = af (b) , (32)

νr
a (f) (b) = νr (f ⊗ a) (b) = f (ab) , (33)

a, b ∈ A, f ∈ Diffσ (A,A), and νl (a⊗ f), νr (f ⊗ a) ∈ Diffσ
k (A,A), for f ∈

Diffσ
k (A,A).

Proof. Let

σi,i+1 =


1⊗ · · · ⊗ 1︸ ︷︷ ︸

i−1

⊗ σ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(k+3)−(i+1)


 ,

than the left action on a braided differential operator again is a braided differential
operator,

cσ ◦ (1⊗ cσ) ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ cσ


 ◦


1⊗ · · · ⊗ 1︸ ︷︷ ︸

k+1

⊗ νl




= cσ ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k−1

⊗ cσ


 ◦


1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ ((
νl + evA,A ◦ σ

) ◦ (
1⊗ νl

))



= cσ ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ ((
νl ◦ (µ⊗ 1) + µ ◦ (1⊗ evA,A) ◦ (1⊗ σ)

) ◦ (σ ⊗ 1)
)



= cσ ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ νl


 ◦


1⊗ · · · ⊗ 1︸ ︷︷ ︸

k+1

⊗ cσ


 ◦


1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ σ ⊗ 1




...

= νl ◦ (1⊗ cσ) ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k+1

⊗ cσ


 ◦ σ1,2 ◦ · · · ◦ σk+1,k+2

= 0,
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when applied to a0 ⊗ a1 ⊗ · · · ⊗ ak ⊗ b ⊗ f , and also the right action on a braided
differential operator again is a braided differential operator,

cσ ◦ (1⊗ cσ) ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ cσ


 ◦


1⊗ · · · ⊗ 1︸ ︷︷ ︸

k+1

⊗ νr




= cσ ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k−1

⊗ cσ


 ◦


1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ ((
νl + evA,A ◦ σ

) ◦ (1⊗ νr)
)



= cσ ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ (
νr ◦ (

νl ⊗ 1
)

+ evA,A ◦ (1⊗ µ) ◦ (1⊗ σ) ◦ (σ ⊗ 1)
)



= cσ ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ νr


 ◦


1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ cσ ⊗ 1




...

= νr ◦ (cσ ⊗ 1) ◦ · · · ◦

1⊗ · · · ⊗ 1︸ ︷︷ ︸

k

⊗ cσ ⊗ 1




= 0,

when applied to a0 ⊗ a1 ⊗ · · · ⊗ ak ⊗ f ⊗ b, a0, . . . , ak, b ∈ A, f ∈ Diffσ
k (A,A).

Consider the symbol of the differential operators which is the leading part with
respect to derivatives,

Smblσk (A,A) = Diffσ
k (A,A) /Diffσ

k−1 (A,A) ,

then we have the Z-graded object

Smblσ (A,A) =
∑

Smblσk (A,A) .

The class of [f, g]σ ∈ Diffσ
i+j−1 (A, A),

[f, g]σ ∈ Smblσi+j−1 (A, A) ,

depends on the class of the two σ-differential operators f ∈ Diffσ
i (A,A) and g ∈

Diffσ
j (A,A), hence there is a σ-Poisson structure on the braided symbol algebra,

[15].

6.2 Braided differential operators in modules

Let σ be a braiding, A be a σ-symmetric algebra and let E be a σ-symmetric A-
module.

Definition 39 The module

(hom (E, E))(k)
σ = Diffσ

k (E,E)

is called the braided or σ-differential operators in order at most k of E.
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Denote the σ-differential operators of order at most k in E by Diff
(σ,A)
k (E, E)

and we consider Diff (σ,A) (E,E) = ∪Diff
(σ,A)
k (E,E).

From [15] we have the following two results.

Proposition 40 The σ-commutator of two σ-differential operators

f ∈ Diff
(σ,A)
i (E,E) and g ∈ Diff

(σ,A)
j (E, E) ,

is given by
[f, g]σ ∈ Diff

(σ,A)
i+j (E, E) ,

and so has order at most i + j.

Corollary 41 If σ is a symmetry and an algebra A and a left A-module E are σ-
symmetric then Diffσ (E, E) is a σ-Lie algebra.

We consider the A−A-module structure on Diffσ (E, E).

Proposition 42 There is an A−A-module structure on Diffσ (E,E) defined by

νl
a (f) (x) = νl (a⊗ f) (x) = af (x) ,

νr
a (f) (x) = νr (f ⊗ a) (x) = f (ax) ,

a ∈ A, x ∈ E, f ∈ Diffσ (E,E).

Proof. The proof is the same as for proposition 38.
Consider the symbol of the differential operators which is the leading part with

respect to derivatives,

Smblσk (E,E) = Diffσ
k (E,E) /Diffσ

k−1 (E,E) ,

then we have the Z-graded object

Smblσ (E,E) =
∑

Smblσk (E, E) .

The class of [f, g]σ ∈ Diffσ
i+j (E, E),

[f, g]σ ∈ Smblσi+j (E, E) ,

depends on the class of the two σ-differential operators f ∈ Diffσ
i (E, E) and g ∈

Diffσ
j (E, E), hence there is a σ-Poisson structure on the braided symbol algebra.

6.3 Quantizations of braided differential operators in algebras

We can define quantization of σ-differential operators in algebras. Let A be a σ-
commutative algebra.

Definition 43 Given a quantization q and f ∈ Diffσ (A,A) define the quantization
of f by

Qq (f) (a) = fq (a)
def
= evA,A ◦ q (f ⊗ a) ,

a ∈ A.
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Qq (f) is an operator of the quantized algebra Aq. From [14] we have the following
theorem.

Theorem 44 Given a braiding σ, let σq be the quantization of σ. The operator

Qq : (Diffσ (A,A) , cσ) →
(
Diffσq (Aq, Aq) , cq

σq

)
, (34)

f ∈ Diffσ (A,A) 7−→ Qq (f) ∈ Diffσq (Aq, Aq) ,

is an isomorphism of modules.
The symbol of Qq is an isomorphism of modules

Smbl (Qq) : (Smblσ (A,A) , cσ) →
(
Smblσq (Aq, Aq) , cq

σq

)
, (35)

f ∈ Smblσ (A,A) 7−→ Smbl (Qq) (f) ∈ Smblσq (Aq, Aq) .

By proposition 38 is Diffσq (Aq, Aq) a σq-symmetric module. By corollary 37, if
σ is a symmetry then Diffσq (Aq, Aq) is a σq-Lie algebra with respect to the σq − q-
bracket and the quantized composition. Furthermore there is a σq-Poisson structure
on the quantized braided symbol algebra Smblσq (Aq, Aq).

By theorem 13 the σq-Lie algebra structure of
(
Diffσq (Aq, Aq) , cq

σq

)
can be

realized within the classical one by dequantization.

6.4 Quantizations of braided differential operators in modules

Let A be a σ-symmetric algebra and let E be a σ-symmetric A-module.

Definition 45 Given a quantization q and f ∈ Diff (σ,A) (E, E) define the quanti-
zation of f by

Qq (f) (x) = fq (x)
def
= evE,E ◦ q (f ⊗ x) ,

x ∈ E.

Qq (f) is an operator of the quantized module Eq.

Theorem 46 Given a braiding σ, let σq be the quantization of σ. The operator

Qq :
(
Diff (σ,A) (E, E) , cσ

)
→

(
Diff (σq,Aq) (Eq, Eq) , cq

σq

)
, (36)

f ∈ Diff (σ,A) (E, E) 7−→ Qq (f) ∈ Diff (σq,Aq) (Eq, Eq) ,

is an isomorphism of modules.
The symbol of Qq is an isomorphism of modules

Smbl (Qq) :
(
Smbl(σ,A) (E, E) , cσ

)
→

(
Smbl(σq,Aq) (Eq, Eq) , cq

σq

)
, (37)

f ∈ Smbl(σ,A) (E, E) 7−→ Smbl (Qq) (f) ∈ Smbl(σq,Aq) (Eq, Eq) .

Proof. The isomorphism as σ-differential operators and σ-symbols is shown in [14].

By proposition 42 is Diff (σq,Aq) (Eq, Eq) a σq-symmetric module. By corollary
41, if σ is a symmetry then Diff (σq,Aq) (Eq, Eq) is a σq-Lie algebra with respect to
the σq − q-bracket and the quantized composition. Furthermore there is a σq-Poisson
structure on the quantized braided symbol algebra, Smbl(σq,Aq) (Eq, Eq).

By theorem 13 the σq-Lie algebra structure of
(
Diff (σq,Aq) (Eq, Eq) , cq

σq

)
can be

realized within the classical one by dequantization.
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