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Abstract. In this paper, the author investigates the initial bound-

ary value problem for a nonlinear degenerate parabolic equation, which

comes from a compressible fluid flowing in a homogeneous isotropic rigid

porous medium. We establish the existence of nonnegative self-similar

solutions.

1. Introduction

During the past years, many authors have paid much attention to the

following equation

∂u

∂t
= div(|x|α|∇(|u|m−1u)|N−1∇(|u|m−1u)),

in R
n. The equation is a continuous model, which comes from a com-

pressible fluid flowing in a homogeneous isotropic rigid porous medium.

The equation is also called non-newtonian polypropic filtration equations.

Zhao and Yuan [4], Zhao and Xu [3] consider the Cauchy problem for

α = 0. They proved the existence of weak solution; see also [6], [7]. After
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introducing the radial variable r = |x|, we see that the radial symmetric

solution satisfies

∂u

∂t
=

1

rn−1

∂

∂r

(

rα+n−1

∣

∣

∣

∣

∂

∂r
(|u|m−1u)

∣

∣

∣

∣

N−1
∂

∂r
(|u|m−1u)

)

, (1.1)

On the basis of physical consideration, as usual the equation (1.1) is

supplemented with the natural boundary value conditions

u(0, t) = u0t
γ , u(+∞, t) = 0, t > 0, (1.2)

and the initial value condition

u(r, 0) = 0. (1.3)

In this paper, we study the self-similar solution of the problem (1.1)-(1.3).

We are seeking solutions of the form

u(r, t) = u0t
γy(x), x = crt−β.

A direct calculation shows that y(x) should satisfy the following ordinary

differential equation

[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′

= λxn−1y(x) − xny′(x), (1.4)

where m > 1, N > 1, β = γ(mN−1)+1
N−α+1

, CN+1 = umn−1
0 β, λ = γ

β
, u0 > 0,

γ > 0 with the following initial value conditions

y(0) = 1, lim
x→+∞

x[−λ]+y(x) = 0, (1.5)

where

[−λ]+ =

{

−λ, λ < 0,

0, λ ≥ 0.

In recent years, the equation (1.4) with α = 0, m = 1 has also caused

much of attention [1, 2, 5].

Definition A function y(x) is said to be a solution of the problem

(1.4)–(1.5), if the following conditions are satisfied:

1) y(x) ∈ C1[0, +∞),

2) the function xα+n−1|(|y|m−1y)′|N−1(|y|m−1y)′ is continuously dif-

ferentiable in [0, +∞), and (1.4) a.e. holds in [0, +∞).

3) (1.5) holds.
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2. The two-point boundary value problem

In this section, we first study the properties of the solution for the

problem (1.4)-(1.5).

Proposition 2.1. Suppose the function y(x) ∈ C1[0, +∞) is a solution

of the problem (1.4)-(1.5). Then y(x) ≥ 0, y ′(x) ≤ 0, as λ ≥ 0.

Proof. Otherwise, if there exists a point x∗ ∈ (0, +∞) such that

y(x∗) < 0. By y(0) = 1 and y(+∞) = 0, we know that there would

exist a point a1 ∈ (0, +∞) and y(a1) is a minimum value. Hence, we

have y′(a1) = 0. Again by y(+∞) = 0, y(a1) < 0, we know that there

exists a point a2 ∈ [a1, +∞), such that y(a2) = 1
2
y(a1). In addition, the

mean value theorem yields,

y(a2) − y(a1) = y′(b)(a2 − a1),

where b ∈ [a1, a2]. Since y(a2) − y(a1) > 0 and a2 − a1 > 0, we obtain

y′(b) > 0. Taking [c1, c2] ⊂ [a1, a2] such that y′(c1) = 0 and y(x) < 0,

y′(x) > 0 in (c1, c2). Integrating the equation (1.4) with respect to x over

(c1, c2), we see that

∫ c2

c1

[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′

dx

= cα+n−1
2

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(c2)

− cα+n−1
1

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(c1)

= cα+n−1
2

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(c2) > 0.

Observing that λxn−1y(x) ≤ 0 and xny′(x) > 0, we have λxn−1y(x) −

xny′(x) < 0. Hence
∫ c2

c1

λxn−1y(x) − xny′(x)dx ≤ 0.

The contradiction shows y ≥ 0.

Similarly, we can prove y′(x) ≤ 0. Otherwise, if there exists x∗ ∈

(0, +∞) such that y′(x∗) > 0. By y(0) = 1, y(+∞) = 0, we know that

there would exist a x1 ∈ (0, +∞) with y(x1) being a maximum value.

Hence, we have y′(x1) = 0. By y(x1) > 0 which is a maximum value,

there exists a point x2 ∈ [x1, +∞), satisfying y(x2) = 1
2
y(x1). The mean

value theorem yields,

y(x2) − y(x1) = y′(b)(x2 − x1),
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where b ∈ [x1, x2]. By y(x2) − y(x1) < 0 and x2 − x1 > 0, therefore

we have y′(b) < 0. we take [c1, c2] ⊂ [a1, a2] such that y′(c1) = 0 and

y(x) > 0, y′(x) < 0 in (c1, c2). Integrating the equation (1.4) with respect

to x over (c1, c2), we see that

∫ c2

c1

[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′

dx

= cα+n−1
2

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(c2)

− cα+n−1
1

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(c1)

= cα+n−1
2

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(c2) < 0.

Observing that λxn−1y(x) > 0 and −xny′(x) > 0, then λxn−1y(x) −

xny′(x) > 0. Thus we have

∫ c2

c1

λxn−1y(x) − xny′(x)dx ≥ 0.

The contradiction shows y′ ≤ 0. �

Proposition 2.2. If the function y(x) ∈ C1[0, +∞) is a solution of the

problem (1.4)-(1.5). Then y(x) ≥ 0, y′(x) ≤ 0 as −n ≤ λ < 0.

To prove the proposition 2.2, we need some lemmas. We first have

Lemma 2.1. If there exists a x0 satisfies y′(x0) = 0, y(x0) > 0. Then,

we have y(x) ≥ 0, y′(x) ≤ 0 in [x0, +∞), for −n ≤ λ < 0.

Proof. We first prove y(x) ≥ 0. Otherwise, if there exists a point a1

such that y(a1) < 0. By y(+∞) = 0, we know that there would exist a

point x1 and y(x1) < 0 is a minimum value. Hence, we have y′(x1) = 0.

Integrating the equation (1.4) with respect to x over (x1, x2), and using

y′(x0) = 0, y′(x1) = 0 and y(x0) > 0, y(x1) < 0, we see that

∫ x1

x0

[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′

dx

= xα+n−1
1

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(x1)

− xα+n−1
0

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(x0) = 0,
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and
∫ x1

x0

λxn−1y(x) − xny′(x)dx

=

∫ x1

x0

λxn−1y(x)dx +

∫ x1

x0

nxn−1y(x)dx − xny
∣

∣

∣

x1

x0

> (λ + n)
1

n
y(x1)(x

n
1 − xn

0 ) + xn
0y(x0) − xn

1y(x1)

= (
λ

n
+ 1)y(x1)x

n
1 − (

λ

n
+ 1)y(x1)x

n
0 + xn

0y(x0) − xn
1y(x1)

=
λ

n
y(x1)x

n
1 − (

λ

n
+ 1)y(x1)x

n
0 + xn

0y(x0) > 0.

The contradiction shows y ≥ 0. Similarly, we can prove y ′(x) ≤ 0. �

Lemma 2.2. If there exists a x0 satisfies y′(x0) = 0, y(x0) < 0, then,

we have y(x) ≤ 0, y′(x) ≥ 0 in [x0, +∞), for −n ≤ λ < 0.

Proof. For simplicity, we only prove the first inequality y(x) ≤ 0,

since the other can be shown similarly. Otherwise, if there exists a1 such

that y(a1) > 0, by y(+∞) = 0, we know that there would exist a x1 and

y(x1) < 0 is a maximum value. Hence, we have y′(x1) = 0. By y′(x0) = 0,

y′(x1) = 0 and y(x0) > 0, y(x1) < 0. Integrating the equation (1.4) with

respect to x over (x1, x2), we see that
∫ x1

x0

[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′

dx

= xα+n−1
1

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(x1)

− xα+n−1
0

∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(x0) = 0

and
∫ x1

x0

λxn−1y(x) − xny′(x)dx

=

∫ x1

x0

λxn−1y(x)dx +

∫ x1

x0

nxn−1y(x)dx − xny
∣

∣

∣

x1

x0

< (λ + n)
1

n
y(x1)(x

n
1 − xn

0 ) + xn
0y(x0) − xn

1y(x1)

= (
λ

n
+ 1)y(x1)x

n
1 − (

λ

n
+ 1)y(x1)x

n
0 + xn

0y(x0) − xn
1y(x1)

=
λ

n
y(x1)x

n
1 − (

λ

n
+ 1)y(x1)x

n
0 + xn

0y(x0) < 0

The contradiction shows y ≤ 0. �
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Proof of Proposition 2.2. We first prove that y(x) ≥ 0. Otherwise, if

there exists x∗ ∈ (0, +∞) such that y(x∗) < 0, by y(0) = 1, y(+∞) = 0,

we know that there would exist a a1 ∈ (0, +∞) and y(a1) is a minimum

value. Therefore, we have y′(a1) = 0. By lemma 2.2, we have y′(x) ≥ 0,

y(x) ≤ 0 in [a1, +∞) . Multiplying both sides of the equation (1.4) by

−x−λ−1, we have

−x−λ−n
[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′

= [x−λy(x)]′ (2.1)

Then, integrating the resulting relation with respect to x over (a1, M),

we have
∫ M

a1

−x−λ−n
[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′

dx

= −x−λ−nxα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

∣

∣

∣

M

x2

− (λ + n)

∫ M

a1

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′x−λ−n−1dx

= M−λ+α−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′(M)

− (λ + n)

∫ M

a1

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′x−λ−n−1dx ≤ 0

However, the right hand side
∫ M

a1

(x−λy)′dx = M−λy(M) − a−λ
1 y(a1).

By lim x−λy(x) = 0, we have the right hand side > 0, as M → +∞. The

contradiction shows y ≤ 0.

Similarly, we can prove y′(x) ≥ 0. �

Proposition 2.3. Suppose the function y(x) ∈ C1[0, +∞) is a solution

of the problem (1.4)-(1.5). Then a.e. y ′(x) < 0, as y(x) > 0, where

λ 6= 0.

Proof. If there exists a point x0 ∈ [0, +∞), such that y(x0) > 0 and

y′(x0) = 0. Without loss of generality, we assume there exists a strictly

monotone sequence {xj}
∞

j=1 such that limj→+∞ xj = x0, y(xj) > 0,

y′(xj) = 0. Set f(xj) = xα+n−1
j |(|y|m−1y(xj))

′|
N−1

(|y|m−1y(xj))
′. Hence

0 =
f(xj+1) − f(xj)

xj+1 − xj
=
[

xα+n−1
∣

∣(|y|m−1y)′
∣

∣

N−1
(|y|m−1y)′

]

′
∣

∣

∣

x=ξj

= λξj
n−1y(ξj) − ξj

ny′(ξj),
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where ξj ∈ [xj, xj+1]. Letting j → +∞, we have y(x0) = 0. The contra-

diction shows y′ < 0. �

3. Self-similar solution

To prove the existence of solutions of the problem (1.4)-(1.5), we set

v(t) = mtm−1W α+n−1|W ′|−N ,

and consider the following problem

dv

dt
= −λtW n−1W ′ + W n, (3.1)

dW (N−n+α+1)/N

dt
= −

N − n + α + 1

N
m1/N t(m−1)/Nv−1/N(t), (3.2)

v(0) = 0, W (1) = 0. (3.3)

To prove the existence of solution of the problem (3.1)-(3.3), we consider

the problem (3.1), (3.2) and

v(0) = h > 0, W (1) = 0. (3.4)

Theorem 3.1. For fixed h > 0, the problem (3.1), (3.2), (3.4) admits a

solution v(t, h).

Proof. If v(t) ∈ C[0, 1] satisfies

v(t) = λm1/N

∫ t

0

τ (N+m−1)/N v−1/N(τ)

(

N − n + α + 1

N
m1/N

∫ 1

τ

s(m−1)/Nv−1/N (s)ds

)(Nn−N+α+n−1)/(N−1)

dτ

+

∫ t

0

(

N − n + α + 1

N
m1/N

∫ 1

τ

s(m−1)/Nv−1/N (s)ds

)Nn/(N−1)

dτ + h

(3.5)

and let

W (t) =

(

N − n + α + 1

N
m1/N

∫ 1

t

s(m−1)/Nv−1/N (s)ds

)N/(N−1)

. (3.6)

It is seen that (v(t), W (t)) is a solution of the problem (3.1), (3.2), (3.4).
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On the other hand, clearly, for any a ∈ [0, 1], we have

v(t) = λm1/N

∫ t

a

τ (N+m−1)/N v−1/N(τ)

(

N − n + α + 1

N
m1/N

∫ 1

τ

s(m−1)/Nv−1/N (s)ds

)(Nn−N+α+n−1)/(N−1)

dτ

+

∫ t

a

(

N − n + α + 1

N
m1/N

∫ 1

τ

s(m−1)/N v−1/N(s)ds

)Nn/(N−1)

dτ +v(a).

(3.7)

Define the map ϕ : Ω → Ω,

ϕv = λm1/N

∫ t

0

τ (N+m−1)/Nv−1/N (τ)

(

N − n + α + 1

N
m1/N

∫ 1

τ

s(m−1)/Nv−1/N (s)ds

)(Nn−N+α+n−1)/(N−1)

dτ

+

∫ t

0

(

N − n + α + 1

N
m1/N

∫ 1

τ

s(m−1)/Nv−1/N (s)ds

)Nn/(N−1)

dτ + h,

where Ω = {v(t) ∈ C[0, 1]; h ≤ v(t) ≤ (ϕh)(t)}. It is seen that the oper-

ator ϕ is Ω to Ω continuous and compact. By Leray–Schauder principle

of fixed point, the operator ϕ has a fixed point v(t, h) in Ω, which is the

desired solution of the (3.5). Hence it is the solutions of the problem

(3.1), (3.2), (3.4). �

Lemma 3.1. If h1 > h2 > 0, then

0 ≤ v(t, h1) − v(t, h2) ≤ h1 − h2, on [0, 1].

Proof. We first show the left inequality. If this were not true, then

there will be a point t0 ∈ [0, 1], such that

v(t0, h1) − v(t0, h2) < 0.

By v(0, h1) − v(0, h2) = h1 − h2 > 0, hence t0 6= 0.

Since t0 6= 0, then there exists a interval (a, t0], where 0 < a < t0 ≤ 1,

such that

v(t, h1) − v(t, h2) < 0, v(a, h1) − v(a, h2) = 0 in(a, t0].

Using (3.7), we obtain v(t0, h1)−v(t0, h2) = 0, this yields a contradiction.

We can obtain the right inequality, by the left inequality and (3.5). �

By the lemma 3.1, we have the following conclusion.
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Lemma 3.2. The problem (3.1), (3.2), (3.4) has a unique solution.

Theorem 3.2. The problem (3.1), (3.2), (3.3) has a unique solution

v(t, h).

Proof. By the lemma 3.1, we know that

lim
h→0

v(t, h) = v(t) uniformly for t ∈ [0, 1].

Substituting v(t, h) into (3.5), then letting h → 0, using lemma 3.2,

we have the problem (3.1)-(3.3) admits one and only one nonnegative

continuous solution v(t). �

Theorem 3.3. The problem (1.4), (1.5) has a unique solution.

Proof. Now, we construct a solution of the problem (1.4)-(1.5) by the

solution of the problem (3.1)-(3.3). Suppose (v(t), W (t)) is a solution

of the problem (3.1)-(3.3), then W (t) is a strictly decreasing function in

[0, 1]. Hence the inverse function t = y(x) of x = W (t) exists in [0, W (0)).

If W (0) < +∞, we define the y(x) = 0, as x ∈ [W (0), +∞). Hence the

y(x) is a nonnegative function with y(0) = 1, lim
x→+∞

x[−λ]+y(x) = 0, in

[0, +∞). We set x0 = W (0). Observing that x = W (t) in [0, x0) and

y′(x) = 1
W ′(t)

< 0 a.e. in (0, x0). As x0 < +∞, we have y′

−
(x0) =

1
W ′

+
(0)

= 0. Again as x ∈ [x0, +∞), y(x) = 0, hence, we know that

y′(x) continuous at x0 and y′(x0) = 0. As x0 = +∞, by (3.6), we have

y′(x) = −v1/N (t)/[(N − n + α − 1)/(N − 1)W 1/N ]. Again by v(0) = 0

and W (0) = +∞, we know that y′(+∞) = 0. Substituting t = y(x) in

(1.4), (1.5), it is easily seen that the function y(x) ∈ C1[0, +∞) is the

solution of the problem (1.4), (1.5). �

By the Theorem 3.3, we have the following conclusion.

Theorem 3.4. If m > 1, N > 1, γ > 0, u0 > 0, γ
β

≥ −n. Then

the problem (1.1)–(1.3) admits one and only one nonnegative self-similar

solution

u(r, t) = u0t
αy(crt−β),

where y(x) ∈ C1[0, +∞) is a unique nonnegative solution of the problem

(1.4), (1.5), c, β are defined in Section 1.
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