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ABSTRACT. In this paper, the author investigates the initial bound-
ary value problem for a nonlinear degenerate parabolic equation, which
comes from a compressible fluid flowing in a homogeneous isotropic rigid
porous medium. We establish the existence of nonnegative self-similar
solutions.

1. INTRODUCTION

During the past years, many authors have paid much attention to the
following equation

du : « m— — m—

o5 = dv(l2*V (Jul )MV (Jul ™)),

in R™. The equation is a continuous model, which comes from a com-
pressible fluid flowing in a homogeneous isotropic rigid porous medium.
The equation is also called non-newtonian polypropic filtration equations.
Zhao and Yuan [4], Zhao and Xu [3] consider the Cauchy problem for

a = 0. They proved the existence of weak solution; see also [6], [7]. After
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introducing the radial variable r = |z|, we see that the radial symmetric
solution satisfies

N-1
du 1 9 <ra+"—1 B

a m—1
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On the basis of physical consideration, as usual the equation (1.1) is
supplemented with the natural boundary value conditions

u(0,t) = upt”, u(4o00,t) =0, t >0, (1.2)
and the initial value condition
u(r,0) = 0. (1.3)

In this paper, we study the self-similar solution of the problem (1.1)-(1.3).
We are seeking solutions of the form

u(r,t) = upt"y(z), x=crt ™"

A direct calculation shows that y(x) should satisfy the following ordinary
differential equation

[ Y Q] = X ) — @), (L)

where m > 1, N > 1, § = WRE=DE OV — gn=lg X = 2 g > 0,
~v > 0 with the following initial value conditions
y(0) =1, lim z+y(z) =0, (1.5)

T——+00

where

-, A <0,
[=Al = { 0, A>0.

In recent years, the equation (1.4) with o = 0,m = 1 has also caused
much of attention [1, 2, 5].
Definition A function y(x) is said to be a solution of the problem
(1.4)—(1.5), if the following conditions are satisfied:

1) y(z) € C'[0,+00),

2) the function ™ 1|(Jy|™ ty) |V (Jy|™ty)" is continuously dif-
ferentiable in [0, +00), and (1.4) a.e. holds in [0, +00).

3) (1.5) holds.
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2. THE TWO-POINT BOUNDARY VALUE PROBLEM

In this section, we first study the properties of the solution for the
problem (1.4)-(1.5).

Proposition 2.1. Suppose the function y(z) € C*0,+00) is a solution
of the problem (1.4)-(1.5). Then y(z) >0, y'(z) <0, as A > 0.

Proof.  Otherwise, if there exists a point z* € (0,+00) such that
y(z*) < 0. By y(0) = 1 and y(+o0) = 0, we know that there would
exist a point a; € (0,+00) and y(ay) is a minimum value. Hence, we
have y'(a;) = 0. Again by y(+00) = 0, y(a;) < 0, we know that there
exists a point as € [a1, +00), such that y(a2) = $y(a1). In addition, the
mean value theorem yields,

y(az) —ylar) = y'(b)(az — a1),

where b € [ay,as]. Since y(az) —y(a1) > 0 and as — a; > 0, we obtain
y'(b) > 0. Taking [c1, o] C [ay,as] such that y'(c;) = 0 and y(z) < 0,
y'(z) > 01in (c1, ¢2). Integrating the equation (1.4) with respect to « over
(c1,c2), we see that

| [x \<|y|m-1y>'}N‘1 (jy1"'y)] da

C1

= 5™y )| (™) (c2)
— ! \ *y)’}f“ <\y\m-1y>'<c1>
= 5y ™) )Y (1) () > 0.

Observing that Az" 'y(z) < 0 and z™y'(x) > 0, we have A\z" y(z) —
2™y’ (x) < 0. Hence

C2
/ A"ty (x) — 2™y (x)dz < 0.
c1
The contradiction shows y > 0.

Similarly, we can prove y'(x) < 0. Otherwise, if there exists z* €
(0,400) such that y'(z*) > 0. By y(0) = 1, y(+o0) = 0, we know that
there would exist a x; € (0,400) with y(z1) being a maximum value.
Hence, we have y'(z1) = 0. By y(z1) > 0 which is a maximum value,
there exists a point x5 € [z, +00), satisfying y(z2) = 3y(z1). The mean
value theorem yields,

y(r2) — y(21) = y'(0) (w2 — 1),
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where b € [z1,23]. By y(z2) — y(z1) < 0 and x5 — x; > 0, therefore
we have y'(b) < 0. we take [c1, o] C [a1,as] such that y'(¢;) = 0 and
y(x) >0,y (z) < 0in (c1, ca). Integrating the equation (1.4) with respect
to x over (¢, ¢y), we see that

J A (T (R (T

a1
at+n— m— N-1 m—
= (™ ) (™ ) ()
a+n— m— N-1 m—
— T (™) | (™ ) (@)
o+n— m— N-1 m—
= (™ )| (yl™y) (e2) < 0.

Observing that Az" 'y(z) > 0 and —a"y'(z) > 0, then A\z" ly(z) —
2™y (x) > 0. Thus we have

2
/ A"y (z) — 2™y (z)dx > 0.

C1
The contradiction shows 3’ < 0. [J

Proposition 2.2. If the function y(x) € C'[0, +00) is a solution of the
problem (1.4)-(1.5). Then y(z) > 0, y'(z) <0 as —n < A < 0.

To prove the proposition 2.2, we need some lemmas. We first have

Lemma 2.1. If there exists a zo satisfies y'(xg) = 0, y(zo) > 0. Then,
we have y(x) > 0, y'(z) <0 in [xg, +00), for —n < XA < 0.

Proof. We first prove y(z) > 0. Otherwise, if there exists a point a4
such that y(a;) < 0. By y(+00) = 0, we know that there would exist a
point z; and y(z;) < 0 is a minimum value. Hence, we have y'(z;) = 0.
Integrating the equation (1.4) with respect to x over (xy, ), and using
y'(x0) =0, y'(z1) = 0 and y(xo) > 0, y(x1) < 0, we see that

[ T = Qo] o

xo
=20 (ly|™ )| yI™ ) (1)
at+n— m— N-1 m—
— g (™ )| (y™ ) (@) =0,

A
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/ A"y (z) — 2™y (z)dx
:/ )\x”_ly(z)dm—l—/ na" ty(z)de — z"y
zo

zo

x1

1
> (A + n)gy(rrl)(x’f — xg) + x5y (wo) — 2Ty (w1)

= Qe gt — O+ Dyle)ag + rhy(a) — afylo)

A A
= 2y(a)al — (5 + Dylan)al + chy(ao) > 0,

The contradiction shows y > 0. Similarly, we can prove y/'(z) < 0. O

Lemma 2.2. If there exists a xq satisfies y'(xzg) = 0, y(xg) < 0, then,
we have y(z) <0, y'(x) > 0 in [zg, +00), for —n < A < 0.

Proof. For simplicity, we only prove the first inequality y(z) < 0,
since the other can be shown similarly. Otherwise, if there exists a; such
that y(a;) > 0, by y(4+00) = 0, we know that there would exist a x; and
y(x1) < 0is a maximum value. Hence, we have y'(z1) = 0. By v/(z¢) = 0,
y'(z1) = 0 and y(xg) > 0, y(z1) < 0. Integrating the equation (1.4) with
respect to x over (z1,z3), we see that

J N e (e A T

= a5yl | () ()
— gty )|y ) () = 0

1

:/ )\x”_ly(x)dx—i—/ na" ty(z)dr — a"y
zo

o) 0

< (b )y (o) (af — ) + afy(oo) - afy(e)

+ Dy(21)zg + 25y(z0) — 27y (21)

A A
= E?/(iﬂl)x? — (5 + Dy(21)zg + 25y (20) <0

The contradiction shows y < 0. [
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Proof of Proposition 2.2. We first prove that y(z) > 0. Otherwise, if
there exists z* € (0, +00) such that y(z*) < 0, by y(0) = 1, y(+o0) = 0,
we know that there would exist a a; € (0,400) and y(a;) is a minimum
value. Therefore, we have y'(a;) = 0. By lemma 2.2, we have y/(z) > 0,
y(x) < 0in [ay,+00) . Multiplying both sides of the equation (1.4) by

—2x~ 1 we have

A [x‘””‘l [yl tyy | (Iylm‘ly)’}, =[z"y(@)] (21

Then, integrating the resulting relation with respect to = over (ay, M),
we have

M —A—n |,.a+n—1 m—1, y/[V-1 m—1 K
[l o ] o

al

e atn— — N—-1 —
= —a A () | ()

x2

M
at+n— m— N-1 m— “A—n—
) A (e e (L
") (o)

— M—)\—i-oz—l }(|y|m—1y)/‘
M N-1
_ ()\ + n)/ xa+n—1 }(|y|m—1y)/‘ - (|y|m_1y)/$_>\_n_1dl’ <0

al

N-1 (|

However, the right hand side

/ (e y)de = My (M) — apy(ay).

ay
By lim 2~*y(z) = 0, we have the right hand side > 0, as M — +o0. The

contradiction shows y < 0.
Similarly, we can prove y'(z) > 0. O

Proposition 2.3. Suppose the function y(z) € C*0,+00) is a solution
of the problem (1.4)-(1.5). Then a.e. y'(x) < 0, as y(xz) > 0, where
A#0.

Proof. If there exists a point z¢ € [0,400), such that y(z¢) > 0 and
y'(z9) = 0. Without loss of generality, we assume there exists a strictly
monotone sequence {r;}32, such that lim; ., x; = xo, y(x;) > 0,

a+n— m— N-1 m—
Y(3) = 0. Set f(z;) = 22 (g™ ()Y V" (o™ "y () Henee

0= f(“";ﬁz - f() = [ty | ity | -

= X" y(&) = &MY (&),
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where &; € [z;,xj41]. Letting j — 400, we have y(z9) = 0. The contra-
diction shows y’ < 0. O

3. SELF-SIMILAR SOLUTION

To prove the existence of solutions of the problem (1.4)-(1.5), we set
’U(t) — mtm‘1W°‘+"‘1\W’\‘N,

and consider the following problem

d
d—: = MWW W, (3.1)

dw(N—n+a+1)/N N — 1
= SO NN (3

0(0) =0, W(1)=0. (3.3)

To prove the existence of solution of the problem (3.1)-(3.3), we consider
the problem (3.1), (3.2) and

v(0)=h>0, W(l)=0. (3.4)

Theorem 3.1. For fized h > 0, the problem (3.1), (3.2), (3.4) admits a
solution v(t, h).

Proof. If v(t) € C|0, 1] satisfies
t

U(t) _ )\ml/N/ 7_(N+m—1)/NU—1/N(7_>
0

1 (Nn—N+a+n—1)/(N-1)
(N—n+a+1m1/N/ S(m—l)/NU—l/N(S>dS) dr

N T
t 1 Nn/(N-1)
+/ (N —-n+aoa+ 1m1/N/ S(m—l)/NU—l/N(s)ds) dr + h
0 N T
(3.5)
and let

N — 1 1 N/(N-1)

W(t) = ( n; o+ ml/N/ S(m—l)/NU—l/N(s)ds) . (3.6)
t

It is seen that (v(t), W(t)) is a solution of the problem (3.1), (3.2), (3.4).
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On the other hand, clearly, for any a € [0, 1], we have

t
U(t) :)\ml/N/ 7_(N+m—1)/NU—1/N(7_>

1 (Nn—N+a+n—1)/(N-1)
<N—n;a—l—1m1/1v/ S(m—l)/NU—l/N(S>dS) dr
t N _ 1 1 Nn/(N—l)
+/ ( n];lf— o+ ml/N/ S(m—l)/NU—l/N(S)dS) dT+v(a).
(3.7)
Define the map ¢ : 2 — €,
t
ov = )\ml/N/ 7_(N—i—m—l)/NU—l/N(T)
0
1 (Nn—N+a+n—1)/(N-1)
(N—n;a—l—lmw/ S(m—l)/NU—l/N(S>dS) dr
t 1 Nn/(N—-1)
+/ <N — n;a + 1m1/N/ S(m—l)/NU—l/N(S)dS) dr + h,
0 T

where 2 = {v(t) € C[0,1]; h < v(t) < (ph)(t)}. It is seen that the oper-
ator ¢ is 2 to Q) continuous and compact. By Leray—Schauder principle
of fixed point, the operator ¢ has a fixed point v(¢, k) in €, which is the
desired solution of the (3.5). Hence it is the solutions of the problem
(3.1), (3.2), (3.4). O
Lemma 3.1. If hy > hy > 0, then

0 <w(t,hy) —ov(t, he) < hy — hg, onl0,1].

Proof. We first show the left inequality. If this were not true, then
there will be a point ty € [0, 1], such that

U(to, hl) — ’U(to, hg) < 0.

By ’U(O, hl) — U(O, h2) =hy — hy > 0, hence t 7é 0.
Since ty # 0, then there exists a interval (a, to], where 0 < a <ty < 1,
such that

v(t,hy) —v(t, he) <0, wv(a,hy) —v(a,hy) =0 in(a,t.

Using (3.7), we obtain v(tg, hy) —v(tg, ho) = 0, this yields a contradiction.
We can obtain the right inequality, by the left inequality and (3.5). O

By the lemma 3.1, we have the following conclusion.
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Lemma 3.2. The problem (3.1), (3.2), (3.4) has a unique solution.

Theorem 3.2. The problem (3.1), (3.2), (3.3) has a unique solution
v(t, h).

Proof. By the lemma 3.1, we know that

]llir% v(t, h) = v(t) uniformly for ¢ € [0, 1].

Substituting v(¢, h) into (3.5), then letting h — 0, using lemma 3.2,
we have the problem (3.1)-(3.3) admits one and only one nonnegative
continuous solution v(t). OJ

Theorem 3.3. The problem (1.4), (1.5) has a unique solution.

Proof. Now, we construct a solution of the problem (1.4)-(1.5) by the
solution of the problem (3.1)-(3.3). Suppose (v(t), W (t)) is a solution
of the problem (3.1)-(3.3), then W (¢) is a strictly decreasing function in
[0, 1]. Hence the inverse function ¢t = y(x) of x = W(t) exists in [0, W (0)).
If W(0) < +oo, we define the y(z) = 0, as x € [IW(0), +00). Hence the
y(z) is a nonnegative function with »(0) = 1, lim z™Y+y(z) = 0, in

r——+00
[0,400). We set zp = W(0). Observing that = W(¢) in [0,2() and
y'(z) = W+(t) < 0 ae. in (0,z9). As zg < +00, we have ¢ (z9) =

—r— = 0. Again as # € [z9,+00), y(x) = 0, hence, we know that

W, (0)
y’(x) continuous at o and y'(zg) = 0. As xy = +00, by (3.6), we have
y'(z) = —vYN@)/[(N —n+a—1)/(N - 1)WYN]. Again by v(0) = 0

and W(0) = 400, we know that y'(+00) = 0. Substituting ¢ = y(z) in
(1.4), (1.5), it is easily seen that the function y(z) € C'[0, +00) is the
solution of the problem (1.4), (1.5). O

By the Theorem 3.3, we have the following conclusion.
Theorem 3.4. If m > 1, N > 1, v >0, ug > 0, 3 = —n. Then

the problem (1.1)—(1.3) admits one and only one nonnegative self-similar
solution

u(r, t) = ugt®y(crt™),

where y(x) € C'0,400) is a unique nonnegative solution of the problem
(1.4), (1.5), ¢, B are defined in Section 1.
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