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Abstract. In this paper, we introduce the concept of weakly-ultra-

separation of two sets in a bitopological space using (1, 2)α-open sets.

The (1, 2)α-closure and the (1, 2)α-kernel are defined in terms of this

weakly-ultra-separation. We also investigate the properties of some weak

separation axioms like ultra-T0, ultra-T1, and ultra-R0.

1. Introduction

In 1962, Kelly initiated the study of a triple (X1, τ1, τ2), where X is a

non empty set and τ1, τ2 are topologies on X. The notion of (1, 2)α-open

sets [7] in a bitopological space was introduced in 1991. In this paper,

we define that a set A is weakly-ultra-separated from B if there exists a

(1, 2)α-open set G containing A such that G∩B = ∅. Using this concept,

we define the (1, 2)α-closure and the (1, 2)α-kernel. We also define the

(1, 2)α-derived set and the (1, 2)α-shell of a set A of a bitopological space

X. We also offer some new characteristics of the low separation axioms

defined and developed in [5] and [10] with respect to (1, 2)α-open sets.
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2. Preliminaries

In this section, let us recall some definitions which are useful in the

following sequel.

Definition 2.1. A subset A of a topological space (X, τ1) is called an α-

open set [9] if A ⊂ τ1-int(τ1-cl(τ1-int(A))), where τ1-int(A) and τ1-cl(A)

represent the interior and closure of A with respect to τ1.

Definition 2.2. A topological space is α-symmetric [2] if for x, y ∈ X,

x ∈ α(cl{y}) implies y ∈ α(cl{x}).

Hereafter throughout this paper (X, τ1, τ2) and (Y, σ1, σ2) (or simply

X and Y ) denote bitopological spaces on which no separation axioms are

assumed unless explicitly stated otherwise.

Definition 2.3. A subset A of X is called [7]

(i) τ1τ2-open if A ∈ τ1 ∪ τ2,

(ii) τ1τ2-closed if Ac ∈ τ1 ∪ τ2.

Definition 2.4. Let A be a subset of a space X. Then τ1τ2-closure [7]

of A is denoted by τ1τ2-cl(A) and is defined as the intersection of all

τ1τ2-closed sets containing A.

Definition 2.5. A subset A of X is called (1, 2)α-open [7] if

A ⊆ τ1-int(τ1τ2-cl(τ1-int(A))).

The set of all (1, 2)α-open sets is denoted by (1, 2)αO(X). The com-

plement of a (1, 2)α-open set is called a (1, 2)α-closed set. The (1, 2)α-

closure of a set A of X is denoted by (1, 2)α-cl(A) and is defined as

the intersection of all (1, 2)α-closed sets containing A. The family of

(1, 2)α-closed sets is denoted by (1, 2)αCL(X).

Definition 2.6. A function f : X → Y is called a (1, 2)α-irresolute map

[10] if the inverse image of every (1, 2)α-open set in Y is a (1, 2)α-open

set in X.

Definition 2.7. A subset A of X is called a (1, 2)αg-closed set [10] if

(1, 2)αcl(A) ⊆ U , where A ⊆ U and U ∈ (1, 2)αO(X).

Definition 2.8. (i) A bitopological space X is called an ultra-T0 space

[10] if and only if for each x, y ∈ X such that x 6= y, there exists a

(1, 2)α-open set containing x but not y or a (1, 2)α-open set containing

y but not x.
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(ii) A bitopological space X is called an ultra-T1 [10] space if and only

if for each x, y ∈ X such that x 6= y, there exists a (1, 2)α-open set

containing x but not y and a (1, 2)α-open set containing y but not x.

(iii) A subset A of X is called a (1, 2)α-difference set [10] (briefly

(1, 2)αD-set) if there exist two (1, 2)α-open sets U1 and U2 such that

A = U1/U2 and U1 6= X.

(iv) A bitopological space X is called an ultra-D1 [10] space if for each

x, y ∈ X and x 6= y there exists two (1, 2)αD-sets G1 and G2 such that

x ∈ G1, x /∈ G2 and y ∈ G2, y /∈ G1.

Definition 2.9. A bitopological space X is said to be an ultra-R0 space

[5] if every (1, 2)α-open set G contains the (1, 2)α-closure of each of its

singleton.

Definition 2.10. Let X be bitopological space and x ∈ X. Then a subset

Nx of X is called a (1, 2)α-nbd ((1, 2)α-neighborhood) of X [10] if there

exists a (1, 2)α-open set G such that x ∈ G ⊆ Nx.

3. (1, 2)α-Kernel and (1, 2)α-Closure

In this section, we define the operator (1, 2)α-kernel and find its prop-

erties.

Definition 3.1. Let A be a non empty subset of a space X. Then (1, 2)α-

kernel of A is denoted by (1, 2)α-ker(A) and is defined as (1, 2)α-ker(A) =

∩{G ∈ (1, 2)αO(X)/A ⊆ G}.

Definition 3.2. Let x ∈ X. Then the (1, 2)α-kernel of x is denoted by

(1, 2)α-ker({x}) = ∩{G ∈ (1, 2)αO(X)/x ∈ G}.

Lemma 3.3. Let X be a bitopological space. Then for any non-empty

subset A of X, (1, 2)α-ker(A) = {x ∈ X/(1, 2)α-cl({x}) ∩ A 6= ∅}.

Proof. Let x ∈ (1, 2)α- ker(A). Suppose (1, 2)α-cl({x}) ∩ A = ∅.

Then A ⊆ X − (1, 2)α-cl({x}) and X − (1, 2)α-cl({x}) is a (1, 2)α-open

set containing A but not x, which is a contradiction.

Conversely, let x /∈ (1, 2)α − ker({A}) and (1, 2)α-cl({x}) ∩ A 6= ∅.

Then there exists a (1, 2)α-open set D containing A but not x and a

y ∈ (1, 2)α-cl({x}) ∩ A. Hence we get a (1, 2)α-nbd of y, say, D with

x /∈ D, which is a contradiction. Hence x ∈ (1, 2)α-ker(A).

Definition 3.4. In a space X, a set A is said to be weakly-ultra-separated

from a set B if there exists a (1, 2)α-open set G such that A ⊂ G and

G ∩ B = ∅ or A ∩ (1, 2)α-cl(B) = ∅.
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Lemma 3.5. In view of the lemma 3.3 and definition of 3.4, let us have

the followings for x, y ∈ X of a bitopological space,

(i) (1, 2)α-cl({x}) = {y : y is not weakly-ultra-separated from x} and

(ii) (1, 2)α-ker({x}) = {y is not weakly-ultra-separated from y}.

Definition 3.6. For any point x of a space X,

(i) the derived set of x is denoted by (1, 2)α-d({x}) and is defined to

be the set

(1, 2)α-d({x}) = (1, 2)α-cl({x}) − {x} =

{y : y 6= x and y is not weakly-ultra-separated from x},

(ii) the shell of a singleton set {x} is denoted by (1, 2)α-shl({x}) and

is defined to be the set

(1, 2)α-shl({x}) = (1, 2)α-ker({x}) − {x} =

{y : y 6= x and x is not weakly-ultra-separated from y}.

Definition 3.7. Let X be a bitopological space. Then we define

(i) (1, 2)α − N − D = {x : x ∈ X and (1, 2)α − d({x}) = ∅},
(ii) (1, 2)α − N − shl = {x : x ∈ X and (1, 2)α − shl({x}) = ∅},

(iii) (1, 2)α-〈x〉 = (1, 2)α-cl({x}) ∩ (1, 2)α-ker({x}).

Theorem 3.8. Let x, y ∈ X. Then the following conditions hold good:

(i) y ∈ (1, 2)α-ker ({x}) if and only if x ∈ (1, 2)α-cl({y}),

(ii) y ∈ (1, 2)α-shl({x}) if and only if x ∈ (1, 2)α-d({y}),

(iii) y ∈ (1, 2)α-cl({x}) implies (1, 2)α-cl({y}) ⊆ (1, 2)α-cl({x}) and

(iv) y ∈ (1, 2)α-ker({x}) implies (1, 2)α-ker({y}) ⊆ (1, 2)α-ker({x}).

Proof. The proof of (i) and (ii) are obvious from Remark 3.5.

(iii) Let z ∈ (1, 2)α-cl({y}). Then z is not weakly-ultra-separated

from y. So there exists a (1, 2)α-open set G containing z such that

G ∩ {y} 6= ∅. Hence y ∈ G and by assumption G ∩ {x} 6= ∅. Hence z

is not weakly-ultra-separated from x. So z ∈ (1, 2)α-cl({x}). Therefore

(1, 2)α-cl({y}) ⊆ (1, 2)α-cl({x}).

(iv) Let z ∈ (1, 2)α-ker({y}). Then y is not weakly-ultra-separated

from z. So y ∈ (1, 2)α-cl({z}). Hence (1, 2)α-cl({y}) ⊆ (1, 2)α-cl({z}).

By assumption y ∈ (1, 2)α-ker({x}) and then x ∈ (1, 2)α-cl({y}). So

(1, 2)α-cl({x}) ⊆ (1, 2)α-cl({y}). Ultimately

(1, 2)α-cl({x}) ⊆ (1, 2)α-cl({z}).

Hence x ∈ (1, 2)α-cl({z}), that is z ∈ (1, 2)α-ker({x}). Therefore

(1, 2)α-ker({y}) ⊆ (1, 2)α-ker({x}).
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Let us recall that a subset A of X is called a degenerate set if A is

either a null set or a singleton set.

Theorem 3.9. Let x, y ∈ X. Then,

(i) for every x ∈ X, (1, 2)α-shl({x}) is degenerate if and only if for

all x, y ∈ X, x 6= y, (1, 2)α-d({x}) ∩ (1, 2)α-d({y}) = ∅,

(ii) for every x ∈ X, (1, 2)α-d({x}) is degenerate if and only if for

every x, y ∈ X, x 6= y, (1, 2)α-shl({x}) ∩ (1, 2)α-shl({y}) = ∅.

Proof. Let (1, 2)α-d({x}) ∩ (1, 2)α-d({y}) 6= ∅. Then there exists

a z ∈ X such that z ∈ (1, 2)α-d({x}) and z ∈ (1, 2)α-d({y}). Then

z 6= y 6= x and z ∈ (1, 2)α-cl({x}) and z ∈ (1, 2)α-cl({y}), that is

x, y ∈ (1, 2)α-ker({z}). Hence (1, 2)α-ker({z}) and so (1, 2)α-shl({z})

is not a degenerate set.

Conversely, let x, y ∈ (1, 2)α-shl({z}). Then we get x 6= z, x ∈

(1, 2)α-ker({z}) and y 6= z and y ∈ (1, 2)α-ker({z}) and hence z is

an element of both (1, 2)α-cl({x}) and (1, 2)α-cl({y}), which is a contra-

diction.

The proof of (ii) is simple and hence omitted.

Theorem 3.10. If y ∈ (1, 2)α-〈x〉, then (1, 2)α-〈x〉 = (1, 2)α-〈y〉.

Proof. If y ∈ (1, 2)α-〈x〉, then y ∈ (1, 2)α-cl({x}) ∩ (1, 2)α-ker({x}).

Hence y ∈ (1, 2)α-cl({x}) and y ∈ (1, 2)α-ker ({x}) and so we have

(1, 2)α-cl({y}) ⊆ (1, 2)α-cl({x}) and (1, 2)α-ker({y}) ⊆ (1, 2)α-ker({x}).

Then

(1, 2)α-cl({y}) ∩ (1, 2)α-ker({y}) ⊆ (1, 2)α-cl({x}) ∩ (1, 2)α-ker({x}).

Hence (1, 2)α-〈y〉 ⊆ (1, 2)α- 〈x〉. The fact that y ∈ (1, 2)α-cl({x}) implies

x ∈ (1, 2)α-ker({y}) and y ∈ (1, 2)α-ker({x}) implies x ∈ (1, 2)α-cl({y}).
Then we have that (1, 2)α-〈x〉 ⊆ (1, 2)α-〈y〉. So (1, 2)α-〈x〉 = (1, 2)α-〈y〉.

Theorem 3.11. For all x, y ∈ X, either (1, 2)α-〈x〉 ∩ (1, 2)α-〈y〉 = ∅ or

(1, 2)α-〈 x 〉 = (1, 2)α-〈 y 〉.

Proof. If (1, 2)α-〈x〉 ∩ (1, 2)α-〈y〉 6= ∅, then there exists z ∈ X such

that z ∈ (1, 2)α-〈x〉 and z ∈ (1, 2)α-〈y〉. So by Theorem 3.10, (1, 2)α-

〈z〉 = (1, 2)α-〈x〉 = (1, 2)α-〈y〉. Hence the result.

Theorem 3.12. For any two points x, y ∈ X, the following statements

are equivalent.

(i) (1, 2)α-ker({x}) 6= (1, 2)α-ker({y}), and

(ii) (1, 2)α-cl({x}) 6= (1, 2)α-cl({y}).
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Proof. (i) ⇒ (ii) Let us assume (1, 2)α-ker({x}) 6= (1, 2)α-ker({y}).

Then there exists a z ∈ (1, 2)α-ker({x}) but z /∈ (1, 2)α-ker({y}). As z ∈

(1, 2)α-ker({x}), x ∈ (1, 2)α-cl({z}) and (1, 2)α-cl({x}) ⊂ (1, 2)α-cl({z}).

Also we have taken z /∈ (1, 2)α-ker({y}), by lemma 3.3, (1, 2)α-cl({z})∩

{y} = ∅, so (1, 2)α-cl({x}) ∩ {y} = ∅ and so y is weakly-ultra-separated

from x and hence we get that y /∈ (1, 2)α-cl({x}). Hence (1, 2)α-cl({y}) 6=

(1, 2)α-cl({x}).

(ii) ⇒ (i) Suppose (1, 2)α-cl({x}) 6= (1, 2)α-cl({y}). Then there exists

a point z ∈ (1, 2)α-cl({x}) but z /∈ (1, 2)α-cl({y}). So, we get a (1, 2)α-

open set containing z and x but not y. That is y /∈ (1, 2)α-ker({x}).

Hence (1, 2)α-ker({y}) 6= (1, 2)α-ker({x}).

4. Ultra-Ti (i = 0,1) and Ultra-D1 spaces

In this section, some of the properties of ultra-Ti (i = 0,1) and ultra-D1

spaces are derived by means of weakly-ultra-separation.

Theorem 4.1. A space X is ultra-T0 if and only if any of the following

conditions holds good:

(i) For arbitrary x, y ∈ X, x 6= y, either x is weakly-ultra-separated

from y or y is weakly-ultra-separated from x.

(ii) y ∈ (1, 2)α-cl({x}) implies x /∈ (1, 2)α-cl({y}).

(iii) For all x, y ∈ X if x 6= y, then (1, 2)α-cl({x}) 6= (1, 2)α-cl({y}).

Proof. (i) Obvious from the definitions of ultra-T0 and weakly-ultra-

separation.

(ii) By assumption, y ∈ (1, 2)α-cl({x}) and so y is not weakly-ultra-

separated from x. As X is ultra-T0, x should be weakly-ultra-separated

from y, that is x /∈ (1, 2)α-cl({y}).

(iii) If X is ultra-T0, then for all x, y ∈ X and x 6= y, (1, 2)α-cl({x}) 6=

(1, 2)α-cl({y}) as evidenced by (ii). Now let us prove the converse. Let

(1, 2)α-cl({x}) 6= (1, 2)α-cl({y}). Then there exists a z ∈ X, such

that z ∈ (1, 2)α-cl({x}) and z /∈ (1, 2)α-cl({y}). If x is not ultra-

weakly separated from y, then x ∈ (1, 2)α-cl({y}). So (1, 2)α-cl({x}) ⊆

(1, 2)α-cl({y}). Then z ∈ (1, 2)α-cl({y}), which is a contradiction.

Corollary 4.2. A space X is ultra-T0 if and only if one of the following

conditions hold good:

(i) For x, y ∈ X, y ∈ (1, 2)α-ker({x}) implies x /∈ (1, 2)α-ker({y}).

(ii) For all x, y ∈ X, if x 6= y, (1, 2)α-ker({x}) 6= (1, 2)α-ker({y}).

Theorem 4.3. A space X is ultra-T0 if and only if [ (1, 2)α-cl({x}) ∩

{y}] ∩ [(1, 2)α-cl({y}) ∩ {x}] is degenerate.
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Proof. Let X is ultra-T0. Then we have any one of the two cases viz,

x is weakly-ultra-separated from y and y is weakly-ultra-separated from

x.

Case (i) :- If x is weakly-ultra-separated from y, then we have {x} ∩

(1, 2)α-cl({y}) = ∅ and {y} ∩ (1, 2)α-cl({x}) is a degenerate set.

Case (ii) :- If y is weakly-ultra-separated from x, then we have {y}∩

(1, 2)α-cl({x}) = ∅ and {x} ∩ (1, 2)α-cl({y}) is a degenerate set. Hence

[{x} ∩ (1, 2)α-cl({y})] ∩ [{y} ∩ (1, 2)α-cl({x})] is a degenerate set.

Conversely, suppose [{x}∩(1, 2)α-cl({y})]∩[{y}∩(1, 2)α-cl({x})]

is a degenerate set. Then it is either ∅ or a singleton set. If it is ∅, then

there is nothing to prove. If it is a singleton set, its value is either {x}

or {y}. If it is {x}, then y is weakly-ultra-separated from x. If it is {y},
then x is weakly-ultra-separated from y. Hence X is ultra-T0.

Theorem 4.4. A space is ultra-T0 if and only if

(1, 2)α-d({x}) ∩ (1, 2)α-shl({x}) = ∅.

Proof.Let X be ultra-T0. Suppose we have

(1, 2)α-d({x}) ∩ (1, 2)α-shl({x}) 6= ∅.

Then let z ∈ (1, 2)α-d({x}) and z ∈ (1, 2)α-shl({x}). Then z 6= x and

z ∈ (1, 2)α-cl({x}) and z ∈ (1, 2)α-ker({x}). Then z is not weakly-ultra-

separated from x and also x is not weakly-ultra-separated from z, which

is a contradiction.

Conversely, let (1, 2)α-d({x})∩(1, 2)α-shl({x}) = ∅. Then there

exists a z 6= x, z ∈ (1, 2)α-cl({x}) and z /∈ (1, 2)α-ker({x}). Hence if we

have a z, which is not weakly-ultra-separate from x, then x is weakly-

ultra-separated from z.

Corollary 4.5. If X is ultra-T0, then for any x ∈ X, (1, 2)α-〈x〉 = {x}.

Theorem 4.6. A space X is ultra-T1 if and only if one of the following

conditions hold good:

(i) For arbitrary x, y ∈ X, x 6= y, x is weakly-ultra-separated form y.

(ii) For every x ∈ X, (1, 2)α-cl({x}) = {x}.

(iii) For every x ∈ X, (1, 2)α-d({x}) = ∅ or (1, 2)α-N-D = X.

(iv) For every x ∈ X(1, 2)α-ker({x}) = {x}.

(v) For every x ∈ X, (1, 2)α-shl({x}) = ∅ or (1, 2)α-N-shl = X.

(vi) For every x, y ∈ X, x 6= y(1, 2)α-cl({x}) ∩ (1, 2)α-cl({y}) = ∅.

(vii) For every arbitrary x, y ∈ X, x 6= y, we have (1, 2)α-ker({x}) ∩

(1, 2)α-ker({y}) = ∅.
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Proof.

(i) This is just a reformulation of the definition of ultra-T1.

(ii) If x is weakly-ultra-separated from y, then for y 6= x, we have

y /∈ (1, 2)α-cl({x}), and hence x /∈ (1, 2)α-ker({y}). Therefore we get

that (1, 2)α-ker({y}) = {y}. Its converse is just a reformulation of the

above proof.

(iii) (iv) and (v)are obvious.

(vi) As X is ultra-T1, (1, 2)α-cl({x}) = {x} and (1, 2)α-cl({y}) = {y}

so, when x 6= y, (1, 2)α-cl({x}) ∩ (1, 2)α-cl({y}) = ∅.

(vii) Obvious from (vi).

Definition 4.7. For a bitopological space (X,τ1,τ2),

(i) a point x ∈ X is called a (1, 2)α-neat point if it has X as its only

(1, 2)α-nbd, and

(ii) a bitopological space X is (1, 2)α-symmetric if {x} ∈ (1, 2)α-cl({y})

implies y ∈ (1, 2)αcl-({x}).

Theorem 4.8. For a ultra-T0 space, the following are equivalent.

(i) X is ultra-D1.

(ii) X has no (1, 2)α-neat point.

Proof. (i) ⇒ (ii) Assume X is ultra-D1. Then [ by 2.8 (iii) and (iv) ]

each point x of X is contained in a (1, 2)αD-set S, where S = U/V and

so x ∈ U with U 6= X. This implies that x is not a (1, 2)α-neat point

(ii) ⇒ (i) If X is ultra-T0, then for any two distinct points x, y of X,

there exists a (1, 2)α-open set U 6= X containing the point x but not

y. Thus we have set a U 6= X as a (1, 2)α-D-set. Given that X has no

(1, 2)α-neat point. Then any y ∈ X is not a (1, 2)α-neat point and so

there exists a (1, 2)α-nbd V of y such that V 6= X. Thus y ∈ V/U but

x /∈ V/U and V/U is a (1, 2)αD-set. Hence X is an ultra-D1 space.

Theorem 4.9. A bitopological space X is (1, 2)α-symmetric if and only

if {x} is (1, 2)αg-closed for each x ∈ X.

Proof. Let {y} is (1, 2)αg-closed. Assume {x} ∈ (1, 2)α-cl({y}) and

{y} /∈ (1, 2)α-cl({x}). Hence {y} ⊆ (X − (1, 2)α-cl({x})). As {y} is

(1, 2)αg-closed, (1, 2)α-cl({y}) ⊆ X − (1, 2)α-cl({x}), which is a contra-

diction to the fact that x ∈ (1, 2)α-cl({y}). Conversely, let x ∈ (1, 2)α-

cl({y}) and y ∈ (1, 2)α-cl({x}). Suppose that x ∈ E, E is (1, 2)α-open

and (1, 2)α-cl({x}) is not a subset of E. Then (1, 2)α-cl({x}) ⊆ X − E

and so (1, 2)α-cl({x})∩(X−E) 6= φ. So let y ∈ (1, 2)α-cl({x})∩(X−E)

but by assumption {x} ∈ (1, 2)α-cl({y}) ⊆ X −E and hence x ∈ X −E,

which is a contradiction.
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Corollary 4.10. An ultra-T1 space is a (1, 2)α-symmetric space.

Proof. If X is an ultra-T1 space, then( by theorem 4.9 of [10]) every

singleton set is (1, 2)α-closed. Again by remark 3.3 of [10], every (1, 2)α-

closed set is (1, 2)αg-closed. Hence X is (1, 2)α-symmetric.

Theorem 4.11. Let f : X → Y be a (1, 2)α-irresolute, surjective func-

tion. If S is a (1, 2)αD-set in Y , then the inverse image of S is a

(1, 2)αD-set in X.

Proof. Let S be a (1, 2)αD-set in Y . Then there exist two (1, 2)α-

open sets U1 and U2 such that S = U1/U2 and U1 6= Y . As f is (1, 2)α-

irresolute, f−1(U1) and f−1(U2) are (1, 2)α-open sets in X and f−1(U1) 6=

X. Then f−1(S) = f−1(U1)/f
−1(U2) is a (1, 2)αD-set in X.

Theorem 4.12. Let f : X → Y be a (1, 2)α-irresolute and bijective

function. If Y is an ultra-D1 space then X is also an ultra D1 space.

Proof. Suppose Y is an ultra-D1 space and x and y be any pair of

distinct points in X. Since f is injective and Y is ultra-D1, there exist

(1, 2)αD-sets Gx and Gy of Y containing f(x) and f(y) respectively such

that f(x) /∈ Gy and f(y) /∈ Gx. By theorem 4.11, f−1(Gx) and f−1(Gy)

are (1, 2)αD-sets in X containing x and y respectively. Hence X is ultra-

D1.

Theorem 4.13. A bitopological space X is ultra-D1 if and only if for

each pair of distinct points x 6= y ∈ X, there exists a (1, 2)α-irresolute,

surjective function f : X → Y , where Y is ultra-D1 such that f(x) and

f(y) are distinct.

Proof. Necessity: Defining f as the identity function we can prove

this part.

Sufficiency: Let x, y be distinct points of X. Assume f is a (1, 2)α-

irresolute, surjective function and Y is ultra-D1. Then for any f(x) 6=

f(y) there exists (1, 2)αD-sets Gx and Gy such that f(y) ∈ Gy and

f(y) ∈ Gy. By Theorem 4.11, f−1(Gx) and f−1(Gy) are two disjoint

(1, 2)αD-sets containing x and y respectively. Therefore the space is

ultra-D1.

5. More on ultra-R0 space

In this chapter, we derive some properties of ultra-R0 spaces.

Theorem 5.1. A space X is ultra-R0 if and only if for any x, y ∈ X,

(1, 2)α-cl({x}) 6= (1, 2)α-cl({y}) implies (1, 2)α-cl({x})∩(1, 2)α-cl({y}) =

∅.
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Proof. Necessity: Let X be an ultra-R0 space and if x 6= y, then

(1, 2)α-cl({x}) 6= (1, 2)α-cl({y}). Then there exists a z ∈ X such that

z ∈ (1, 2)α-cl({x}) and z /∈ (1, 2)α-cl({y}). Hence we get a (1, 2)α-

open set G containing z and x but not y. Therefore x /∈ (1, 2)α-cl({y}).

Then x ∈ X − (1, 2)α-cl({y}), which is a (1, 2)α-open set. Since X is

ultra-R0, (1, 2)α-cl({x}) ⊆ X − (1, 2)α-cl({y}) and so (1, 2)α-cl({x}) ∩

(1, 2)α-cl({y}) = ∅.

Sufficiency : Let V be a (1, 2)α-open set and x ∈ V . Let y /∈ V . Then

y ∈ X−V . Since x 6= y and x /∈ (1, 2)α-cl({y}), we get (1, 2)α-cl({x}) 6=

(1, 2)α-cl({y}). Then by assumption, (1, 2)α-cl({x}) ∩ (1, 2)α-cl({y}) =

∅. Hence y /∈ (1, 2)α-cl({x}) and so (1, 2)α-cl({x}) ⊂ V . Therefore X is

an ultra-R0 space.

Theorem 5.2. A space X is ultra-R0 if and only if for any two points

x, y ∈ X, (1, 2)α-ker({x}) 6= (1, 2)α-ker({y}) implies (1, 2)α-ker({x})∩

(1, 2)α-ker({y}) = ∅.

Proof. If (1, 2)α-ker({x}) 6= (1, 2)α-ker({y}), then by theorem 3.12,

(1, 2)α-cl({x}) 6= (1, 2)α-cl({y}). We need to prove that (1, 2)α-ker({x})∩

(1, 2)α-ker({y}) = ∅. If not, let there exist a z in X such that z ∈

(1, 2)α-ker({x}) and z ∈ (1, 2)α-ker({y}). Then x ∈ (1, 2)α-cl({z}) and

y ∈ (1, 2)α-cl({z}). Then by theorem 5.1, we have (1, 2)α-cl({z}) =

(1, 2)α-cl({x}) = (1, 2)α-cl({y}), which is a contradiction. Hence we get

that (1, 2)α-ker({x}) ∩ (1, 2)α-ker({y}) = ∅.

Conversely, let X be a space such that for any two distinct

points x and y in X, (1, 2)α-ker({x}) 6= (1, 2)α-ker({y}) implies that

(1, 2)α-ker({x}) ∩ (1, 2)α-ker({y}) = ∅. By theorem 3.12, we get that

(1, 2)α-cl({x}) 6= (1, 2)α-cl({y}). If (1, 2)α-cl({x}) ∩ (1, 2)α-cl({y}) = ∅,
then by theorem 5.1, X is ultra-R0. If not, let there be a z in X such that

z ∈ (1, 2)α-cl({x}) and z ∈ (1, 2)α-cl({y}). Then x ∈ (1, 2)α-ker({z})

and y ∈ (1, 2)α-ker({z}). So we obtain that

(1, 2)α-ker({x}) = (1, 2)α-ker({z}) = (1, 2)α-ker({y}),

which is a contradiction. Therefore (1, 2)α-cl({x}) ∩ (1, 2)α-cl({y}) = ∅.

Hence X is ultra-R0.

Theorem 5.3. For a space X, the following statements are equivalent:

(i) X is ultra-R0.

(ii) For any A 6= ∅ and G ∈ (1, 2)αO(X) such that A ∩ G 6= ∅ there

exists a F ∈ (1, 2)αCL(X) such that F ∩ G 6= ∅ and F ⊂ G.

(iii) For any G ∈ (1, 2)αO(X), G = ∪{F ∈ (1, 2)αCL(X)/F ⊂ G}.

(iv) For any (1, 2)α-closed set F , F = ∩{G ∈ (1, 2)αO(X)/F ⊂ G}.
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(v) For any x ∈ X, (1, 2)α-cl({x}) ⊂ (1, 2)α-ker({x}).

Proof. (i) ⇒ (ii) Assume X is ultra-R0. Let A be a non empty subset

of X and G be a (1, 2)α-open set such that A∩G 6= ∅. So there exists a

x ∈ A∩G. Then x ∈ A and x ∈ G. As X is ultra-R0, (1, 2)α-cl({x}) ⊂ G.

Take F = (1, 2)α-ker({x}) and then F ⊂ G and A ∩ G 6= ∅.

(ii) ⇒ (iii) Let G ∈ (1, 2)αO(X) and F ∈ (1, 2)α-CL({X}) such that

F ⊂ G. Then
⋃
{F/F ∈ (1, 2)α-CL({X}) and F ⊂ G} ⊂ G. To

prove the other inclusion, let x ∈ G. Then by assumption, there exists a

(1, 2)α-closed set F such that x ∈ F and F ⊂ G. Hence

G ⊂ U{F ∈ (1, 2)α-CL({X}) and F ⊂ G}.

Hence we get the result.

(iii) ⇒ (iv) Obvious.

(iv) ⇒ (v) Let x ∈ X and there exists a y ∈ X such that y /∈

(1, 2)α-ker({x}). Then there exists a (1, 2)α-open set V containing x but

not y. That is (1, 2)α-cl({y})∩V = ∅, which implies that (1, 2)α-cl({y}) ⊂

X−V . Again, by our assumption, ∩{G ∈ (1, 2)αO(X)/(1, 2)α-cl({y}) ⊂

G} ∩ V = ∅. Hence there exists a (1, 2)α-open set G such that x /∈

G and (1, 2)α-cl({y}) ⊂ G. Therefore (1, 2)α-cl({x}) ∩ G = ∅ and

y /∈ (1, 2)α-cl({x}). Consequently, (1, 2)α-cl({x}) ⊂ (1, 2)α-ker({x}).
(v) ⇒ (i) Let G ∈ (1, 2)αO(X) and x ∈ G. Suppose that y ∈

(1, 2)α-ker({x}). Then (1, 2)α-cl({y})∩{x} 6= ∅. So {x} ∈ (1, 2)α-cl({y})

and y ∈ G which implies that (1, 2)α-cl({x}) ⊂ (1, 2)α-ker({x}) ⊂ G.

So X is ultra-R0.

Theorem 5.4. For a bitopological space X, the following properties are

equivalent:

(i) X is ultra-R0.

(ii) (1, 2)α-cl({x}) = (1, 2)α-ker({x}) for all x ∈ X.

Proof. Suppose that X is an ultra-R0 space. Then by theorem

5.3, (1, 2)α-cl({x}) ⊂ (1, 2)α-ker({x}) for each x ∈ X. Assume that

y ∈ (1, 2)α-ker({x}). Then x ∈ (1, 2)α-cl({y}) and so (1, 2)α-cl({x}) =

(1, 2)α-cl({y}). Therefore y ∈ (1, 2)α-cl({x}) and so (1, 2)α-ker({x}) ⊂

(1, 2)α-cl({x}). Thus (1, 2)α-ker({x}) = (1, 2)α-cl({x}).

(ii) ⇒ (i) is obvious by Theorem 5.2.

Theorem 5.5. For a space X, the following properties are equivalent:

(i) X is ultra-R0.

(ii) x ∈ (1, 2)α-cl({y}) if and only if y ∈ (1, 2)α-cl({x}), for any points

x and y in X.
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Proof. (i) ⇒ (ii) Assume X is ultra-R0. Let x ∈ (1, 2)α-cl({y})

and D be any (1, 2)α-open set such that y ∈ D. As X is ultra-R0,

(1, 2)α-cl({y}) ⊂ D and hence x ∈ D. Therefore every (1, 2)α-open set

containing y contains x. Hence y ∈ (1, 2)α-cl({x})

(ii) ⇒ (i) Let U be a (1, 2)α-open set and x ∈ U . If y /∈ U , then

x /∈ (1, 2)α-cl({y}) and hence y /∈ (1, 2)α-cl({x}). This implies that

(1, 2)α-cl({x}) ⊂ U . Hence X is ultra-R0.

Theorem 5.6. For a space X, the following properties are equivalent:

(i) X is ultra-R0.

(ii) If F is (1, 2)α-closed, then F = (1, 2)α-ker({F}).
(iii) If F is (1, 2)α-closed, then (1, 2)α-ker({x}) ⊂ F , where x ∈ F .

(iv) If x ∈ X then (1, 2)α-ker({x}) ⊂ (1, 2)α-cl({x}).

Proof. (i) ⇒ (ii) Let F be a (1, 2)α-closed set and x /∈ F . Then X−F

is a (1, 2)α-open set containing x. Since X is ultra-R0, (1, 2)α-cl({x}) ⊂

X − F . Thus (1, 2)α-cl({x}) ∩ F = ∅. Hence, by lemma 3.3, x /∈

(1, 2)α-ker({F}) and so (1, 2)α-ker({F}) ⊂ F . Also by the definition of

kernel of a set, F ⊂ (1, 2)α-ker({F}). Hence F = (1, 2)α-ker({F}).

(ii) ⇒ (iii) Let x ∈ F . So (1, 2)α-ker({x}) ⊂ (1, 2)α-ker({F}). As F

is (1, 2)α-closed, (1, 2)α-ker({F}) = F .

(iii) ⇒ (iv) Since x ∈ (1, 2)α-cl({x}) and (1, 2)α-cl({x}) is a (1, 2)α-

closed set, by (iii) (1, 2)α-ker({x}) ⊂ (1, 2)α-cl({x}).

(iv) ⇒ (i) Let x ∈ (1, 2)α-cl({y}). Then y ∈ (1, 2)α-ker({x}) and

(1, 2)α-cl({y}) is a (1, 2)α-closed set. By assumption, we have y ∈
(1, 2)α-ker({x}) ⊂ (1, 2)α-cl({x}), which implies that y ∈ (1, 2)α-cl({x}).

Hence, by Theorem 5.5, X is ultra-R0.
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