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FACTORIZATION OF TOEPLITZ AND HANKEL OPERATORS
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Abstract. Using a factorization lemma we obtain improvements and simplifications of
results on representation of generalized Toeplitz and Hankel operators as compression of
symbols.
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The classical Toeplitz operator may be characterized as a bounded linear operator
A on H? satisfying the relation A = S* AS where S is the (forward) shift operator on
H?. To identify the symbol it is possible to proceed as follows: it suffices to represent
A as the compression to H? of an operator Y on L? which satisfies Y = V*YV where
V is the shift operator on L?. Since Y commutes with the shift, it may be identified
with the operator of multiplication by a suitable function f € L. The dilation Y
of A is easily seen to be uniquely determined by the requirement that Y be equal to
V*Y'V; these observations yield a construction of the symbol in a natural manner.
Not long ago, Sz.-Nagy and Foiag realized that, replacing the shift by a contraction
T acting in a certain Hilbert space ¢, the relation A = TAT* defines a class of
operators on ¢ with properties analogous to those of Toeplitz operators. In analogy
with the classical case it is natural to examine dilations Y of A satisfying the relation
Y = UYU* where U is the minimal isometric dilation of T. The operator Y may
then be considered as a natural generalization of the notion of symbol.

A study of the analogous problem for Hankel operators, undertaken by P. Vrbova
and the author, revealed a surprising fact. In order to obtain a natural extension
of the classical notion of symbol for operators of Hankel type and a corresponding
analogy of Nehari’s theorem it was necessary to study liftings of intertwining relations
of the form XT} = T5X. The classical Hankel operator may be characterized as a
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bounded linear operator X of H? into H? which intertwines the forward shift on H?
and the backward shift on H2.

X(V|H?) = (V*|H2)*'X

where V is the shift operator on L2 = J#? @ J#2. The problem is to construct a
dilation Y': J#1 — J#; satisfying YU = UsY where U; and U, are respectively the
minimal isometric dilations of T} and T3, acting on J#; and J# respectively. In the
case of Toeplitz operators no additional conditions were necessary for the existence
of a lifting; surprisingly enough, this is no more true in the case of the relation
XTy = T»X; a further restriction must be imposed on X to guarantee the existence
of a lifting; the difficulty lies in the fact that this additional condition is trivially
satisfied in the classical case so that its meaning only manifests itself in the general
situation.

The additional assumption which ensures the validity of an analogy of Nehari’s
theorem appears in the form of a boundedness condition to be imposed on X:

(Xhy,h2) < BIP(Z%1)hy1||P(%2)hs]

the P(%;) being the orthogonal projections in the space J#; onto the unitary part
of J# in the Wold decomposition of U;. The authors of [2] called this condition
Z-boundedness.

In the present note we intend to sketch an approach to the study of generalized
Toeplitz and Hankel operators based on factorization, reducing in this manner the
problem to the particular case where T} is an isometry and T a coisometry. (This
will become evident after the perusal of the comments following lemma 2.4.) As
opposed to [1] and [2] we obtain a considerable simplification of the proofs, in the
Toeplitz case explicit formulae for the symbol.

1. THE CHARACTERISTIC RELATIONS FOR TOEPLITZ AND HANKEL

We begin by replacing the forward and backward shift by an isometry and a
coisometry respectively.

Proposition 1.1. Let # be a Hilbert space, & a closed subspace of #. Let V
be a coisometry on % such that & is invariant with respect to V and V‘@ is an
isometry. Suppose that the smallest V reducing subspace of # containing & is %
itself. Denote by P the orthogonal projection of % onto &?. Then

1° PV* = (V|2)*P
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2° 'V is unitary
3° (I—-P)V"z — 0 for every z € X.

Proof. Forxz € Z,h e &, we have
(V*z,h) = (z,Vh) = (Pz,Vh) = (Pz,(V|2)h) = (V|2)* Pz, h).

Thus V* is a lifting of (V'|2?)*; this proves 1°. Since # is the closed linear span of
elements of the form V**h, k nonnegative, h € 22, it suffices to prove the identity
V*Vz = z for these elements. For k = 0 we use the isometry of (V‘QZ) Since
(V|@)*(V|@)h = h for h € & we have PV*Vh = h for each h € . Since
|h| = |PV*Vh| < |V*Vh| < |h| we have the equality |PV*Vh| = |V*Vh| whence
PV*Vh = V*Vh so that h = PV*Vh = V*Vh. If k£ > 0, we use the identity
VV* = 1. Thus V*V . V**h = V*VV*V**~1h = V*k}h, This completes the proof
of 2°.

The operators (I — P)V"™ being equibounded it suffices to prove 3° for elements
from a dense set. If x is of the form V**h with h € & then V"z will be in & as
soon as n > k; thus (I — P)V"z = 0. O

The following proposition shows that an operator Y € B(Z#) which commutes
with V' may be recovered from its compression to &.

Proposition 1.2. SupposeY € B(#) commutes with V. If X is the compression
to & of Y then
Y =lim V** X PV"

in the strong operator topology. The compression satisfies the identity

(V|2)X(V|2) =X.

Proof. The first assertion is the consequence to the following two identities

Y - V*PYV™ = V*"PLY V" = V**(PVMY
V*"PYV"™ = V*"PY PV™ + V*"PY (P+V™).

The second assertion is a consequence of 1° in Proposition (1.1). Indeed,

(V|2)X(V|2)=(V|2) PYV|P
=PV'YV|? = PV*'VY|Z =X.
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For the rest of the present chapter we shall consider the following situation.
Suppose we are given two triplets

R, P, Vi

such that V; is unitary on %; and &; is a closed subspace of %; invariant with
respect to V;. Furthermore we assume that the smallest V; reducing subspace of %;
containing &; is the space %; itself.

Definition 1.3. An operator X: &, — &, is said to be of type T if
X = (V2| 22)" X (V1| 21);
observe that (V} |3”1) is an isometry and (%‘«@2)* a coisometry.

Proposition 1.4. Suppose Y: %, — %5 satisfies YV, = VoY. Then X =
PQY‘Wl is of type T and
Y =lim V5" X PV

in the strong operator topology.

Proof. Using 1°, we obtain
(Va| 22)* PY (V1| 21) = PV;'Y (V1| 21) = PY Vi (V1| 21) = PoY | 21
The second assertion is a consequence of the following identities
Y -~ VS"RYP VM =Y — V;"PY V! + V" PY PV
= Vs Py Y VR + VS RY (PLV)
= V(B VY + V5 RY (PEVY).
|

Proposition 1.5. Conversely, given X : &) — %P5 of type T, there exists exactly
oneY: % — Py suchthat YV, = VoY and X = P2Y|91. The sequence Vo, " X Py V™
is convergent in the weak operator topology; its limit Y satisfies YV, = VoY and
X = P2Y|331. Furthermore, |Y| = | X|.

Proof. Given nonnegative integers p,q and two elements hy € Py, hy € Py,
consider an n > p + q.

(V"X PV - ViPhy, Vi hy) = (X PV Py, V)™ 7hy)
= (V2| 22)"" T 1X (V1| 21)" P )
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In order to evaluate the last expression we distinguish two cases. If p—qg =1t > 0
then n — ¢ = n — p +t and the scalar product equals

(V2| 22)" Xha, ha).
Ifg—p=t>0thenn—p=n—q+tand we obtain
(X(Vl‘ﬂl)thl,hQ).

The operators V5™ X P; V" being equibounded and the sequence being stationary for
large n, this proves the convergence. The limit operator Y satisfies, for hy € &,
and hs € yz,

(Yhy,hy) = im(Vy" X PLV;"hy, hy)
= im(X PV he, (Va| P2)"ha)
= lim((V2|P2) " XV{"h1, h2)
= (Xhy, hy).

O

The preceding propositions establish a one to one correspondence between opera-
tors Y : %1 — % satisfying
Y =V YW

and operators X : &, — P, satisfying
X = (Vo|Z2)* X (Vi| 21).
This correspondence is linear and isometric: X is the compression of Y
X = BY|2
and Y is the limit in the strong operator topology of the sequence
VmX PV
Definition 1.6. An operator X: &, — &, is said to be of type H if
X(Vi|21) = (V| 22)* X.
Proposition 1.7. Suppose Y : %, — %» satisfies
YV = VY.
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Then the compression X = P2Y| P, is an operator of type H. Conversely, for each
operator X : #1 — Py of type H there exists aY : %1 — %o such that YV; = V3'Y,
Y| =|X| and X = PY| 2.

Proof. Let X be the compression of an operator Y: %, — % with YV; =
V5'Y. Then, using 1° of Proposition 1.1,

X(Vi|21) = BYWV| P, = PBVSY | Py = (Va| P)* PY | 21 = (Vo | P2)* X.
Conversely suppose X : &y — P, satisfies
(Va| 22)* X = X (V1| 24).

The minimal isometric dilation of (V3 ‘ P5)* being V' on H#s, the commutant lifting
theorem yields the existence of an operator M : &, — %5 and such that

MWi|21) =V’ M, M| =|X|
PM = X.

Now consider arbitrary elements hg, ..., h, in &;. Then

S VEMh =V Y ViR My,
= VoM Y VP hi = VEMVY Y Vi hy

whence
‘ ZV;th‘ < \M|‘ 3 Vl*khk‘.

It follows that there exists a linear mapping Y of norm < |X| such that
YV*h = Vi Mh

for every k > 0 and every h € &?;. Let us prove that YV; = V5'Y. It suffices to

prove

for every h € &1 and every k > 0. For k = 0 the relation to be proved reduces to
MVih = V5 Mh.
If £ > 0, we have

YV =Y ViR h = VEL MR = Vi VEMB = Vi Y V.
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As it could be expected, the correspondence between an operator Y : #; — %>
satisfying YV; = V'Y and its compression is many to one. There is only a consid-
erably weaker analogy of (1.5) linking symbols and their restrictions.

Remark 1.7. There is a one-to-one correspondence between operators Y :
I — R4 satistying

YV =V5'Y
and operators M : H; — s satisfying
M(Vi|21) =VsM
Y is determined by its restriction to &
Y =lim V;* (Y |21) PV

in the strong operator topology.

Proof. In view of the equiboundedness of the operators V'Y P, V/* it suffices

to prove the convergence for elements of a dense set. Suppose x = V;**h for some
k>0and h € &;. If n > k then

Y= ‘/Qny‘/ln . Vvl*kh _ ‘/ék‘/;.fky‘/lnfkh
= V§Yh = V(Y|P PVE - Vikh
= ‘/Qk(Y|.@1)P1Vv1k.’E

O

In particular, every operator M: &1 — %, satisfying M (V1| 2) = V3 M admits
exactly one extension Y : %#; — %5 for which

YV, = V3.

Clearly |Y| = |X]|.
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2. GENERALIZED TOEPLITZ AND HANKEL OPERATORS

Definition 2.1. Suppose 77 and T, are two given contractions on the Hilbert
spaces 7 and J% respectively. A bounded linear operator X : J# — %3 is said to
be generalized Toeplitz if

X =T XTY,

generalized Hankel if
XT7 =TX.

Denote by U; (acting on #;) the minimal isometric dilations of T; respectively.
The problem to be treated in this section is the following: under what conditions
may X be represented as the compression

X = P(B)Y |4
of a bounded linear operator Y: J#; — J# which satisfies
Y =U0,YUY

in the Toeplitz case or
YU =UY

in the Hankel case.

If we agree to call Y a symbol for X, the following observation shows that, in a
manner of speaking, symbols are essentially operators from %; into %, the %; being
the unitary part of J# in the Wold decomposition of U;.

Lemma 2.2. Suppose Y: ¥ — J#5 satisfies one of the relations

(T) Y = U, YUY

ThenY = P(%,)Y P(%,).

Proof. In the case of the relation T" we have

YULU; = U, YU LU = U, YU =Y
U ULY = U UnYUF = UbYU; =Y.
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For the relation H

YUUFf =U;YU; - T U =UYUF =Y
U U3Y = Ui, YU, = U, YT, =Y.

Replacing, in each of the relations
YU,UT =Y, UUY =Y,

the isometries by their n-th powers and passing to the limit, the proof follows. O

A bounded linear operator Y: J¢] — J# with Y = P(%,)Y P(%#,) satisfies the
following boundedness condition. For arbitrary ky € J£1, ky € 5

(Y, k)| < Y] [P(Z1)ks | |[P(%2)ka;

this estimate is stronger than boundedness in general—this is why the authors of [2]
called it Z-boundedness.

Lemma 2.3. Let 5 be a Hilbert space, T a contraction on 7. We denote by U
the minimal isometric dilation of T acting on J¢ and by % the U-reducing subspace
of ¢ on which U is unitary. Set & = (P(%#)2¢)~. Then

1°%=Pd(RNHAT)

2° P(P)h = P(Z)h for h € H#

3° P(H)P(P) = P(H)P(#)

4° U*mP(P)h = P(P)U*™h for h € # and m > 0.

5° & is invariant with respect to U*

6° Z is the smallest U reducing subspace containing &.

Proof. Ifz € Zo & then (z,h) = (P(Z)x,h) = (z, P(#Z)h) = 0 for every
h € # whence x € #N#*. Tt follows that Z#S P C # N A *. On the other hand
suppose € (ZNH#+) and x | (# © P). For each h € H#

(z, P(%)h) = (P(®)z,h) = (z,h) = 0

since x € H#+. It follows that t € Z, v L P, and ¢ L # & P whence z = 0.
Given h € €, we have P(#Z)h € &. To show that h — P(#)h L & it suffices to

show that (h — P(#)h, P(#)h') = 0 for every h' € . This, however, is obvious.
Using 1°, we have

P()P(R) = P()(P(P) + P(#NH1)) = P(AH)P(P)
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Since U*™h € 4 for h € 2 and m > 0 it follows from 2° that
U™P(P)h=U""P(R)h = P(Z)U*™h = P(L)U*™h.

The implication 4° — 5° is immediate. To prove 6°, denote by .# the U reducing
subspace of & containing &. Given any p, we have

P(R)UPh = UPP(#)h € M
whence Z = P(#) X C M. O

Lemma 2.4. Let T be a contraction, U its minimal isometric dilation. Set

A=P(R)|A,P = (P(#)H#)~. Then

AT* = (U*|2)A
TA* = A*(U*|2)*

Proof.
AT*h = AU*h = P(#)U*h = U*P(#)h = U* Ah = (U*|P) Ah

The second relation follows by taking adjoints; it is instructive, however, to prove
it dlrectly For A*: & —  we have A* = (P(%)|#)* = P(H)P(%)|P =
‘,92. For p € & we have

TA*p = TP(H#)p = P(#)Up = P(H#)UP(R)p
P(H)P(#)Up = P(H)(P(P) + P(# N A"))Up
P()P(2)Up = P(X)(U*|2)p

—A*(U*|¢@)*p

O

Lemma 2.4 makes it possible to reduce the study of generalized Toeplitz and
Hankel operators to the case where 77" is the isometry U5
V3] 2oy

We shall need the following factorization lemma. To the best of the author’s

the coisometry

knowledge this lemma appears first in [2].

Lemma 2.5. Suppose 54, 56, #1, #> are two Hilbert spaces, T: 64 — 5¢3,
By: 4 — My, By: S — Mo bounded linear operators. Suppose that

|(Thy, ha)| < |Bihi||Bahs|
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for all hy € 4, he € 5. Then there exists a contraction Ty: .#, — M5 such that

T = BiTyB,

A~

Bll TB;

VA T())//é

Proof. See[2].

O

Theorem 2.5. SupposeT) € B(J4) and T € B(J%) are two given contractions,
Ui, Us their minimal isometric dilations acting on J#1, %> respectively. Suppose X :

JA — S satisfies
X =TLXTy.

Then (Xhy,he) < |X||P(%#1)h1| |P(%2)ha|. There exists exactly one Y : J¥; — o

such that
Y = U, YUY
P(AB)Y |4 = X,
Proof. Given hy € JA,hy € % and a natural number n, we have
(Xhi,ha) = (T XT{™hy, he) = (XTy™he, T5™ha)
so that
[(Xha, ho)| < [ X[ [TV | [T ha| = | X[ |[UTUT™ ba | |U3'Ug ™ ho|
and, passing to the limit,

(XN, he)| < |X||P(%1)ha||P(%2)hz|.

It follows that there exists Xo: 91 — P5 such that X = A5XoA; and [Xo| < |X]|.

The relations stated in the preceding lemma yield the identity
A5 X0 Ay = Ty ASXo A T = A5 (Us | 2)" Xo(UT | 21) Ay
This gives, on &1, the identity

A3Xo = A3 (U5 | 22)* Xo (U | 1),
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Xo

(@1 c@2
UrV T (UM;V
P X, », Aj
Ay
43
Al o ——|——
T}
T
S < s

Since A3 is injective on &, the closure of the range of Ay, this identity implies
Xo = (U3 |22)" Xo(Uy | 2)

Setting V; = U} |ﬂi, we now apply Proposition (1.5).
It follows that there exists an operator C': %; — %5 such that

C=VSCny
P(2,)C| 2, = X
|C| = |Xo| = |X].

Set Y = CP(%,). We prove first that Y = UsY U} Indeed,
U YUY = UsCP(%,)Uf = UsCUf P(%y) = Vs CViP(%,) = CP(%,) =Y.
To see that the compression of Y is X, we argue as follows

P(/5)Y = P(6)CP(%#,) = P(J6)(P(Ps) + P(%: N H5))CP(%,)
= P(J6)P(P2)CP(%).

When applied to an element hy € 4 this operator identity yields
P(4)Y hy = P(J6)P(P3)CA1hy = P(56)XoA1hy = A5 XoA1hy = Xhy.

Uniqueness follows from the fact that an operator satisfying the Toeplitz relation
Y = Uy Y U7 is fully determined by its compression to #;, %s. |

Theorem 2.6. Suppose X : s — J is a bounded linear operator. Then these
are equivalent:
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1° there exists a bounded linear operator Y : J# — J#3 such that YU = U2Y,
Y| < B and X = P(J5)Y |4

2° XTl* = TQX and |(Xh1,h2)| < ,@|P(g1)h1| |P(W2)h2| for all hl S %, h2 S %

Proof. To see that 1° implies 2°, use lemma (2.2). Since Y = P(%»)Y P(%)

we have (Xhl,hg) = (th,hg) = (P(gg)yp(ﬁl) hl,hg) = (Yp(ﬁl) hl, P(ﬁg)hg)

whence
|(Xha,h2)| < BIP(%1)ha| | P(%2)ha|.

Furthermore, XTy = P(s4)Y Uy |4 = P(J4)ULY |4 = ToP(A4)Y |4 = T X.
Now assume 2°. The second assumption together with lemma (2.6) imply that
there exists a Cp: P — Pa such that X = A5CpA; and |Cp| < 5. Furthermore,

A3Co(U; | 20) Ay = A5Co Ty = XT; = ToX = Ty A3CoAy = A3(Us

Py)*CoA;.
We have thus, on &y, the identity
Aﬁco(Uf|<@1) = A;(Uz*|97’2)*00.

Since Aj is injective on the closure of the range of Ay, in other words on &7, it
follows that
Co(Uf|21) = (U3 | P,)* Co.

Co

e@l e@2
UfV T (U;%y’

e@l?e@Q A;

Ay Ar
A I X —Jt

T}
T

i . Hy

Since Cy is of type H, Proposition 1.7 yields the existence of an operator C':
9?1 — gg such that C(Ul*|.@1) = UQC on .@1, |C| = |Co| and P(ﬂg)CL@l == C().
Now we prove an operator identity:

P(AB)CP(y) = P(A3)P(%,)CP (%))
— P(J5)(P(P) + P( 1 #5)CP(%0y)
= P(J5)P(P,)CP(%).
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When applied to h € J# this operator identity yields
P(4)CP(%1)h = P(4)P(P2)CP(%1)h = P(54)CoA1h = A5CoA1h = Xh.

Now define Y: #, — %> by the formula Y = CP(%). The preceding identity
shows that the compression of Y is X. It remains to show that UsY = YUy. This
is immediate, since

UsY = UyCP(%,) = CUY P(%,) = CP(%,)U5.
The norm it Y is bounded by [ since
Y| = [CP(%)] < C] = Co| < B.
O

We conclude with a few comments on the condition of Z-boundedness. In the
case of the classical Hankel operator, we have

M =H, Ti=5"
My =H?, Tp=(V*|H2)*

where V' denotes the multiplication by z on L? and § = P, V|H?. Thus U; = V* on
L? and U, = V on L2. Tt follows that both U; and U, are unitary so that both P(%)
and P(%,) are identities on L? and the condition of Z-boundedness is automatically
fulfilled.

To show that an operator X satisfying X717 = T5 X may fail to possess a dilation
Y with YU} = U,Y it suffices, by Theorem (2.6), to produce an example of a nonzero
X with XT} =T, X and such that either %, or %, is zero.

If T is the zero operator on J# then U is the shift operator on H?(J#) so that
Z = 0. It follows that, in the case that 77 and T5 are both zero operators on 4 and
Jt respectively, any operator X : J# — J% is generalized Hankel and X cannot be
Z-bounded unless X = 0.

Example. Consider two Hilbert spaces 4 and .# and define T to be zero
on J# so that U is the shift operator S; on H?(4).

Denote by S the shift operator on H?(.#) and set % = H?(.#) and To = S*.
Thus U, equals V5 on L?(.#). Let X be any nonzero operator from % into %
with range within .#. It follows that

ToX =5"X =0 sothat ToX = XT;.
IfY: H?(JA) — L?(A) satisfies Y = VoY S} then, for each y € H%(54),

[Yy| = [Va"Y STy < [Y][S1™y| — 0.
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