A REMARK ON SPACES OVER A SPECIAL LOCAL RING

MAREK JUKL, Olomouc

(Received January 22, 1997)

Abstract. This paper deals with **A**-spaces in the sense of McDonald over linear algebras **A** of a certain type. Necessary and sufficient conditions for a submodule to be an **A**-space are derived.

Keywords: linear algebra, **A**-space, nilpotent linear operator

MSC 1991: 13C10

According to [1] we define:

- 1. **Definition.** Let **A** be a local ring. Let **M** be an **A**-module. Then **M** is called an **A**-space if there exist e_1, \ldots, e_n in **M** with
 - (a) $\mathbf{M} = \mathbf{A}\mathbf{e}_1 \oplus \ldots \oplus \mathbf{A}\mathbf{e}_n$,
- (b) the map $\mathbf{A} \to \mathbf{A}\mathbf{e}_i$ defined by $\xi \mapsto \xi \mathbf{e}_i$ is an \mathbf{A} -isomorphism for $1 \leqslant i \leqslant n$. The set $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is called an \mathbf{A} -basis of \mathbf{M} .
 - 2. Remarks.

A module M over a local ring A is an A-space if and only if it is a free finitely dimensional module.

If **A** is a local ring and **M** is an **A**-space then all bases of **M** have the same number n of elements and we say **M** has **A**-dimension n. (See [1].)

Every direct summand of an **A**-space is an **A**-space. (See [1].)

- **3. Definition.** A direct summand K of an **A**-space **M** is called an **A**-subspace of **M**.
- **4. Definition.** Let T be a commutative field. The *plural* T-algebra of order m is every linear algebra A on T having as a vector space over T a basis

$$\{1, \eta, \eta^2, \dots, \eta^{m-1}\}$$
 with $\eta^m = 0$.

5. Notation. In what follows we denote by **A** the plural **T**-algebra of order m introduced by Definition 4.

Propositions 6, 7 and Lemma 9 are proved in [3]. Thus the proofs of them will be omitted.

- **6. Proposition. A** is a local ring with the maximal ideal η **A**. All ideals of **A** are just η^j **A**, $1 \le j \le m$.
- **7. Proposition.** The ring **A** is isomorphic to the factor ring of polynomials $\mathbb{R}[x]/(x^m)$.
- **8. Theorem.** Let K be a submodule of an A-space M. Then K is an A-subspace of M if and only if K is an A-space.

Proof. It follows from Definition 3 and from Theorem 7 in [4].

9. Lemma. Let K be an **A**-space and let $\{\mathbf{e}_1, \ldots, \mathbf{e}_s\}$ be some **A**-basis of K. Then K is a vector-space over **T** having dimension (called **T**-dimension) sm and the set $\{\mathbf{e}_1, \ldots, \mathbf{e}_s, \eta \mathbf{e}_1, \ldots, \eta \mathbf{e}_s, \ldots, \eta^{m-1} \mathbf{e}_1, \ldots, \eta^{m-1} \mathbf{e}_s\}$ forms a basis of K over **T** (**T**-basis).

Let us define a linear operator η on an **A**-space **M** by the relation:

$$\forall \mathbf{x} \in \mathbf{M} : \eta(\mathbf{x}) = \eta.\mathbf{x}.$$

10. Theorem. Let K be a submodule of the **A**-space **M** and let $\vartheta = \eta | K$. Then $\{\mathbf{u}_1, \ldots, \mathbf{u}_s\}$ is an **A**-basis of K if and only if $\{\eta^{m-k}\mathbf{u}_1, \ldots, \eta^{m-k}\mathbf{u}_s\}$ is a **T**-basis of Ker ϑ^k relatively * to Ker ϑ^{k-1} for every $k = 1, \ldots, m$.

Proof. The operator η is a nilpotent linear operator on the vector space \mathbf{M} . Using well-known properties of nilpotent linear operators on vector spaces (see [2]) we get the following properties of kernels of powers of η and of factor modules $K/\operatorname{Ker} \vartheta^{m-1}, \ldots, \operatorname{Ker} \vartheta^2/\operatorname{Ker} \vartheta, \operatorname{Ker} \vartheta$.

The kernels form the chain of inclusions

$$\{\mathbf{o}\}=\operatorname{Ker}\eta^0\subset\operatorname{Ker}\eta\subset\ldots\subset\operatorname{Ker}\eta^{r-1}\subset\operatorname{Ker}\eta^r\subset\ldots\subset\operatorname{Ker}\eta^{m-1}\subset\operatorname{Ker}\eta^m=\mathbf{M}.$$

For every subset $\{\mathbf{o}\} \subset K \subseteq \mathbf{M}$ we obtain an integer $r, 1 \leqslant r \leqslant m$, such that $K \subseteq \operatorname{Ker} \eta^r \wedge K \not\subset \operatorname{Ker} \eta^{r-1}$. Since K is an η -invariant submodule we get the following chain for the operator $\vartheta = \eta \mid K$ on K:

$$\{\mathbf{o}\} = \operatorname{Ker} \vartheta^0 \subset \operatorname{Ker} \vartheta \subset \ldots \subset \operatorname{Ker} \vartheta^{r-1} \subset \operatorname{Ker} \vartheta^r = K.$$

^{* =} modulo

These submodules as well as factor modules

$$K/\operatorname{Ker} \vartheta^{r-1}, \operatorname{Ker} \vartheta^{r-1}/\operatorname{Ker} \vartheta^{r-2}, \ldots, \operatorname{Ker} \vartheta/\operatorname{Ker} \vartheta^{0}$$

may be considered vector spaces over T.

Let $\mathbf{u}_1, \dots, \mathbf{u}_{s_0}$ be a **T**-basis of K relatively to $\operatorname{Ker} \vartheta^{r-1}$. Then there exist elements of K

$$\mathbf{u}_{s_0+1},\ldots,\mathbf{u}_{s_1},\mathbf{u}_{s_1+1},\ldots,\mathbf{u}_{s_2},\ldots,\mathbf{u}_{s_{r-2}+1},\ldots,\mathbf{u}_{s_{r-1}}$$

such that

$$\eta \mathbf{u}_1, \ldots, \eta \mathbf{u}_{s_0}, \mathbf{u}_{s_0+1}, \ldots, \mathbf{u}_{s_1}$$

is a **T**-basis of Ker ϑ^{r-1} relatively to Ker ϑ^{r-2} ,

$$\eta^{r-k}\mathbf{u}_1,\dots,\eta^{r-k}\mathbf{u}_{s_0},\eta^{r-k-1}\mathbf{u}_{s_0+1},\dots,\eta^{r-k-1}\mathbf{u}_{s_1},\dots,\mathbf{u}_{s_{r-k-1}+1},\dots,\mathbf{u}_{s_{r-k}}$$

is a **T**-basis of Ker ϑ^k relatively to Ker ϑ^{k-1} , 1 < k < r-1,

$$\eta^{r-1}\mathbf{u}_1,\ldots,\eta^{r-1}\mathbf{u}_{s_0},\eta^{r-2}\mathbf{u}_{s_0+1},\ldots,\eta^{r-2}\mathbf{u}_{s_1},\ldots,\mathbf{u}_{s_{r-2}+1},\ldots,\mathbf{u}_{s_{r-1}},$$

is a **T**-basis of Ker ϑ .

Viewing K as a vector space we get that the union of the above set (including the basis of K relatively to Ker ϑ^{r-1}) forms a **T**-basis of K.

I. Let $\eta^{m-k}\mathbf{u}_1,\ldots,\eta^{m-k}\mathbf{u}_s$ be a **T**-basis of Ker ϑ^k relatively to Ker ϑ^{k-1} for every $k=m,\ldots,1$. Then the union $\bigcup_{k=1}^m \{\eta^{m-k}\mathbf{u}_1,\ldots,\eta^{m-k}\mathbf{u}_s\}$ is a **T**-basis of K as a vector space. It follows that every $\mathbf{x}\in K$ may be written in the form

$$\mathbf{x} = \sum_{i=1}^{s} \left(\sum_{j=0}^{m-1} x_{ij} \eta^{j} \right) \mathbf{u}_{i}, \quad x_{ij} \in \mathbf{T}.$$

It means that $\{\mathbf{u}_1,\ldots,\mathbf{u}_s\}$ forms the set of generators over \mathbf{A} of the submodule K.

Supposing
$$\sum_{i=1}^{s} \xi_i \mathbf{u}_i = \mathbf{o}$$
 and $\xi_i = \sum_{j=0}^{m-1} x_{ij} \eta^j, x_{ij} \in \mathbf{T}$, we have $\mathbf{o} = \sum_{i=1}^{s} \sum_{j=0}^{m-1} \mathbf{x}_{ij} (\eta^j \mathbf{u}_i)$. This yields that (for all indices) $x_{ij} = 0$ which implies $\xi_1 = \ldots = \xi_s = 0$.

We prove that $\mathbf{u}_1, \dots, \mathbf{u}_s$ is an **A**-basis of K.

II. Let us suppose that $\mathbf{u}_1, \dots, \mathbf{u}_s$ form an **A**-basis of K. According to Lemma 9, K is a vector space over **T** having a **T**-basis

$$B = \{\mathbf{u}_1, \dots, \mathbf{u}_s, \eta \mathbf{u}_1, \dots, \eta \mathbf{u}_s, \dots, \eta^{m-1} \mathbf{u}_1, \dots, \eta^{m-1} \mathbf{u}_s\}.$$

We prove that $\{\eta^{m-k}\mathbf{u}_1,\ldots,\eta^{m-k}\mathbf{u}_s\}$ is a basis of $\operatorname{Ker} \vartheta^k$ relatively to $\operatorname{Ker} \vartheta^{k-1}$, $k=1,\ldots,m$.

i) the linear independence (over **T**) relatively to $\operatorname{Ker} \vartheta^{k-1}$: Let $\sum_{i=1}^{s} c_i \eta^{m-k} \mathbf{u}_i \in \operatorname{Ker} \vartheta^{k-1}$. Thus

$$\mathbf{o} = \eta^{k-1} \sum_{i=1}^{s} c_i \eta^{m-k} \mathbf{u}_i = \sum_{i=1}^{s} c_i (\eta^{m-1} \mathbf{u}_i).$$

As $\{\eta^{m-1}\mathbf{u}_1,\ldots,\eta^{m-1}\mathbf{u}_s\}\subseteq B$ is linearly independent over \mathbf{T} we get $c_1=\ldots=c_s=0$.

ii) Let
$$\mathbf{x} \in \text{Ker } \vartheta^k$$
, $\mathbf{x} = \sum_{i=1}^s \sum_{j=0}^{m-1} \mathbf{x}_{ij} \eta^j \mathbf{u}_i$. Then

$$\mathbf{o} = \eta^k \mathbf{x} = \sum_{i=1}^s \sum_{j=0}^{m-k-1} \mathbf{x}_{ij} (\eta^{j+k} \mathbf{u}_i).$$

Since B is linearly independent over T we obtain

$$x_{10} = \ldots = x_{1,m-k-1} = x_{20} \ldots = x_{2,m-k-1} = \ldots = x_{s0} \ldots = x_{s,m-k-1} = 0,$$

which implies

$$\mathbf{x} = \sum_{i=1}^{s} x_{i,m-k} \eta^{m-k} \mathbf{u}_{i} + \sum_{i=1}^{s} \sum_{j=m-k+1}^{m-1} x_{ij} \eta^{j} \mathbf{u}_{i}$$

where the second summand belongs to $\operatorname{Ker} \vartheta^{k-1}$. It means $\{\eta^{m-k}\mathbf{u}_1, \dots, \eta^{m-k}\mathbf{u}_s\}$ forms a set of generators of $\operatorname{Ker} \vartheta^k$ relatively to $\operatorname{Ker} \vartheta^{k-1}$.

11. Theorem. Let K be a submodule of the **A**-space **M** and let $\vartheta = \eta \mid K$. Then K is an **A**-subspace of **M** if and only if there exists an integer s such that $s = \dim \operatorname{Ker} \vartheta^k$ relatively to $\operatorname{Ker} \vartheta^{k-1}$ for every $k = 1, \ldots, m$.

In this case s is the **A**-dimension of K.

Proof. Let K be an **A**-subspace. Then according to the previous theorem the bases of all factor modules considered have the same number of elements and it is equal to the **A**-dimension of K.

Let K be a submodule such that the factor modules considered have the same dimension. Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_s\}$ be a **T**-basis of K relatively to $\operatorname{Ker} \vartheta^{m-1}$. Constructing bases of factor modules $\operatorname{Ker} \vartheta^k$ relatively to $\operatorname{Ker} \vartheta^{k-1}$, $k=m-1,\ldots,1$, by the introductory part of the proof of the previous theorem we obtain that the set $\{\eta^{m-k}\mathbf{u}_1,\ldots,\eta^{m-k}\mathbf{u}_s\}$ forms a **T**-basis of $\operatorname{Ker} \vartheta^k$ relatively to $\operatorname{Ker} \vartheta^{k-1}$ for all $k, 1 \leq k \leq m-1$. Using the previous theorem we get that K is an s-dimensional **A**-subspace of \mathbf{M} .

References

- McDonald, B. R.: Geometric Algebra over Local Rings. Pure and applied mathematics, New York, 1976.
- [2] Gelfand, I. M.: Lectures on Linear Algebra. Gostechizdat, Moskva, 1951. (In Russian.)
- [3] Jukl, M.: Linear forms on free modules over certain local ring. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 32 (1993), 49–62.
- [4] Jukl, M.: Grassmann formula for certain type of modules. Acta Univ. Palack. Olomuc, Fac. Rerum Natur. Math. 34 (1995), 69-74.

Author's address: Marek Jukl, Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: jukl@risc.upol.cz.