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1. Introduction

The problem of how many Riemannian metrics exist on the open domains of �3

with prescribed constant Ricci eigenvalues �1 = �2 �= �3 was completely solved in
the series of papers [3], [2] and [7]. The main existence theorem says that the local

isometry classes of these metrics are always parametrized by two arbitrary functions
of one variable. Some nontrivial explicit examples are presented in [3], as well.

The case of distinct constant Ricci eigenvalues is more interesting. The problem
of how many local isometry classes of solutions exist was definitely solved only re-

cently in [8]. Here the local isometry classes are parametrized by three arbitrary
functions of two variables. This improves essentially the earlier result by A. Spiro

and F. Tricerri [9]. The first nontrivial examples have been presented by K.Yamato
[11], and some others in [4]. Finally, in [5], nontrivial explicit examples have been
constructed for every choice of the Ricci eigenvalues �1 > �2 > �3. (All examples in

[11] are complete Riemannian manifolds but the range of the admissible triplets of
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Ricci eigenvalues is restricted by certain algebraic inequalities. Outside this range it

seems that the corresponding metrics must be always incomplete.) In [6] an explicit
classification was done under some additional geometric conditions, denoted as (G1),
(G2) (see below). The aim of the present paper is to show that the second condition

is a consequence of the first. This is a nontrivial fact which requires detailed analysis
of the basic system of PDE for the problem.

������. A Riemannian manifold (M , g) is said to be curvature homogeneous

if, for any pair of points p and q of M , there is a linear isometry F : TpM →
TqM between the corresponding tangent spaces such that F ∗Rq = Rp (where R

denotes the curvature tensor of type (0, 4)). I.M. Singer in 1960 (see [9]) asked the
question whether there exist curvature homogeneous spaces which are not locally

homogeneous. The first example was constructed by K. Sekigawa in 1973 (cf. [5], [6]
and [1] for more details, further development and references). In dimension three,

a Riemannian manifold is curvature homogeneous if and only if it has constant Ricci
eigenvalues. The last fact remains the main motivation for our research, as well as

the unsolved conjecture of Gromov (cf. Introduction in [10]).

2. The basic system of PDE for the problem

In this section we recall the basic preparatory results from [5] (omitting routine
computational details) and we draw some simple consequences of them.

We assume here that (M , g) is a Riemannian 3-manifold of class C∞ with dis-
tinct constant Ricci eigenvalues �1, �2, �3. Choose an open domain U ⊂ M and

a smooth orthonormal moving frame {E1, E2, E3} consisting of the corresponding
Ricci eigenvectors at each point of U . Denoting by Rijkl and Rij the corresponding

components of the curvature tensor and the Ricci tensor respectively, we obtain

Rii = �i (i = 1, 2, 3), Rij = 0 for i �= j,(1)

R1212 = λ3, R1313 = λ2, R2323 = λ1, where λi are constants,(2)

Rijkl = 0 if at least three indices are distinct.

Moreover, the numbers λi are connected with the numbers �i as follows:

(3) λi − λj = −(�i − �j), i, j = 1, 2, 3.

In a neighborhood Up of any point p ∈ U one can construct a local coordinate
system (w, x, y) such that

(4) E3 =
∂

∂y
on Up.
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Consider the orthonormal coframe {ω1, ω2, ω3} which is dual to {E1, E2, E3}. Then
the coordinate expression of the coframe {ω1, ω2, ω3} in Up must be of the form

(5)

ω1 = Adw +B dx,

ω2 = C dw +D dx,

ω3 = dy +Gdw +H dx,

where A, B, C, D, G, H are unknown functions to be determined.

Now, we shall compute the components ωi
j of the connection form. These are

determined by the standard formulas

(6) dωi +
∑

ωi
j ∧ ωj = 0, ωi

j + ωj
i = 0, i, j = 1, 2, 3.

We put

(7) ωi
j =

∑
k

ai
jkωk.

The components Ωi
j of the curvature form are determined by the standard formula

(8) Ωi
j = dω

i
j +

∑
ωi

k ∧ ωk
j .

From (2) we obtain at once

(9)

dω12 + ω13 ∧ ω32 = λ3ω
1 ∧ ω2,

dω13 + ω12 ∧ ω23 = λ2ω
1 ∧ ω3,

dω23 + ω21 ∧ ω13 = λ1ω
2 ∧ ω3.

Differentiating (9) and substituting (9) and (6) in the new equations, we obtain

(10)

(λ1 − λ3)ω2 ∧ ω3 ∧ ω13 + (λ3 − λ2)ω1 ∧ ω3 ∧ ω23 = 0,

(λ3 − λ2)ω
1 ∧ ω2 ∧ ω23 + (λ2 − λ1)ω

2 ∧ ω3 ∧ ω12 = 0,

(λ2 − λ1)ω1 ∧ ω3 ∧ ω12 + (λ1 − λ3)ω1 ∧ ω2 ∧ ω13 = 0.

Using the notation (7) we obtain, more explicitly,

(11)

(λ1 − λ3)a
1
31 + (λ3 − λ2)(−a232) = 0,

(λ3 − λ2)a233 + (λ2 − λ1)a121 = 0,

(λ2 − λ1)(−a122) + (λ1 − λ3)a133 = 0.
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Putting

(12) α =
λ1 − λ3
λ3 − λ2

=
�1 − �3
�3 − �2

(where obviously α �= 0,−1), we get (11) in the unified form

(13) a232 = αa131, a233 = (α+ 1)a
1
21, a133 = −

(α+ 1
α

)
a122.

Now, we shall calculate the coefficients ai
jk using only (5) and (6). First we introduce

new functions D, E ,F (where D �= 0) by

(14) D = AD − BC, E = AH − BG, F = CH − DG.

We also define a bracket of two functions f, g by

(15) [f, g] = f ′
yg − fg′y.

Then we obtain, by a routine calculation,

a121 =
1
D (GB′

y − HA′
y +A′

x − B′
w), a131 =

1
D (DA′

y − CB′
y),(16)

a122 =
1
D (GD′

y − HC′
y + C′

x − D′
w), a232 =

1
D (AD′

y − BC′
y),(17)

a133 =
1
D (DG′

y − CH ′
y), a233 =

1
D (AH ′

y − BG′
y),(18)

(19)

a123 =
1
2D{[C, D] + [A, B]− [G, H ] + (G′

x − H ′
w)},

a231 =
1
2D{[C, D]− [A, B] + [G, H ]− (G′

x − H ′
w)},

a132 =
1
2D{[C, D]− [A, B]− [G, H ] + (G′

x − H ′
w)}.

(In [5], there is a sign misprint in the last formula.)

Due to (13), we have only six basic coefficient functions, namely

a131, a121, a122, a123, a231, a132.

For the sake of brevity we put

(20) p = a123, q = a231, r = a132, s = a122, t = a121, u = a131.
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Now, taking into account the formulas (13), we can rewrite (16)–(19) as a system of

partial differential equations

(21)

A′
y = Au+ C(r − p),

B′
y = Bu+D(r − p),

C′
y = A(p+ q) + αCu,

D′
y = B(p+ q) + αDu,

G′
y = (α+ 1)Ct − α+ 1

α
As,

H ′
y = (α+ 1)Dv − α+ 1

α
Bs;

(22)

A′
x − B′

w = Dt+ Eu+ F(r − p),

C′
x − D′

w = Ds+ E(p+ q) + αFu,

G′
x − H ′

w = D(r − q)− α+ 1
α

Es+ (α+ 1)Ft.

Next, we express explicitly the conditions (9) for the curvature components. After

lengthy but routine calculations we obtain the following system of partial differential
equations (which is again re-arranged in two parts and in which the formulas (13)
are used):

(23)

At′y + Cs′y +Gp′y − p′w − AS − CT = 0,

Bt′y +Ds′y +Hp′y − p′x − BS − CT = 0,

Au′
y + Cr′y − α+ 1

α
Gs′y +

α+ 1
α

s′w − A(N − m)− CP = 0,

Bu′
y +Dr′y − α+ 1

α
Hs′y +

α+ 1
α

s′x − B(N − m)− DP = 0,

Aq′y + αCu′
y + (α + 1)Gt′y − (α+ 1)t′w − AK − C(L − l) = 0,

Bq′y + αDu′
y + (α+ 1)Ht′y − (α + 1)t′x − BK − D(L − l) = 0;

(24)

At′x − Bt′w + Cs′x − Ds′w +Gp′x − Hp′w −D(R − n)− ES −FT = 0,

Au′
x − Bu′

w + Cr′x − Dr′w − α+ 1
α

Gs′x +
α+ 1

α
Hs′w

−DM − E(N − m)−FP = 0,

Aq′x − Bq′w + αCu′
x − αDu′

w + (α+ 1)Gt′x − (α+ 1)Ht′w
−DJ − EK −F(L − l) = 0.
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Here nine auxiliary functions are defined by

(25)

J = αtq − (α − 1)su − (α+ 2)tr,
K = (α+1)(α+2)

α ts − (α+ 1)uq − (α − 1)up,

L = α+1
α s2 − (α+ 1)2t2 − α2u2 + pq − rq + rp,

M = 1
αsr + (α − 1)tu − 2α+1

α sq,

N = (α+ 1)t2 − u2 − (α+1)2

α2 s2 − pq − pr − qr,

P = (1 − α)pu − (α+ 1)ru + (2α+1)(α+1)α ts,

R = −t2 − s2 − αu2 + pq + qr − pr,

S =
1
α

sp − (α+ 2)tu − 2α+1
α sq,

T = −αtp − (α + 2)tr − (2α+ 1)su

and three constants l, m, n are defined by

(26) l = λ1, m = λ2, n = λ3.

In the new notation, (12) takes on the form

(27) α = (l − n)/(n − m).

3. A special classification theorem

Let now Eγ (γ = 1, 2, 3) be one of the vector fields consisting of unit Ricci eigen-
vectors and consider the following geometrical conditions:

(G1) The connection coefficients ai
jk = g(∇Ek

Ej , Ei) are constant along the tra-
jectories of Eγ , i.e. Eγ(ai

jk) = 0.

(G2) The local group of local diffeomorphisms defined by Eγ is volume-preserving,

i.e. divEγ = 0.

Here we can assume, without loss of generality, that Eγ = E3. This simplifies the

calculations according to (4). From the condition (G1) we get at once

(28) ai
jk = ai

jk(w, x) (1 � i, j, k � 3),
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i.e., all functions (20) depend only on w and x. Then the system (23) of PDE is

reduced to

(29)

p′w +AS + CT = 0,

p′x +BS + CT = 0,
α+1

α s′w − A(N − m)− CP = 0,
α+1

α s′x − B(N − m)− DP = 0,

(α+ 1)t′w +AK + C(L − l) = 0,

(α+ 1)t′x +BK +D(L − l) = 0.

Using (13) and the definition of the functions ai
jk we get

(30) divE3 =
∑

j

aj
3j = (1 + α)a131,

and hence the condition (G2) means

(31) u = a131 = 0 on Up.

The following theorem was been proved in [6] (here we keep the original notation for

the curvatures λi):

Theorem 3.1. Let (M , g) be a C∞-Riemannian manifold of dimension three
with distinct constant Ricci eigenavalues. If (M , g) satisfies the conditions (G1) and
(G2) (with γ = 3) in a neighbourhood of each point p ∈ M , then there is a dense

open subset U ⊂ M such that, for some neighbourhood Vq of any point q ∈ U , one

of the following three cases (i)–(iii) occurs:

(i) (M , g) restricted to Vq is locally isometric to a 3-dimensional Lie group with

a left-invariant metric.

(ii) (M , g) restricted to Vq is locally isometric to a generalized Yamato space.

This means that the adapted orthonormal coframe {ω1, ω2, ω3} is given with respect
to an adapted system (w, x, y) of local coordinates by the formulas (5) and

A = C(ϕ3 − ϕ1)y +A0,

B = D(ϕ3 − ϕ1)y +B0,

C =
(ϕ1)′w

(αϕ1 + (α+ 2)ϕ3)ϕ2
,

D =
(ϕ1)′x

(αϕ1 + (α+ 2)ϕ3)ϕ2
,

G = (α+ 1)Cϕ2y +G0,

H = (α+ 1)Dϕ2y +H0,
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where ϕ1 is an arbitrary non-constant smooth function on �2 [w, x], ϕ1(w, x) �= 0,
and the functions ϕ2, ϕ3 are defined by

(α+ 1)(ϕ2)2 + (ϕ1)2 = λ2, −αϕ1ϕ3 = (α+ 1)λ3 + λ2, ϕ2(w, x) > 0.

(Mind a misprint in [6] and [1].)

Further, A0, B0, G0 and H0 are any smooth functions of w and x satisfying the

partial differential equations

(A0)
′
x − (B0)′w = (DA0 − CB0)ϕ2 + (DG0 − CH0)(ϕ1 − ϕ3),

(G0)′x − (H0)′w = (DA0 − CB0)(ϕ1 + ϕ3)− (α+ 1)(DG0 − CH0)ϕ2.

(iii) (M , g) restricted to Vq has, in an adapted system of local coordinates, the

following form: an orthonormal coframe {ω1, ω2, ω3} is again defined by (5) and

A = A(w, x), B = B(w, x), C = ϕAy + C0, D = ϕBy +D0,

G = 1
2 (α + 1)

√
−λ3ϕAy2 + (α+ 1)

√
−λ3C0y +G0,

H = 1
2 (α + 1)

√
−λ3ϕBy2 + (α + 1)

√
−λ3D0y +H0,

where A, B, C0, D0, G0, H0, ϕ are arbitrary smooth functions of w and x satisfying

the system of quasilinear partial differential equations

A′
x − B′

w =
√
−λ3(AD0 − BC0),

(C0)′x − (D0)′w = ϕ(AH0 − BG0),

(G0)′x − (H0)′w = −ϕ(AD0 − BC0) + (α+ 1)
√
−λ3(C0H0 − D0G0),

Aϕ′
x − Bϕ′

w = α
√

−λ3ϕ(AD0 − BC0).

Here ϕ = ϕ(w, x) is a non-constant function, and the equality λ1λ3 = (λ2)2 and the

inequalities λ1 < 0 and λ3 < 0 must be satisfied.

The spaces in the items (i)–(iii) are never locally isometric to each other; in
particular, the cases (ii) and (iii) are never locally homogeneous.

������ 3.2. It follows from the considerations in [6] that the converse of

Theorem 3.1 also holds, i.e., all spaces of types (i), (ii), (iii) satisfy both conditions
(G1) and (G2) for some γ ∈ {1, 2, 3}. In particular, we have (see [6], Remark 1.3
and 1.2):

Proposition 3.3. A locally homogeneous Riemannian 3-manifold with distinct
Ricci eigenvalues satisfies the condition (G2) for some γ ∈ {1, 2, 3}. It belongs to
type (i) of Theorem 3.1.

52



Proposition 3.4. A Riemannian 3-manifold (M , g) with distinct constant Ricci

eigenvalues is locally homogeneous if and only if all connection coefficients ai
jk are

constant (i.e., (G1) holds simultaneously for γ = 1, 2, 3).

4. The main result

In the rest of this paper we will prove the following

Theorem 4.1. Let (M , g) be a Riemannian 3-manifold with distinct constant

Ricci eigenvalues satisfying the condition (G1) for γ = 3. Then (M , g) satisfies both
conditions (G1) and (G2) for some γ ∈ {1, 2, 3}.
�����. The proof will be decomposed in a number of steps which are presented

in the subsequent sections. We always suppose that (M , g) is a 3-manifold with

distinct constant Ricci eigenvalues and satisfying (G1) for γ = 3. Our investigation
will be always local and, therefore, we will be using all formulas and notation from

the previous sections. As in [6], we will limit ourselves to a dense open subset U of
M with the following property: for each “basic function” involved, the value of such

function at p ∈ U is either nonzero or the function vanishes in a neighbourhood of p.
Because the number of “basic functions” involved in the whole procedure is finite, we

see that the set U is indeed open and dense. By the continuity, it suffices to prove
the property (G2) on U . A typical argument proceeds as follows: if (G2) is not

satisfied for γ = 3, i.e., if u �= 0 in some neighbourhood due to (31), then the space
is locally homogeneous in this neighbourhood. Hence, according to Propositions 3.3

and 3.4, the conditions (G1) and (G2) are satisfied for γ = 1 or γ = 2. �

5. The classification of potential solutions

We start with

Proposition 5.1. If (G1) holds on (M , g), then the functions A, B, C, D from

(5) satisfy the same partial differential equation

(32) f ′′
yy − 2ωf ′

y + µf = 0

where

(33) ω = 1
2 (1 + α)u, µ = αu2 + (p − r)(p+ q)

are coefficients not depending on y.
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�����. It follows by a routine calculation from the first four equations of (21).

�

Proposition 5.2. For the characteristic roots of the equation (32), we have the
following cases:

(i) Elliptic case: ω2 − µ < 0. Then each solution of (32) has the form

(34) f = eωy(f1 cos(ϕy) + f2 sin(ϕy))

where f1, f2 are functions of w, x only and

(35) ϕ =
√

µ − ω2.

(ii) General hyperbolic case: ω2 − µ > 0, µ �= 0. Then each solution of (32) has
the form

(36) f = f1e
ω1y + f2e

ω2y

where ω1 �= ω2 and ω1 �= 0, ω2 �= 0 depend only on w and x.

(iii) Special hyperbolic case: ω �= 0, µ = 0. Then each solution of (32) has the
form

(37) f = f1 + f2e
2ωy.

(iv) Parabolic case: ω2 − µ = 0, ω �= 0. Then each solution of (32) has the form

(38) f = eωy(f1 + f2y).

(v) Planar case: ω = µ = 0. Then each solution of (32) has the form

(39) f = f1 + f2y.

�����. Obvious. �

Now we see from (33) that the planar case implies u = 0, i.e., divE3 = 0. This
case is settled in Theorem 3.1. Similarly, we can exclude the equality ω = 0 (i.e.,

u = 0) in the cases (i) and (ii). Now, we shall prove the following

Proposition 5.3. In the cases (i), (ii) and (iv), if ω �= 0 and the corresponding
metric g exists, it must be locally homogeneous.
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�����. Substitute the corresponding expressions (34) or (36) or (38) for the

functions A, B, C, D in the system of equations (29). An obvious argument using
the inequality D = AD − BC �= 0 implies

p′w = p′x = s′w = s′x = t′w = t′x = 0,(40)

K = L − l = N − m = P = S = T = 0.(41)

From (40) it follows that p, s and t are constants. Then the first equation (24) gives,

in addition,

(42) R − n = 0.

Writing the algebraic equations (41), (42) explicitly according to the definition for-
mulas (25), we obtain (substituting here for the moment X := q, Y := r and Z := u)

(43)

(α+1)(α+2)
α ts − (α − 1)pZ − (α+ 1)XZ = 0,

−l + α+1
α s2 − (α + 1)2t2 + p(X + Y )− XY − α2Z2 = 0,

−m − (α+1)2

α2 s2 + (α+ 1)t2 − p(X + Y )− XY − Z2 = 0,
(2α+1)(α+1)

α ts+ (1 − α)pZ − (α+ 1)Y Z = 0,

−n − s2 − t2 + p(X − Y ) +XY − αZ2 = 0,
1
αps − (2α+1)

α sX − (α+ 2)tZ = 0,
−αpt − (α + 2)tY − (2α+ 1)sZ = 0.

Our next goal is to get explicit expressions forX , Y , Z through the other quantities

which are already constants. We will denote the corresponding equations in (43) by
(E1)–(E7) whenever it will be convenient. Now, we proceed as follows: express

Z2 from the equation (E3)+(E5), express XY from the equation α(E3)−(E5) and
substitute for Z2 and XY into (E2). We obtain

(44) 2αpX + 2α2pY + 2(α2 + α+ 1)(s2 − αt2) + α2(m+ n)− α(n+ l) = 0.

Now, (E6), (E7) and (44) is a system of linear equations for X , Y and Z whose

determinant is, up to a nonzero factor, equal to

(45) p((α+ 2)2t2 + (2α+ 1)2s2).

If this determinant is nonzero, then X , Y , Z can be expressed explicitly as rational
functions of p, s, t, m, l, n, α and hence they are constant. According to Proposi-

tion 3.4, the corresponding space (if it exists) is locally homogeneous in a neighbour-
hood and we are finished.
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Let now p = 0 in (45). Then the system of equations (43) can be simplified to the

form

(46)

(α+1)(α+2)
α ts − (α+ 1)XZ = 0,

−l+ α+1
α s2 − (α+ 1)2t2 − XY − α2Z2 = 0,

−m − (α+1)2

α2 s2 + (α+ 1)t2 − XY − Z2 = 0,
(2α+1)(α+1)

α ts − (α+ 1)Y Z = 0,

−n − s2 − t2 +XY − αZ2 = 0,

− (2α+1)α sX − (α+ 2)tZ = 0,
−(α+ 2)tY − (2α+ 1)sZ = 0.

If (α + 2)t �= 0, then the equation (E6) shows that (2α+ 1)s �= 0 (otherwise Z = 0,

a contradiction). Then Z and Y can be expressed from (E6) and (E7) as nonzero
constant multiples of X . Substituting in (E4) for Y Z we see that X is a constant
and hence Y and Z are also constants. If (2α + 1)s �= 0, then the equation (E7)
shows that (α+ 2)t �= 0 and we get the same conclusion.
Suppose now (α + 2)t = (2α+ 1)s = 0 and p arbitrary. Then the equations (E1)

and (E4) from (43) can be written in the form

(47)
Z((α+ 1)X + (α − 1)p) = 0,
Z((α+ 1)Y + (α − 1)p) = 0.

Hence, because Z �= 0, X and Y are constants. Then Z is also constant, as follows
from (E3).

This obviously concludes the proof of Proposition 5.3. �

6. The special hyperbolic case

This is the only remaining (and most difficult) case. According to (37) we have

(48)

A = A1 +A2e2ωy,

B = B1 +B2e
2ωy,

C = C1 + C2e2ωy,

D = D1 +D2e2ωy,
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where Ai, Bi, Ci, Di are functions of w and x only. Substituting in (29), we obtain

a system of 12 equations which are divided into two series:

(49)

A2S + C2T = 0,

B2S +D2T = 0,

A2(N − m) + C2P = 0,

B2(N − m) +D2P = 0,

A2K + C2(L − l) = 0,

B2K +D2(L − l) = 0,

(50)

p′w + A1S + C1T = 0,

p′x +B1S +D1T = 0,

−α+1
α s′w +A1(N − m) + C1P = 0,

−α+1
α s′x +B1(N − m) +D1P = 0,

(α+ 1)t′w +A1K + C1(L − l) = 0,

(α+ 1)t′x +B1K +D1(L − l) = 0.

Now, substituting from (48) in the first four differential equations (21), we obtain
the following algebraic conditions for the coefficients Ai, Bi, Ci, Di:

(51)

uA1 + (r − p)C1 = 0,

uB1 + (r − p)D1 = 0,

(p+ q)A1 + αuC1 = 0,

(p+ q)B1 + αuD1 = 0,

(52)

αuA2 + (p − r)C2 = 0,

αuB2 + (p − r)D2 = 0,

(p+ q)A2 − uC2 = 0,

(p+ q)B2 − uD2 = 0.

These conditions are not linearly independent because, in the special hyperbolic case,

(53) µ = αu2 + (p − r)(p + q) = 0.

Hence ω �= 0 implies

(54) u �= 0, p − r �= 0, p+ q �= 0.
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Then the conditions (51), (52) are equivalent to the formulas

(55) C1 =
uA1
p − r

, D1 =
uB1
p − r

, C2 =
αuA2
r − p

, D2 =
αuB2
r − p

.

Hence we see that one can never have A1 = B1 = 0, or A2 = B2 = 0. Indeed, using
(48) we obtain in each case D = AD − BC = 0, which is a contradiction.

In particular, substituting from (55) into (49) we get

(56)

(r − p)S + αuT = 0,

(r − p)(N − m) + αuP = 0,

(r − p)K + αu(L − l) = 0.

Using (56) and (55), we can rewrite (50) in the form

(57)

αp′w + (α + 1)SA1 = 0,

αp′x + (α+ 1)SB1 = 0,

s′w − (N − m)A1 = 0,

s′x − (N − m)B1 = 0,

αt′w +KA1 = 0,

αt′x +KB1 = 0.

Next, we integrate the last two equations of (21) using the expressions (48). We get,
using also (55),

G = G1 +
α+ 1

α
A1

(
αut

p − r
− s

)
y − A2

αu

(
α2ut

p − r
+ s

)
e2ωy,(58)

H = H1 +
α+ 1

α
B1

( αut

p − r
− s

)
y − B2

αu

( α2ut

p − r
+ s

)
e2ωy.(59)

Here G1 and H1 are new functions of the variables w, x.

The equations (21) are thus completely solved by the formulas (48), (58), (59)

together with (55). The functions A1, A2, B1, B2, G1, H1 remain arbitrary functions
of two variables w, x with the only inequality A1B2 − A2B1 �= 0 (see formula (61)
below).

Introduce new determinant functions

(60) U = A1B2 − A2B1, V = A1H1 − B1G1, W = A2H1 − B2G1.
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Then we can calculate the determinant functions from (14) as follows:

D = (α+ 1)Uue2ωy

r − p
,(61)

E = V +

[
W − (α

2ut+ (p − r)s)U
αu(p − r)

]
e2ωy +

(α+ 1)U
α(p − r)

(
(p − r)s − αut

)
ye2ωy,(62)

(63)

F = uV

p − r
−

[
αuW

p − r
+

(
α2ut+ (p − r)s

)
U

α(p − r)2

]
e2ωy +

(α+ 1)u
(
αut − (p − r)s

)
U

(p − r)2
ye2ωy.

Now, let us substitute in the first equation (22) from (48), (58), (59), (60)–(63).
We hence obtain three equations which are independent of y, namely

(A1)′x − (B1)′w = 0,(64)

(A2)
′
x − (B2)′w +

(α+ 1)utU

p − r
− (α+ 1)uW = 0,(65)

α
(
A2u

′
x − B2u

′
w

)
(p − r) + (α+ 1)u

(
αtu − (p − r)s

)
U = 0.(66)

Similarly, substitute in the second equation (22). We obtain only two additional
equations, namely

(C1)′x − (D1)′w = 0,(67)

(C2)
′
x − (D2)′w = (α+ 1)(αu2W + usU)/(r − p).(68)

Now, (67), (55) and (64) imply

(69) A1

(
u

p − r

)′

x

− B1

(
u

p − r

)′

w

= 0.

Further, (68), (55) and (65) imply

(70) A2

(
u

p − r

)′

x

− B2

(
u

p − r

)′

w

=
(α+ 1)u

(
αut+ (p − r)s

)
U

α(p − r)2
.

Next, we shall need

Proposition 6.1. For each function f ∈ {p, q, r, s, t, u} we have

(71) A1f
′
x − B1f

′
w = 0.

Hence the functions p, q, r, s, t, u are functionally dependent.
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�����. From (57) we obtain

(72) A1p
′
x − B1p

′
w = 0, A1s

′
x − B1s

′
w = 0, A1t

′
x − B1t

′
w = 0.

Moreover, the integrability condition for the last two pairs of equations (57) can be

written, using also (64), in the form

(73) A1N
′
x − B1N

′
w = 0, A1K

′
x − B1K

′
w = 0.

Now, let us introduce new functions

(74) Y = p+ q, Z = p − r, F = u/Z.

According to (54), all three functions are nonzero. From (53) we get αu2 + Y Z = 0

and hence we can express

(75) u = FZ, Y = −αF 2Z.

The six unknown functions p, q, r, s, t, u are now reduced to five unknown functions
F , Z, p, s, t on the account of the identity (53).

The equation (69) now reads

(76) A1F
′
x − B1F

′
w = 0.

If we write down the equations (73) explicitly (using the definition formulas (25)),

we can still simplify them by the identities (72). Next, using the substitutions (74),
(75) and the identity (76), we are left with the following two equations:

(77)

(
αp − (α+ 1)Z)(

A1Z
′
x − B1Z

′
w

)
= 0,(

p+ α(α + 1)ZF 2
)(

A1Z
′
x − B1Z

′
w

)
= 0.

An obvious linear combination gives

(78) (α+ 1)Z(1 + α2F 2)
(
A1Z

′
x − B1Z

′
w

)
= 0

and, because the coefficient is nonzero, we obtain

(79) A1Z
′
x − B1Z

′
w = 0.

Proposition 6.1 now follows from (72), (76), (79) and the transformation formulas
(74), (75). �
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Our next goal is to express explicitly the derivatives of the basic functions p, q,

r, s, t, u. We will again take advantage of the transformation formulas (74), (75).
First, using (70), (76) and Cramer’s rule, we obtain

(80)
F ′

w = −α+1
α (αFt+ s)FA1,

F ′
x = −α+1

α (αFt+ s)FB1.

Next, the equation (66) can be written in the form

(81) αZ(A2u′
x − B2u

′
w) + (α+ 1)EUu = 0,

where

(82) E = αtu − Zs.

Substituting u = FZ into (81) and then using (80), we get easily

(83) A2Z
′
x − B2Z

′
w = −2(α+ 1)FZtU.

Using (79),(83) and Cramer’s rule, we get

(84)
Z ′

w = 2(α+ 1)FZtA1,

Z ′
x = 2(α+ 1)FZtB1.

Now, we summarize the formulas (57), (80), (84) and come back to our original
functions by the transformation formulas (74), (75). After a routine calculation we
finally get

(85)

p′w = − (α+1)α SA1, p′x = − (α+1)α SB1,

s′w = (N − m)A1, s′x = (N − m)B1,

t′w = −KA1
α , t′x = −KB1

α ,

q′w =
α+1

α

(
S − 2w(p+ q)

)
A1, q′x =

α+1
α

(
S − 2w(p+ q)

)
B1,

r′w = −α+1
α

(
S + 2αut

)
A1, r′x = −α+1

α

(
S + 2αut

)
B1,

u′
w =

α+1
α(p−r)uEA1, u′

x =
α+1

α(p−r)uEB1.

Up to now, we have not investigated the differential equations (24) and the last
equation (22). Substituting in the last equation (22) from (58), (59), (61)–(63),
(64), (65) and (85), we obtain after a lengthy but routine computation the only new

condition

(86)
(
G1

)′
x
− (

H1
)′
w
= − (α+ 1)EV

α(p − r)
.
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Substituting in the first equation of (24), we obtain a new algebraic equation

(87) (α+ 1)(R − n) + α(N − m) + (L − l) = 0.

A careful check shows that there are no new consequences of the system (24). We

can summarize:

Proposition 6.2. In the special hyperbolic case the basic system of partial

differential equations (21)–(24) is equivalent to the formulas (48), (58), (59), the
system of five algebraic equations (53), (56), (87) and the system of partial differential

equations (64), (65), (85) and (86) for the functions of two variables.

We shall express the algebraic equations (56) and (87) in the new variables F , Z,

p, s, t (eliminating hence the equation (53)). We obtain four equations

α
(
(2α+ 1)Fs − (α + 2)t)FZ + 2p(α2tF + s) = 0,(88-1)

α2(α+ 1)2F 2Z2 − 2α3(α+ 1)pF 2Z + α2(2α+ 1)(α+ 1)tsF

− α2p2 + (α+ 1)2s2 − α2(α+ 1)t2 + α2m = 0,
(88-2)

α2(α+ 1)2F 3Z2 + 2α(α+ 1)pFZ

+ α
(
α(α + 1)2t2 − αp2 − (α+ 1)s2 − α2m+ α(α+ 1)n

)
F

+ (α + 1)(α+ 2)ts = 0,

(88-3)

α(α + 1)F 2Z2 + αp(F 2 − 1)Z + (α+ 1)(p2 + s2 + t2 + n) = 0.(88-4)

In the last two equations we have expressed the parameter l from the formula (27)

through α, m and n.
Now, we continue with

Proposition 6.3. If p = constant on an open domain V ⊂ M then the functions

q, r, s, t, u are also constant in V and the corresponding metric g on V (if it exists)

is locally homogeneous.

�����. From (56) and (57) we see that S = T = 0 in V . In the auxiliary

variables F , Z, p, s, t it means that

(
(2α+ 1)Fs − (α+ 2)t)FZ + 2(α+1)α sp = 0,(89) (
(2α+ 1)Fs − (α+ 2)t)Z + 2(α+ 1)tp = 0.

This automatically satisfies the equation (88-1). Taking suitable linear combinations
of the equations (89) we obtain

(90) p(s − αFt) = 0, (s − αFt)
(
(2α+ 1)Fs − (α+ 2)t) = 0.

62



At each point x ∈ V we obtain either

(i) s − αFt = 0,

or
(ii) p = 0 and (2α+ 1)Fs − (α+ 2)t = 0.
In the first case (i) we make the substitution s = αFt in the second equation of

(89). We get

(91) t
[(
(2α+ 1)αF 2 − (α+ 2))Z + 2(α+ 1)p]

= 0.

Let first t = 0 and hence s = 0. We substitute t = s = 0 in the equations (88-2) and
(88-3). The new equations are equivalent to

(α+ 1)2F 2Z2 − 2α(α+ 1)pF 2Z − p2 +m = 0,(92)

α(α+ 1)2F 2Z2 + 2(α+ 1)pZ + α2(n − m)− αp2 + αn = 0.

The resultant equation of (92) with respect to the variable F 2 gives

(93) 2(α+1)2pZ2+
(
α(α+1)2(n−m)−4α(α+1)p2)Z+2α2(p2+αm−(α+1)n)

p = 0.

Because n − m �= 0, either the coefficient of Z2 or the coefficient of Z is nonzero

and Z must be a constant. From the second equation of (92) we see that also F is
a constant.

Let now t �= 0, then (91) implies

(94) (2α+ 1)αF 2Z − (α+ 2)Z + 2(α+ 1)p = 0.

Making the substitution s = αFt into (88-2) and (88-3) we obtain

(95)
(α+ 1)2F 2Z2 − 2α(α+ 1)pF 2Z + (2α2 + 2α+ 1)(α+ 1)t2F 2

− (α + 1)t2 − p2 +m = 0,

(96)
α(α+ 1)2F 2Z2 + 2(α+ 1)pZ − α2(α+ 1)t2F 2

+ (α + 1)(α2 + 2α+ 2)t2 + α2(n − m) + α(n − p2) = 0.

Next we calculate the resultant R1 of (94) and (95) with respect to the variable
F 2 and the resultant R2 of (94) and (96) with respect to the same variable. Finally,

we calculate the resultant equation of the equations R1 = 0 and R2 = 0 with respect
to the variable t2. We obtain

(97)
(α − 1)2pZ2 +

[
(2α+ 1)(α2 + α+ 1)(n − m) + 2(α − 1)p2]Z

+ (2α+ 1)
[
2α2m − (2α2 + 2α+ 1)n]

p+ p3 = 0.
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We see again that either the coefficient of Z2 or the coefficient of Z is nonzero unless

2α + 1 = 0, p = 0. In the last case the equations (89) show that t = 0, which is
a contradiction. We see again that Z = const and F = const in the corresponding
domain.

Now, let us discuss the second case (ii). First, suppose that α + 2 = 0, which
implies s = 0. Substituting α = −2, s = p = 0 in (88-2) and (88-3), we obtain at

once a contradiction with the inequality n − m �= 0.
Let now α+2 �= 0 and let us make the substitutions p = 0, t = (2α+1)Fs/(α+ 2)

into (88-2) and (88-3). A simple elimination shows again a contradiction with the

inequality n − m �= 0. We see that the functions F, Z, p, s, t are constants in V and
hence, passing over to the original variables, and using Proposition 3.4, we conclude

the proof of Proposition 6.3. �

As a consequence we obtain

Proposition 6.4. Let (M , g) be not locally homogeneous on any open subset.

Then F, Z, s and t are functions of p on a dense open subset U ⊂ M .

�����. Due to Proposition 6.3, p is not constant on any open subset ofM . Then

on a dense open subset U of M the derivatives p′w and p′x are not simultaneously
zero. According to Proposition 6.1 and its proof, the functions F , Z, s and t must

be on U smooth functions of p (see a classical theorem from analysis). �

From (85) we now obtain the following formulas:

t′(p) =
K

(α+ 1)S
, s′(p) =

−α(N − m)
(α+ 1)S

,(98)

Z ′(p) = −2αFZt

S
, F ′(p) =

(αtF + s)F
S

.

Here we know that S �= 0 on U because otherwise (57) implies p′w = p′x = 0,
a contradiction. �

Now, we shall consider the equations (88-1)–(88-4) as algebraic equations in which

p is an independent variable and F , Z, s, t are functions of p. After differentiation
with respect to p we substitute for the derivatives from the formulas (98).
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We obtain the following equations:

(99-1)

α3(α2 − 1)F 4Z3 − 2α2(α3F 2 + 1)pF 2Z2

+
([ − α3(α + 1)(α − 1)t2 − α3(2α+ 1)p2

+ α(2α+ 1)
(
3(α+ 1)2s2 + α2m

)]
F 2

− 2αs(α+ 1)(α+ 2)2tF
)
Z

− 2α4(α+ 1)pt2F 2 + 4α2(α+ 1)(2α+ 1)pstF

− 2[α2p2 + α2(α+ 1)t2 − 3(α+ 1)2s2 − α2m
]
p = 0,

(99-2)

α2(α+ 1)
[
α2(2α+ 1)sF 2 + α2tF − 2(α+ 1)2s]F 2Z2

− 2α3[α2tF 2 − 4(α+ 1)2sF + αt
]
pFZ

+ α4(α+ 1)(2α+ 1)st2F 2

− α2
[ − α2(α+ 1)(2α − 1)t2 − α2(2α − 1)p2
+ (α+ 1)2(6α+ 1)s2 + α2(2α − 1)m]

tF

− 2(α+ 1)[(α+ 1)2s2 + α2m − α2(2α+ 3)t2 − 3α2p2]s = 0,

(99-3)

α2(α+ 1)
[
α2(α+ 1)tF 2 − (3α2 + 6α+ 4)sF + (α+ 2)t]F 2Z2

+ 2α
[
α2sF 2 + α2(α+ 1)tF − (3α2 + 6α+ 4)s]pFZ

− α3
[ − α(α+ 1)2t2 + αp2 + (α+ 1)s2 + α2m − α(α + 1)n

]
tF 2

+ α
[
(α+ 1)(3α+ 2)s2 − α2(α+ 1)(3α+ 7)t2 + α(4 + 3α)p2

+ α2(α+ 2)m − α2(α+ 1)n
]
sF

+ (α+ 2)
[
α2(α+ 1)t2 − (α+ 1)(2α+ 3)s2 + α2p2 − α2m

]
t = 0,

(99-4)

α2
[
(2α+ 1)sF 3 − α(2α+ 1)tF 2 + (2α+ 3)sF + (α+ 2)t

]
FZ2

+ 2α
[
(5α+ 2)sF 2 − 3αtF − (α+ 1)s]pZ

+ 2
[
(α+ 1)2s2 + (α2 + 4α+ 2)p2 − (α+ 1)2(α − 2)t2 + α2m

]
s = 0.

Now, repeating the resultant operation more times one can see that the formulas
(99-1), (99-2) and (99-3) are algebraic consequences of (88-1), (88-2) and (88-3). On

the other hand, the five equations (88-1)–(88-4) and (99-4) form an algebraically
independent system (for any admissible choice of the parameters α, m and n). In

other words, the functions F , Z, p, s, t are constant in the neighbourhood of any
generic point of (M , g). According to Proposition 3.4, such a Riemannian manifold,

if it exists, must be locally homogeneous. This concludes the proof of Theorem 4.1.
Let us mention that the final procedure yields rather long formulas (for which

a computer assistance and the Maple software was used). We do not reproduce these
formulas in full to keep this article in reasonable limits.
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