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Abstract. The set of points of upper semicontinuity of multi-valued mappings with a
closed graph is studied. A topology on the space of multi-valued mappings with a closed
graph is introduced.
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1. INTRODUCTION

In what follows let X, Y be Hausdorff topological spaces. A (multi-valued) map-
ping F: Y — X is said to be upper semicontinuous (USC) at yo, if for every
open set O which includes F(yo) there exists a neighbourhood V' of yg such that
O F(V)(=WF): yeV}. N B

The outer part of F' at yo is the mapping F': Y — X given by F(y) = F(y)\ F(yo)
(see [4]). By the (outer) active boundary of F at yo (Frac F(yo)) we understand

Frac F(yo) = ﬂ{Clﬁ(V): V€ B(yo)},

where B(yo) stands for a neighbourhood base at yo (see [3]).

A mapping F': Y — X is said to be c-upper semicontinuous at yq [1] if for every
open set V containing F'(y) and having a compact complement, there is an open
neighbourhood U of yo such that F(U) C V. We say that F': Y — X is c-upper
semicontinuous if it is c-upper semicontinuous at every y € Y.

As usual, we say that F': ¥ — X has a closed graph if G(F) = {(y,z): = €
F(y); y € Y} is a closed subset of Y x X with the product topology. Of course if
F: Y — X hasaclosed graph then F'is c-upper semicontinuous and also Frac F'(y) C
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F(y) for every y € Y. We will see later that in general the opposite is not true. Let
us mention here also papers [7], [8], [9], [11], which deal with the above properties of
multifunctions.

Let (X,U) be a uniform space. We say that a multi-valued mapping F is totally
bounded at yjg, if to every U € U there corresponds a neighbourhood V' of yg and a
finite set C such that F(V \ {yo}) C U[C], where U[C] = |J{U]¢]: c € C}.

Combining Theorems 8.1 and 10.1 from [4] we obtain the following result:

Theorem A. LetY be first countable at yo, let (X,U) be a complete uniform
space and F': Y — X a multi-valued mapping. Suppose that F'(yo) is closed. Then
F is USC at yo if and only if (i) Frac F(yo) C F(yo) and (ii) the outer part of F at
yo is totally bounded at .

1. It is easy to see that one implication of the above theorem holds under weaker
conditions.

Lemma 1.1. Let (X,U) be a complete uniform space, Y a topological space and
F: Y — X a multi-valued mapping. If Frac F(yo) C F(yo) and the outer part of F
at yo Is totally bounded at yo then F' is USC at yy.

Proof. Suppose F is not USC at yg. There is an open set O C X such that for
every neighbourhood V of yo we have F(V)\ O # (. Let B(yo) denote the family of
all open neighbourhoods of yg. For every V' € B(yo) choose zy € F(V)\ O. Now the

set (] {zg: G C V} is nonempty, since (X,U) is complete and for every U € U
VeB(yo)

there is V' € B(yo) such that {z¢: G C V} C U[C], where C is a finite set in X.
]

The completeness of X in the previous lemma is essential.

Proposition 1.2. Suppose (X,U) is not complete. Then there are a topological
space Y, a point yo € Y and a mapping F': Y — X such that

(i) Frac F(yo) C F(yo),
(ii) the outer part of F at yg is totally bounded at vy,
(iii) F is not USC at yp.

Proof. There is a Cauchy net {z,: a € A} with no cluster point in X. Let
X* be a completion of X. There is a point € X* such that {z,: o« € A} converges
tox. Put Y = {z,: a € A} U{z} and for each o € A put V,, = {z3: 8 > a} U{z}.
The system 7 = {K CY: v ¢ K} U{V,: o € A} is a base of a topology G. Define
a mapping F': (Y,G) — X as follows: F(z,) = x, for each o € A and F(z) = o,
where x( is a point from X. It is easy to see that F' is totally bounded at xz. (Let
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U be a symmetric element from U. There is o € A such that (z,,23) € U for each
3 > a. Thus V, is a neighbourhood of z for which F(V, \ {z}) C Ulza]).

Since {z,: a € A} has no cluster point in X, Frac F(z) = . But F is not upper
semicontinuous. (There are an open set V in X and a € A such that zp € V and
x5 ¢ V for each 8 > a. Thus the set {z € Y: F(z) C V} is not open in Y). O

Proposition 1.3. Let X, Y be topological spaces. Then F: Y — X has a
closed graph if and only if for every y € Y the following conditions are satisfied:
(i) FracF(y) C F(y),
(ii) F(y) is a closed set in X .

Proof. Of course the “only if” implication is trivial. To prove the other one,
we will suppose that (i) and (ii) are satisfied for all y € Y and F' does not have a
closed graph. Thus there is (yo,2) € G(F) \ G(F). We claim that 2 € Frac F(yo).
Let V € B(yo) and G € B(x) with G C X \ F(yo), where B(yo), and B(z) are the
families of all neighbourhoods of yg, =, respectively. Since (yo,x) € m we have
(VxG)YNG(F) # 0. Choose (v,g9) € V x G and (v,g) € G(F); g € G implies that
g & F(y), i.e.g € F(v). Thus = € Frac F(yo) and, by the assumption, z € F(y), a

contradiction. |

Proposition 1.4. Let X a locally compact space and Y be a topological space.
Let F': ' Y — X be c-upper semicontinuous with closed values. Then F' has a closed
graph.

Proposition 1.5. Let X, Y be first countable topological spaces. Let F': Y —
X be c-upper semicontinuous with closed values. Then F' has a closed graph.

Proof. Suppose the implication is not true. Thus there is (y, z) € G(F)\ G(F);
ie.x ¢ F(y). Since X, Y are first countable, there are sequences {y,}, in ¥ and
{zn}n in X such that {(yn,xn)}, converges to (y,z) and (yn,z,) € G(F) for every
n € N. The openess of X \ F(y) and the convergence of {z,}, to z imply that there
exists ng € N such that z,, ¢ F(y) for every n > ng. Now K = {x,: n > notU{z} is
a compact set in X with F(y) N K = (. The c-upper semicontinuity of F' at y implies
that there is an open neighbourhood V of y with F(V)NK = (), a contradiction. O

The following example shows that the first countability of X in the above propo-
sition is essential.

Example 1.6. For every n € N let {y} }1 be a sequence of different points from
(1/(n+1),1/n) convergent to 1/(n+1). Consider Y = {0} U{y}: k,n € N} and let
7 be the inherited euclidean topology on Y. Let further G be the following topology
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on Y: all points y! are isolated. For every n € N put E, = {y}': k € N}. The
basic neighbourhoods of 0 in G are sets obtained from Y by removing finitely many
FE,,’s and a finite number of points in all the remaining E,’s. It is easy to verify that
the function f: (Y,7) — (Y,G) defined by f(0) =1 and f(y) =y for ally # 0 is
c-upper semicontinuous, since compact sets in (Y, G) are finite, but the graph of f is

not closed since (0,0) € G(f \ G(f).

2. Let (X,U) be a uniform space. The smallest cardinal number of the form |B],
where B is a base for U, is called the weight of the uniformity ¢/ and is denoted by
w(U). (|B| denotes the cardinality of B).

A system is a synonym for an indexed family. If m is a cardinal number, then an
m-system is a system whose index set has cardinality m.

A subset G of a space Y is said to be a G(m)-subset of Y, if it is the intersection
of an open m-system in Y (see [6]), where an open family of a space Y is a family
consisting of open subsets of Y.

Now we state the main theorem:

Theorem 2.1. Let (X,U) a complete uniform space and Y be a topological
space. Let F: Y — X be a multi-valued mapping with totally bounded values
and such that Frac F(y) C F(y) for every y € Y. Then the set of points of upper
semicontinuity of F is a (possibly empty) G(m)-subset of Y, where m = w(lf).

Proof. Put 2 ={y € Y: F is totally bounded at y}. By Lemma 1.1, F is
USC at each point from 2. Now let y € Y be such that F'is USC at y. Let U € U.
There is an element U; from U such that U; ® Uy C U. The upper semicontinuity
of F at y implies that there is a neighbourhood V of y such that F(V)) C Ui[F(y)].
The total boundedness of F(y) implies that there is a finite subset K of X such that
F(y) Cc Ui[K], thus F(V) Cc U[K], i.e.y € 2.

Now let B be a base for U such that |B| = w(l). For each B € B put Gg = {y €
Y: there are V € B(y) and a finite set K C X such that F'(V) C B[K]}, where B(y)
denotes a family of all neighbourhoods of y. It is easy to verify that G is open for
each B € B. Thus 2 = (\{Gp: B € B}, i.e.the set of points of upper semicontinuity
of F is a G(m)-subset of Y, where m = w(lf). O

Corollary 2.2. Let (X, 0) be a complete metric space and Y a topological space.
Let F': Y — X be a multi-valued mapping with totally bounded values and such that
Frac F(y) C F(y) for every y € Y. Then the set of points of upper semicontinuity of
F is a (possibly empty) Gs-subset of Y.

Recall that a (completely regular) space is metric topologically complete if its
topology admits a complete metric.
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Theorem 2.3. Let (X, g) be a metric space. X is metric topologically complete
if and only if for each topological space Y and for each compact-valued mapping
F: Y — X with a closed graph the set of points of upper semicontinuity of F is a
Gs-subset of Y.

Proof. = Suppose that a metric space (X, o) is metric topologically complete
and F': Y — X is a compact-valued mapping with a closed graph. There is a
complete metric d in X topologically equivalent to o. It is easy to see that the multi-
valued mapping F': Y — (X, d) satisfies the assumptions of Corollary 2.2. Thus the
set of points of the upper semicontinuity of F: Y — (X, p) is a Gs-subset of Y.

< Let (X*, 0*) be a completion of (X, p). Put Y = (X*, ¢*). Choose yo € X and
define the multi-valued mapping F': Y — X as follows: F(y) = {y,yo} if y € X and
F(y) = {yo} otherwise.

Then the set of points of upper semicontinuity of F' is the set X. (Let y ¢ X.
There are open sets U,V in Y such that y € U, yo € V and U NV = ). For each
zeUNX, we have F(2) N (X \ V) # 0, i.e. F is not USC at y ¢ X). It is easy to
verify that F' is a compact-valued mapping with a closed graph. By assumption X
is a Gs-subset of Y = (X*, %), i.e. X is metric topologically complete. O

3. In this part we assume that the range space of multi-valued mappings possesses
a complete m-system of open coverings.
A centered family is a family of sets having the finite intersection property.

Definition 3.1 (See [6]). A system {B;: i € I} of open coverings of a space X
is said to be complete if the following condition is satisfied: If I/ is an open centered

family in X such that 2/ N B; # ) for each i € [ then [ U # 0.
Ueu

It follows from Theorem 2.8 in [6] that if X is a Cech-complete space then X
possesses a complete countable system of open coverings of X.

Proposition 3.2 (See [6]). Let {B;: i € I} be a complete system of open
coverings of a regular space X. Suppose that M is a centered family of subsets of
X such that for each i € I there exists an M € M and a finite subfamily U; of B;
which covers M. Then (\ M # 0.

MeM

Theorem 3.3. Let X, Y be topological spaces and let X be a regular space
with a complete m-system of open coverings. Let F': Y — X be a compact-valued
mapping with a closed graph. The set of points of upper semicontinuity of F' is a
(possibly empty) G(m)-subset of Y.

Proof. First denote by Q(F) the set of points of Y at which F is upper
semicontinuous. Let {B;: ¢ € I} be a complete m-system of open coverings of X.
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For each i € I put G; = {y € Y': there are V € B(y) and a finite subfamily U; of 5;
which covers F(V)}.
Then of course G(i) is open for every i € I. Now we prove that Q(F) = () G(3).
iel
Let y € Q(F). Let i € I. The compactness of F(y) implies that there is a finite

subfamily U; of B; such that F(y) C |J U. The upper semicontinuity of F at y
Uuel;
implies that there is V' € B(y) such that F(V) C |J U;ie.y € G;. Thus we have
Uel;
proved that Q(F) C () G(3).
iel
Now let y € [ G(i) and suppose that F' is not upper semicontinuous at y. There
iel

is an open set H in Y such that F(y) € H and F(V) N (X \ H) # 0 for every
V e B(y).

For every V € B(y) choose yy € V and zy € F(yy) \ H. For every V € B(y)

put M(V) = {zy: U C V}. By Proposition 3.2 we have (| M (V) # 0; choose
VeB(y)
a point x from this intersection. Then of course = ¢ H and it is easy to verify that

(y,z) € G(F); ie. (y,x) € G(F), a contradiction.
t

Corollary 3.4 (See [10]). Let X, Y be topological spaces and let X be Cech-
complete. Let F': Y — X be a compact-valued mapping with a closed graph. Then
the set of points of upper semicontinuity of F is a G5 subset of Y.

Corollary 3.5. Let X, Y be topological spaces and let X be locally compact.
Let F: Y — X be a compact-valued mapping with a closed graph. Then the set of
points of upper semicontinuity of F' is open.

Notice that even if Y is compact and X locally compact hemicompact, the set
of points of upper semicontinuity of a compact-valued mapping F: Y — X with a
closed graph can be empty. (See Example 2 in [1]).

4. Denote by M(Y, X) the space of all closed-valued mappings F' from Y to X
such that F(y) # () for every y € Y. If we equip the space of all nonempty closed
subsets CL(X) of X with a uniformity, we can consider the uniform topology on
compacta on M (Y, X). Of course we have many possibilities to do this; if X is a
metric space, we can take the Hausdorff metric on CL(X), or a uniformity of the
Wijsman topology, if X is a locally compact space, then also the Fell topology is
uniformizable [2]. In this paper we will consider a uniformity of the Fell topology.

For a subset A of X put

A" ={BeCL(X): BNA#(}and At = {B e CL(X): BC A}.
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Definition 4.1 (See [2]). Let X be a Hausdorff topological space. The Fell
topology 7 on C'L(X) has as a subbase all sets of the form V~, where V is a
nonempty open subset of X, plus all sets of the form W™, where W is a nonempty
open subset of X with a compact complement.

It is known [2] that if X is a locally compact space, then the Fell topology on
CL(X) is uniformizable and the following family of sets forms a base for a uniformity
F compatible with the Fell topology on CL(X). Let U be a compatible uniformity
on X and let K(X) stand for the family of all nonempty compact subsets of X. For
K e K(X) and U € U, write

[K,U] = {(A1, As) € CL(X) x CL(X): Ay NK C U[Ay] and Ay N K C U[A4]}.

Then the family F = {[K,U]: K € K(X),U € U} forms a base for a uniformity
compatible with the Fell topology on CL(X).

Now the basic open sets for the uniform topology on compacta 7% on M (Y, X)
are the sets

(F,A,[K,U)) ={G e MY, X): (G(y),F(y)) € |[K,U] for all y € A},
where F e M(Y,X), Ae K(Y), K € K(X), U € U.

Theorem 4.2. Let X, Y be locally compact Hausdorff topological spaces. Then
the space U(Y, X) of multi-valued mappings with closed graphs is a closed subset of

Proof. We show that M(Y,X)\ U(Y, X) is open in 7x. Since X is a locally
compact Hausdorff topological space, by Proposition 1.4 the notion of a multi-valued
mapping with a closed graph is equivalent to the notion of a c-upper semicontinuous
multifunction.

Let F € M(Y,X)\ U(Y,X). There is a point p € Y such that F' is not c-upper
semicontinuous at p. Let A be a compact set in Y with p € IntA. Thereis K € K(X)
such that F(p) € (K°)* and F(V)N K # (0 for every V € B(p), where B(p) stands
for the family of all neighbourhoods of p.

For every V € B(p) such that V' C A choose yy € V and v € F(yy) N K. The
compactness of K implies that there is a cluster point € K of {zy: V € B(p),V C
A}. Let H € U be such that H[F(p)]N H[K] = () and H[K] is compact. Let H; € U
be such that HyoHy C H. We claim that theset L = {G € M(Y, X): (G(y),F(y)) €
[H\[K], Hy] for every y € A} N {G € M(Y,X): (G(y), F(y)) € |K, H,] for every
y € A} is a subset of M (Y, X)\ U(Y, X).

Let G € L. Then G(p) N H1[K] = ) and for each V' € B(p) with V' C A there is
2, € G(yy) N H1[K]; i.e. G is not c-upper semicontinuous at p. O
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