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Abstract. The set of points of upper semicontinuity of multi-valued mappings with a
closed graph is studied. A topology on the space of multi-valued mappings with a closed
graph is introduced.
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1. Introduction

In what follows let X , Y be Hausdorff topological spaces. A (multi-valued) map-

ping F : Y → X is said to be upper semicontinuous (USC) at y0, if for every
open set O which includes F (y0) there exists a neighbourhood V of y0 such that

O ⊃ F (V )(=
⋃{F (y) : y ∈ V }.

The outer part of F at y0 is the mapping F̃ : Y → X given by F̃ (y) = F (y)\F (y0)

(see [4]). By the (outer) active boundary of F at y0 (FracF (y0)) we understand

FracF (y0) =
⋂

{Cl F̃ (V ) : V ∈ B(y0)},

where B(y0) stands for a neighbourhood base at y0 (see [3]).
A mapping F : Y → X is said to be c-upper semicontinuous at y0 [1] if for every

open set V containing F (y0) and having a compact complement, there is an open
neighbourhood U of y0 such that F (U) ⊂ V . We say that F : Y → X is c-upper

semicontinuous if it is c-upper semicontinuous at every y ∈ Y .
As usual, we say that F : Y → X has a closed graph if G(F ) = {(y, x) : x ∈

F (y); y ∈ Y } is a closed subset of Y × X with the product topology. Of course if
F : Y → X has a closed graph then F is c-upper semicontinuous and also FracF (y) ⊂
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F (y) for every y ∈ Y . We will see later that in general the opposite is not true. Let

us mention here also papers [7], [8], [9], [11], which deal with the above properties of
multifunctions.
Let (X,U) be a uniform space. We say that a multi-valued mapping F is totally

bounded at y0, if to every U ∈ U there corresponds a neighbourhood V of y0 and a
finite set C such that F (V \ {y0}) ⊂ U [C], where U [C] =

⋃{U [c] : c ∈ C}.
Combining Theorems 8.1 and 10.1 from [4] we obtain the following result:

Theorem A. Let Y be first countable at y0, let (X,U) be a complete uniform
space and F : Y → X a multi-valued mapping. Suppose that F (y0) is closed. Then
F is USC at y0 if and only if (i) FracF (y0) ⊂ F (y0) and (ii) the outer part of F at

y0 is totally bounded at y0.

1. It is easy to see that one implication of the above theorem holds under weaker
conditions.

Lemma 1.1. Let (X,U) be a complete uniform space, Y a topological space and
F : Y → X a multi-valued mapping. If FracF (y0) ⊂ F (y0) and the outer part of F

at y0 is totally bounded at y0 then F is USC at y0.

�����. Suppose F is not USC at y0. There is an open set O ⊂ X such that for

every neighbourhood V of y0 we have F (V ) \O �= ∅. Let B(y0) denote the family of
all open neighbourhoods of y0. For every V ∈ B(y0) choose xV ∈ F (V )\O. Now the

set
⋂

V ∈B(y0)
{xG : G ⊂ V } is nonempty, since (X,U) is complete and for every U ∈ U

there is V ∈ B(y0) such that {xG : G ⊂ V } ⊂ U [C], where C is a finite set in X .
�

The completeness of X in the previous lemma is essential.

Proposition 1.2. Suppose (X,U) is not complete. Then there are a topological
space Y , a point y0 ∈ Y and a mapping F : Y → X such that

(i) FracF (y0) ⊂ F (y0),

(ii) the outer part of F at y0 is totally bounded at y0,

(iii) F is not USC at y0.

�����. There is a Cauchy net {xα : α ∈ A} with no cluster point in X . Let
X∗ be a completion of X . There is a point x ∈ X∗ such that {xα : α ∈ A} converges
to x. Put Y = {xα : α ∈ A} ∪ {x} and for each α ∈ A put Vα = {xβ : β � α} ∪ {x}.
The system τ = {K ⊂ Y : x /∈ K} ∪ {Vα : α ∈ A} is a base of a topology G. Define
a mapping F : (Y,G) → X as follows: F (xα) = xα for each α ∈ A and F (x) = x0,
where x0 is a point from X . It is easy to see that F is totally bounded at x. (Let
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U be a symmetric element from U . There is α ∈ A such that (xα, xβ) ∈ U for each

β � α. Thus Vα is a neighbourhood of x for which F (Vα \ {x}) ⊂ U [xα]).
Since {xα : α ∈ A} has no cluster point in X , FracF (x) = ∅. But F is not upper

semicontinuous. (There are an open set V in X and α ∈ A such that x0 ∈ V and

xβ /∈ V for each β � α. Thus the set {z ∈ Y : F (z) ⊂ V } is not open in Y ). �

Proposition 1.3. Let X , Y be topological spaces. Then F : Y → X has a

closed graph if and only if for every y ∈ Y the following conditions are satisfied:

(i) FracF (y) ⊂ F (y),

(ii) F (y) is a closed set in X .

�����. Of course the “only if” implication is trivial. To prove the other one,

we will suppose that (i) and (ii) are satisfied for all y ∈ Y and F does not have a
closed graph. Thus there is (y0, x) ∈ G(F ) \ G(F ). We claim that x ∈ FracF (y0).
Let V ∈ B(y0) and G ∈ B(x) with G ⊂ X \ F (y0), where B(y0), and B(x) are the
families of all neighbourhoods of y0, x, respectively. Since (y0, x) ∈ G(F ) we have

(V × G) ∩ G(F ) �= ∅. Choose (v, g) ∈ V × G and (v, g) ∈ G(F ); g ∈ G implies that
g /∈ F (y0), i.e. g ∈ F̃ (v). Thus x ∈ FracF (y0) and, by the assumption, x ∈ F (y0), a

contradiction. �

Proposition 1.4. Let X a locally compact space and Y be a topological space.

Let F : Y → X be c-upper semicontinuous with closed values. Then F has a closed

graph.

Proposition 1.5. Let X , Y be first countable topological spaces. Let F : Y →
X be c-upper semicontinuous with closed values. Then F has a closed graph.

�����. Suppose the implication is not true. Thus there is (y, x) ∈ G(F )\G(F );
i.e.x /∈ F (y). Since X , Y are first countable, there are sequences {yn}n in Y and

{xn}n in X such that {(yn, xn)}n converges to (y, x) and (yn, xn) ∈ G(F ) for every
n ∈ �. The openess of X \F (y) and the convergence of {xn}n to x imply that there

exists n0 ∈ � such that xn /∈ F (y) for every n � n0. Now K = {xn : n � n0}∪{x} is
a compact set in X with F (y)∩K = ∅. The c-upper semicontinuity of F at y implies

that there is an open neighbourhood V of y with F (V )∩K = ∅, a contradiction. �

The following example shows that the first countability of X in the above propo-

sition is essential.

Example 1.6. For every n ∈ � let {yn
k }k be a sequence of different points from

(1/(n+1), 1/n) convergent to 1/(n+1). Consider Y = {0}∪ {yn
k : k, n ∈ �} and let

τ be the inherited euclidean topology on Y . Let further G be the following topology
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on Y : all points yn
k are isolated. For every n ∈ � put En = {yn

k : k ∈ �}. The
basic neighbourhoods of 0 in G are sets obtained from Y by removing finitely many

En’s and a finite number of points in all the remaining En’s. It is easy to verify that

the function f : (Y, τ) → (Y,G) defined by f(0) = 1 and f(y) = y for all y �= 0 is
c-upper semicontinuous, since compact sets in (Y,G) are finite, but the graph of f is
not closed since (0, 0) ∈ G(f \ G(f).

2. Let (X,U) be a uniform space. The smallest cardinal number of the form |B|,
where B is a base for U , is called the weight of the uniformity U and is denoted by
w(U). (|B| denotes the cardinality of B).
A system is a synonym for an indexed family. If m is a cardinal number, then an

m-system is a system whose index set has cardinality m.

A subset G of a space Y is said to be a G(m)-subset of Y , if it is the intersection
of an open m-system in Y (see [6]), where an open family of a space Y is a family

consisting of open subsets of Y .
Now we state the main theorem:

Theorem 2.1. Let (X,U) a complete uniform space and Y be a topological

space. Let F : Y → X be a multi-valued mapping with totally bounded values

and such that FracF (y) ⊂ F (y) for every y ∈ Y . Then the set of points of upper

semicontinuity of F is a (possibly empty) G(m)-subset of Y , where m = w(U).
�����. Put Ω = {y ∈ Y : F is totally bounded at y}. By Lemma 1.1, F is

USC at each point from Ω. Now let y ∈ Y be such that F is USC at y. Let U ∈ U .
There is an element U1 from U such that U1 	 U1 ⊂ U . The upper semicontinuity

of F at y implies that there is a neighbourhood V of y such that F (V ) ⊂ U1[F (y)].
The total boundedness of F (y) implies that there is a finite subset K of X such that

F (y) ⊂ U1[K], thus F (V ) ⊂ U [K], i.e. y ∈ Ω.
Now let B be a base for U such that |B| = w(U). For each B ∈ B put GB = {y ∈

Y : there are V ∈ B(y) and a finite set K ⊂ X such that F (V ) ⊂ B[K]}, where B(y)
denotes a family of all neighbourhoods of y. It is easy to verify that GB is open for

each B ∈ B. Thus Ω =
⋂{GB : B ∈ B}, i.e. the set of points of upper semicontinuity

of F is a G(m)-subset of Y , where m = w(U). �

Corollary 2.2. Let (X, �) be a complete metric space and Y a topological space.

Let F : Y → X be a multi-valued mapping with totally bounded values and such that

FracF (y) ⊂ F (y) for every y ∈ Y . Then the set of points of upper semicontinuity of

F is a (possibly empty) Gδ-subset of Y .

Recall that a (completely regular) space is metric topologically complete if its
topology admits a complete metric.
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Theorem 2.3. Let (X, �) be a metric space. X is metric topologically complete

if and only if for each topological space Y and for each compact-valued mapping

F : Y → X with a closed graph the set of points of upper semicontinuity of F is a

Gδ-subset of Y .

�����. ⇒ Suppose that a metric space (X, �) is metric topologically complete

and F : Y → X is a compact-valued mapping with a closed graph. There is a
complete metric d in X topologically equivalent to �. It is easy to see that the multi-

valued mapping F : Y → (X, d) satisfies the assumptions of Corollary 2.2. Thus the
set of points of the upper semicontinuity of F : Y → (X, �) is a Gδ-subset of Y .

⇐ Let (X∗, �∗) be a completion of (X, �). Put Y = (X∗, �∗). Choose y0 ∈ X and
define the multi-valued mapping F : Y → X as follows: F (y) = {y, y0} if y ∈ X and

F (y) = {y0} otherwise.
Then the set of points of upper semicontinuity of F is the set X . (Let y /∈ X .

There are open sets U, V in Y such that y ∈ U , y0 ∈ V and U ∩ V = ∅. For each
z ∈ U ∩ X , we have F (z) ∩ (X \ V ) �= ∅, i.e.F is not USC at y /∈ X). It is easy to

verify that F is a compact-valued mapping with a closed graph. By assumption X

is a Gδ-subset of Y = (X∗, �∗), i.e.X is metric topologically complete. �

3. In this part we assume that the range space of multi-valued mappings possesses
a complete m-system of open coverings.

A centered family is a family of sets having the finite intersection property.

Definition 3.1 (See [6]). A system {Bi : i ∈ I} of open coverings of a space X

is said to be complete if the following condition is satisfied: If U is an open centered
family in X such that U ∩ Bi �= ∅ for each i ∈ I then

⋂
U∈U

U �= ∅.

It follows from Theorem 2.8 in [6] that if X is a Čech-complete space then X

possesses a complete countable system of open coverings of X .

Proposition 3.2 (See [6]). Let {Bi : i ∈ I} be a complete system of open
coverings of a regular space X . Suppose that M is a centered family of subsets of

X such that for each i ∈ I there exists an M ∈ M and a finite subfamily Ui of Bi

which covers M . Then
⋂

M∈M
M �= ∅.

Theorem 3.3. Let X , Y be topological spaces and let X be a regular space

with a complete m-system of open coverings. Let F : Y → X be a compact-valued

mapping with a closed graph. The set of points of upper semicontinuity of F is a

(possibly empty) G(m)-subset of Y .

�����. First denote by Ω(F ) the set of points of Y at which F is upper
semicontinuous. Let {Bi : i ∈ I} be a complete m-system of open coverings of X .
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For each i ∈ I put Gi = {y ∈ Y : there are V ∈ B(y) and a finite subfamily Ui of Bi

which covers F (V )}.
Then of course G(i) is open for every i ∈ I. Now we prove that Ω(F ) =

⋂
i∈I

G(i).

Let y ∈ Ω(F ). Let i ∈ I. The compactness of F (y) implies that there is a finite
subfamily Ui of Bi such that F (y) ⊂ ⋃

U∈Ui

U . The upper semicontinuity of F at y

implies that there is V ∈ B(y) such that F (V ) ⊂ ⋃
U∈Ui

U ; i.e. y ∈ Gi. Thus we have

proved that Ω(F ) ⊂ ⋂
i∈I

G(i).

Now let y ∈ ⋂
i∈I

G(i) and suppose that F is not upper semicontinuous at y. There

is an open set H in Y such that F (y) ⊂ H and F (V ) ∩ (X \ H) �= ∅ for every
V ∈ B(y).
For every V ∈ B(y) choose yV ∈ V and xV ∈ F (yV ) \ H . For every V ∈ B(y)

put M(V ) = {xU : U ⊂ V }. By Proposition 3.2 we have ⋂
V ∈B(y)

M(V ) �= ∅; choose
a point x from this intersection. Then of course x /∈ H and it is easy to verify that

(y, x) ∈ G(F ); i.e. (y, x) ∈ G(F ), a contradiction.
�

Corollary 3.4 (See [10]). Let X , Y be topological spaces and let X be Čech-

complete. Let F : Y → X be a compact-valued mapping with a closed graph. Then

the set of points of upper semicontinuity of F is a Gδ subset of Y .

Corollary 3.5. Let X , Y be topological spaces and let X be locally compact.

Let F : Y → X be a compact-valued mapping with a closed graph. Then the set of

points of upper semicontinuity of F is open.

Notice that even if Y is compact and X locally compact hemicompact, the set
of points of upper semicontinuity of a compact-valued mapping F : Y → X with a

closed graph can be empty. (See Example 2 in [1]).

4. Denote by M(Y, X) the space of all closed-valued mappings F from Y to X

such that F (y) �= ∅ for every y ∈ Y . If we equip the space of all nonempty closed
subsets CL(X) of X with a uniformity, we can consider the uniform topology on

compacta on M(Y, X). Of course we have many possibilities to do this; if X is a
metric space, we can take the Hausdorff metric on CL(X), or a uniformity of the

Wijsman topology, if X is a locally compact space, then also the Fell topology is
uniformizable [2]. In this paper we will consider a uniformity of the Fell topology.

For a subset A of X put

A− = {B ∈ CL(X) : B ∩ A �= ∅} and A+ = {B ∈ CL(X) : B ⊂ A}.
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Definition 4.1 (See [2]). Let X be a Hausdorff topological space. The Fell

topology τF on CL(X) has as a subbase all sets of the form V −, where V is a
nonempty open subset of X , plus all sets of the form W+, where W is a nonempty
open subset of X with a compact complement.

It is known [2] that if X is a locally compact space, then the Fell topology on
CL(X) is uniformizable and the following family of sets forms a base for a uniformity
F compatible with the Fell topology on CL(X). Let U be a compatible uniformity
on X and let K(X) stand for the family of all nonempty compact subsets of X . For
K ∈ K(X) and U ∈ U , write

[K, U ] = {(A1, A2) ∈ CL(X)× CL(X) : A1 ∩ K ⊂ U [A2] and A2 ∩ K ⊂ U [A1]}.

Then the family F = {[K, U ] : K ∈ K(X), U ∈ U} forms a base for a uniformity
compatible with the Fell topology on CL(X).
Now the basic open sets for the uniform topology on compacta τK on M(Y, X)

are the sets

〈F, A, [K, U ]〉 = {G ∈ M(Y, X) : (G(y), F (y)) ∈ [K, U ] for all y ∈ A},

where F ∈ M(Y, X), A ∈ K(Y ), K ∈ K(X), U ∈ U .

Theorem 4.2. Let X , Y be locally compact Hausdorff topological spaces. Then

the space U(Y, X) of multi-valued mappings with closed graphs is a closed subset of

(M(Y, X), τK).

�����. We show that M(Y, X) \ U(Y, X) is open in τK . Since X is a locally
compact Hausdorff topological space, by Proposition 1.4 the notion of a multi-valued

mapping with a closed graph is equivalent to the notion of a c-upper semicontinuous
multifunction.

Let F ∈ M(Y, X) \ U(Y, X). There is a point p ∈ Y such that F is not c-upper
semicontinuous at p. Let A be a compact set in Y with p ∈ IntA. There is K ∈ K(X)

such that F (p) ∈ (Kc)+ and F (V ) ∩ K �= ∅ for every V ∈ B(p), where B(p) stands
for the family of all neighbourhoods of p.

For every V ∈ B(p) such that V ⊂ A choose yV ∈ V and xV ∈ F (yV ) ∩ K. The
compactness of K implies that there is a cluster point x ∈ K of {xV : V ∈ B(p), V ⊂
A}. Let H ∈ U be such that H [F (p)]∩H [K] = ∅ and H [K] is compact. Let H1 ∈ U
be such thatH1◦H1 ⊂ H . We claim that the set L = {G ∈ M(Y, X) : (G(y), F (y)) ∈
[H1[K], H1] for every y ∈ A} ∩ {G ∈ M(Y, X) : (G(y), F (y)) ∈ [K, H1] for every
y ∈ A} is a subset of M(Y, X) \ U(Y, X).

Let G ∈ L. Then G(p) ∩ H1[K] = ∅ and for each V ∈ B(p) with V ⊂ A there is
zv ∈ G(yV ) ∩ H1[K]; i.e.G is not c-upper semicontinuous at p. �
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