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CANTOR-BERNSTEIN THEOREM FOR LATTICES

JAN JAKUBIK, Kosice

(Received October 30, 2000)

Abstract. This paper is a continuation of a previous author’s article; the result is now
extended to the case when the lattice under consideration need not have the least element.
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In the paper [6] a result of Cantor-Bernstein type was proved for lattices which
(a) have the least element, (b) are o-complete, and (c) are infinitely distributive.

In the present paper we modify the method from [6] to obtain a generalization of
the mentioned result such that the condition (a) is omitted and the conditions (b),
(c) are substantially weakened.

We remark that a theorem of Sikorski [10] (proved independently by Tarski [13],
cf. also Sikorski [11]) concerning o-complete Boolean algebras is a corollary of the
result from [6].

1. PRELIMINARIES

We denote by 70 the class of all lattices satisfying the conditions (a), (b) and (c)
above.

Let L be a lattice and o € L. An indexed system (x;);es of elements of L will
be called orthogonal over xq if (i) z; > 2o for each i € I, and (ii) x;(1) A ;2) = Zo
whenever i(1) and i(2) are distinct elements of I. The orthogonality under zg is
defined dually.
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Let o be an infinite cardinal. Consider the following conditions for L:

(bl,) Ifzo € L and (2;):es is an indexed system of elements of L which is orthogonal
over zg and if card I < «, then the join \/ x; exists in L.
iel
(b”) If the assumption of (b/)) is satisfied and if, moreover, the system (x;);cr is
upper bounded in L, then \/ z; exists in L.
i€l
(cl,) If the assumption of (b!)) is satisfied and if, moreover, the join \/ x; exists
iel
in L, then for each element y € L the relation

yn(\z) =\ (yA)

i€l i€l
is valid in L.

We denote by (b/ ), (b”,) and (c.,;) the conditions which are dual to (bl,), (bZ)
or (cl,), respectively.

Let 7.! be the class of all lattices which satisfy the conditions (b)), (c/,), (b”,)
and (c/ ;). Next let 72 be the class of all lattices satisfying (b’,), (c,), (b/,,;) and
(Caa)-

We use the notion of internal direct factor with a given central element of a lattice
in the same sense as in [6].

The main results of the present paper are Theorem 2.7 and Theorem 3.8. The first
one of these theorems says that if L € 7.! and 2° € L, then the Boolean algebra of all
internal direct factors of L with the central element s° is a-complete. Theorem 3.8
is a result of Cantor-Bernstein type for lattices belonging to 7.2, where o = Rp; this
result is stronger than Theorem 2 of [6].

We substiantially apply the methods from [6].

Some theorems of Cantor-Bernstein type for lattice ordered groups and for MV-
algebras were proved in [1]-[5], [7]-[9].

2. INTERNAL DIRECT PRODUCT DECOMPOSITIONS

Let L be a lattice belonging to 7.!, where « is an infinite cardinal. Further let s°
be an arbitrary but fixed element of L.

We use the terminology and the notation as in [5]; the reader is assumed to be
acquainted with the results of Section 2 of [5].

Let I be a set with card/ = a. Assume that for each ¢ € I we have an internal
direct product decomposition

(1) L= (s"L; x L
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with the central element s. We suppose that whenever i(1) and i(2) are distinct

elements of I, then
(2) Liay N Ligzy = {s°}.
For x € L and ¢ € I we denote
z; = a(Li), w; =x(L).

Let z,y € L. We put xRy if (L}) = y(L}). Analogously, we set xRy if z(L;) =
y(L;). Then R; and R} are permutable congruence relations on L with R, AR, = Rmin
and R; V R, = Rpax-

For each congruence relation p on L and each x € L we put

zo={y € L: zoy}.
Then we have
(8)  Li=sly, Li=sh, {2(L)}=s%h Nan, {o(L)}= sk Non,.
We shall systematically apply the relations (3).

2.1. Lemma. Let z° € L. Then

0 0 0
TRy Ry = 127}
whenever (1) and i(2) are distinct elements of I.
Proof. Thisis an immediate consequence of (3). O

Let a,b € L, a < b. Further let i € I. There exist uniquely determined elements
z' and 3® in L such that

(xz)i = bi7 (xz); y,
(W) =ai, y');=bs.

Then

(4) {xi}zaRiﬂbR;, {yi}zaR(i Nbg,.
From the definition of 2° and y* we obtain

(5) z' y" € [a,b] for each i€ I.
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2.2. Lemma. Let i(1) and i(2) be distinct elements of I. Then

DA D g i)y i@

Proof. Put 2/ A2i® = ¢ In view of (5), t > a. Then t € [a,2'")] and
hence according to (4), t € ag,,; similarly, ¢ € ar,, . Thus 2.1 yields that ¢ = a.
Therefore 2 A 27(?) = a. Analogously we obtain ") v y*(?) = b, O

2.3. Corollary. Under the notation as above, the indexed system (x%);c; is
orthogonal over a, and the indexed system (y');cs is orthogonal under b.

Since these systems are bounded, we get

2.4. Corollary. There exist elements x and y in L such that

e=\/2", y=NA\v"
i€l icl
2.5. Lemma. zAy=aandxVy=Hh.

Proof. We apply the same steps as in proving the relations (4) and (5) in [6],
Section 4 with the distinction that instead of infinite distributivity we apply 2.3 and
the relation L € 7.} g

The assertions of 4.3, 4.4 and 4.5 in [6] remain valid for our case (again, in the
proof of 4.3 we have to use Lemma 2.3 above).

Now we can use the same argument as in Section 5 of [6] (instead of Lemma 4.2
of [5] we take Lemma 2.5 above). We apply the definitions of R and R’ on L (cf. [5])
and we obtain

2.6. Lemma. L = (s°)s% x s%, and the relation
SOR = \/ Li

is valid in the Boolean algebra F (L, s°).

By applying the well-known theorem of Smith and Tarski [12] (cf. also Sikorski [11],
Chapter II, Theorem 20.1) we conclude from 2.6 that the following theorem holds.

2.7. Theorem. Let a be an infinite cardinal and let L € 7T.}. Then the Boolean
algebra F(L, s%) is a-complete.
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3. ON LATTICES BELONGING TO 72

If a = Np, then instead of 7.2 we write 72.
Let L be a lattice belonging to 7.2 and s° € L. Suppose that for each n € N we
have an internal direct product decomposition

(1) L= (s"L, x L,
such that, whenever n(1) and n(2) are distinct positive integers, then
(2) Ln(l) N Ln(g) = {80}

We use analogous notation as in Section 2 with the distinction that we now have
N instead of I.
In particular, the relation

(3) sh="\ La
neN
is valid in the Boolean algebra F(L, s%); we have

(4) L = (s")sk x (sg)

and, in view of the duality, (3) yields

(5) (s%) = [ Li-

neN

If a,b,z and y are as in 2.5, then we write
r=z(a,b), y=uyla,b).

3.1. Lemma. Let2® € L. Then xOR is the set of all elements z € L such that

there exist u,v € L with 2°, 2 € [u,v], z(2°,v) = v and y(u,z°) = u.

Proof. This is a consequence of the definition of R (cf. [5], Section 5). O

3.2. Lemma. Let m and n be distinct positive integers. Then L,, € L/ .

Proof. In view of (1) and according to 3.7 in [5] we have
Ly = (8°)(Lyy N Ly) x (L N L).
Thus according to (2),

Ly = (s9{s°} x (LmNL,)=L,NL,.
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Since the element s was arbitrarily chosen, we get
3.3. Corollary. Let m,n be asin 3.2 and x € L. Then

ZR,, € TR .

3.4. Lemma. Letz° € L and suppose that (z"),en is an indexed system of
elements of L such that (i) this system is orthogonal over 2°, and (ii) 2" € xORn for

eachn € N. Let x = \/ z". Then for eachn € N, zR] z".
neN

Proof. Letn € N. Since L € 72, there exists t € L with

t= \/ ™.

meN\{n}

According to 3.3, all elements 2™ under consideration belong to 2%, . Thus ¢ belongs
to the set 2%, as well. Clearly x = 2" Vt. Then zR], (" V 2°), whence zR,,z". [

3.5. Lemma. Let (y")nen be an indexed system of elements of L such that for
eachn € N, y" € L,. Then there exists p € s% such that for eachn € N, p(L,) = y™.
Proof. For each n € N we denote

y" Vst =a" Yyt As® ="

Then in view of (2), the indexed system (z™),en is orthogonal over s°, and (2"),en
is orthogonal under s°. Hence there exist elements

=V = A
neN neN

in L. Thus xRs°Rz, whence

[2,2] C s%.

Also, y" € s% for each n € N.
Let n € N. There exists a uniquely determined element ¢" in L such that

{t"} =2k Nzg,.

Then from the relation z < 2™ we obtain that ¢ belongs to the interval [z,2"] and
hence t" € s%. Put p” = t" Ay". We have p" € [z,t"], thus

(6) P Ryz.
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Therefore 3.2 yields that the indexed system (p™)nen is orthogonal over z. Hence

p=\ 1"

neN

there exists

in L. Clearly p € [2,2] C s%. In view of 3.4, for each n € N we have

(7) pR,p".

Since 2™ R} t" we get
(@™ Ay )R, (" Ay"),

/
n

thus y™R! p™. Hence in view of (7), y" R),p. But y™ € L, and hence p(L,) =y". O

3.6. Lemma. Letz,y € s%. Suppose that x(L,) = y(L,) for eachn € N. Then
x=y.

Proof. Denote a =z Ay, b=2xVy. Then a(L,) = b(Ly,) = z(L,) for each
n € N. It suffices to show that a = b.

Let n € N. Put a(Ly,) = t. Then {t} = L, Nar, . Hence aR,t and similarly bR, t,
which implies that aR}b.

We have a,b € s%. Then there exists an indexed system (2"),en which is orthog-
onal over a such that aR,z" for each n € N and \/ 2™ = b (cf. the definition of R

neN
in [6]).
From the relations a < 2™ < b and aR),b we obtain aR] z", whence a = 2™ for
each n € N. Thus b = a. O
Consider the mapping
p: s(}% — H L,

defined by

for each = € s%.
From the definition of ¢ we immediately obtain that ¢ is a homomorphism. In
view of 3.5, ¢ is an epimorphism. According to 3.6, ¢ is a monomorphism. Hence

¢ is an isomorphism of s% onto [] L,. All L, are sublattices of s% containing the
neN
element s°. If x € L, for some n € N, then (¢(x)), = = and (¢(z)), = s° for

m # n. Hence in view of (3) we have

3.7. Lemma. Let (1) and (3) be valid. Then

V Lo =] Zn-

neN neN
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3.8. Theorem. Let L; and Ly be lattices belonging to 7.2. Suppose that

(i) L is isomorphic to some direct factor of Lo;
(ii) Lo is isomorphic to some direct factor of L.

Then Ly is isomorphic to Ls.

Proof. It suffices to apply the same argument as in proving Theorem 2 of
[6] (Section 6) with the distinction that instead of Lemma 6.3 from [6] we now use
Lemma 3.7. (]

Theorem 3.8 generalizes Theorem 2 of [6].

4. EXAMPLES

4.1. Let N be the set of all positive integers with the usual linear order and let
A be a two-element lattice. Put B = A x N, L = BU {w}, where b < w for each
b€ B. Then L € 7! N2 for each infinite cardinal «, but L fails to be infinitely
distributive.

4.2. Let L be as in 4.1 and let Ly be a sublattice of L such that L; = L\ {w}.
Then L; € 7} NT2, L is infinitely distributive and fails to be o-complete.

Now let us return to the conditions (b)), (b)), (b2), (b”,), (c,,) and (/). We
denote the system of these condition by S. Let a be an arbitrary infinite cardinal.

It is obvious that (b)) = (b%) and (b,,) = (b,).

4.3. Let F be the system of finite subsets of the set N; the system F' is partially
ordered by the set-theoretic inclusion. Then F' satisfies all the conditions from S
except (bL).

4.4. Let F be as in 4.3 and let I} be a lattice which is dual to F'. Let a be an
arbitrary infinite cardinal. Then F} satisfies all the conditions from S except the

condition (b/ ;).

4.5. Let F be as in 4.3 and let N be the set of all positive integers with the
natural linear order. The lattice dual to N will be denoted by N'. We may assume
that FNN = (. Put L = FUN. The partial order in L is defined as follows:
for each x € F and each y € N we put x < y. If z,y € F or z,y € N, then the
relation x > y has its original meaning (deduced from F or from N, respectively).
The lattice L satisfies all conditions from S except (b)) and (b%).

4.6. Let L be as in 4.5 and let L; be a lattice dual to L. Then L satisfies all
conditions from S except (b’ ;) and (b” ).
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4.7. Let L be as in 4.5. We denote by w the greatest element of L. Further, let

L1 be the sublattice of L with the underlying set F U {w}. Then L; satisfies all the
conditions of the system S except (c.,).

4.8. Let L; be as in 4.7 and let Ly be a lattice dual to L. Then Lo satisfies all

the conditions of S except (c,;)-
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