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ON THE o-FINITENESS OF A VARIATIONAL MEASURE
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Abstract. The o-finiteness of a variational measure, generated by a real valued function,
is proved whenever it is o-finite on all Borel sets that are negligible with respect to a o-finite
variational measure generated by a continuous function.

Keywords: variational measure, H-differentiable, H-density

MSC 2000: 26A39, 26A24

1. INTRODUCTION

In 1994, a question was posed by W. Pfeffer (see [13]) whether the absolute conti-
nuity of a variational measure, generated by a real valued function, with respect to
the Lebesgue measure would imply its o-finiteness. The affirmative answer was first
given in [2], providing a full descriptive characterization of the Henstock-Kurzweil
integral (see also [14], and [4], [5], [6], [8] for higher dimensional results). Then in
[18], strengthening the result presented in [2], the author proved that a variational
measure is o-finite whenever it is o-finite on all subsets of zero Lebesgue measure (see
also [3] for a variational measure related to a certain class of differentiation bases).
In this paper we show that the same result holds if the Lebesgue measure is replaced
by a suitable variational measure. Namely, the variational measure V, F', generated
by a function F': [a,b] — R, is o-finite on [a, b] whenever it is o-finite on all subsets
having measure zero with respect to a o-finite variational measure V,U generated by
a continuous function U: [a,b] — R. We derive some results on the differentiability
of the function F' with respect to U, and a representation theorem for the variational
measure V, F in terms of the Lebesgue integral.
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2. PRELIMINARIES

If E C R, then |E| and intE denote the outer Lebesgue measure and the interior
of E, respectively. All functions we consider are real-valued. By (L) [ we denote
the Lebesgue integral. We always consider nondegenerate subintervals of R. For
¢,d € R with ¢ < d, we denote by [c,d] the compact subinterval of R with endpoints
c and d, and by (¢, d) the open one. A collection of intervals is called nonoverlapping
whenever their interiors are disjoint. Throughout this note [a,b] will be a fixed
interval. A partition in [a,b] is a collection P = {([a1,b1],21),- -, ([ap, bpl, zp)}
where [a1,b1], ..., [ap, bp] are nonoverlapping subintervals of [a, b] and z; € [a;, b;] for
t=1,...,p. A positive function § on F C [a,b] is called a gauge on E. Given a
gauge ¢ on [a,b], a partition P = {([a1,b1],21), ..., ([ap, bp], xp)} in [a,b] is called

(i) 0-fine if b; —a; < §(x;), i =1,...,p;
(i) of [a,b] if U as, bi] = [a,b];
i=1
(iii) anchored in E if x; € E C [a,b] for eachi=1,...,p.

Let H: [a,b] — R be a given function. The wariational measure of H (see [17]
and [2]) is the metric outer measure defined for each E C [a,b] by

P
V.H(F) = inf su H(b;)) — H(a;
(E) =in Pp;| (bi) — H(ai)|

where the infimum is taken over all gauges d on F, and the supremum over all §-fine
partitions P = {([a1,b1],21), ..., ([ap, bp], zp)} anchored in E.

If V.H(N) = 0, then the set N C [a, b] is called H-negligible. For details on metric
outer measure we refer to [15] and [17]. We recall that H-negligible sets are V, H-
measurable, and any set that differs from a V, H-measurable one by an H-negligible
set is itself V, H-measurable. We also recall that the restriction of a metric outer
measure to the Borel sets is a measure.

ViH is said to be o-finite on E C [a,b] if the set E is the union of sets E,,
n = 1,2,..., satisfying V., H(E,) < oco. A variational measure V. F is said to be
absolutely continuous with respect to V. H if V,F(N)=0 for any H-negligible set
N C [a,b].

Remark 2.1. (i) Let « € [a,b]. Then H is continuous at z if and only if
ViH({z}) =0.
(if) If H is a continuous monotone function, then V. H is the Lebesgue-Stieltjes
measure associated with H, in which case
(a) ViH([c,d]) = H(d) — H(c) for any subinterval [c, d] C [a, b];
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(b) ViH is Gs-regular, i.e.for every E C [a,b] there is a V, H-measurable Gs set
Y C [a,b] containing E for which V., H(FE) = V. H(Y) (see [17, p. 62]).

According to [10, p.416] a set E C [a,b] is said to be H-null if it is the union
of a countable set and an H-negligible set. A property is said to hold H-almost
everywhere (abbreviated as H-a.e.) if the set of points where it fails to hold is H-
null. However, if H is a continuous function, by Remark 2.1(i) we have that a set is
H-null if and only if it is H-negligible.

Let F and H be any two functions on [a,b]. We need some definitions and results
on the differentiability of the function F' with respect to H. The lower and upper
derivative of F' with respect to H,

L Fy) - F - : F
Dy F(z) =liminf ——~———= and DpgF(x)=limsup ———+—,
P =W )~ H ) = ERS T )~ @)
are defined for all z € [a,b] for which H(y) # H(z) in a neighborhood of x.

If Dy F(x) = DgF(x) # +oo this common value is denoted by Fj; and F is said
to be H-differentiable at x. Moreover, set

Dl () = limsup 50—

g F(z) =limsup —————.
y—e |[H(y) - H(z)l

The following result on H-differentiability will be useful. We point out that in [10]

a function F is said to be VBG® if V. F is o-finite on [a, b].

Lemma 2.2 [10, Proposition 3.10]. Let F, H: [a,b] — R be given. If the vari-
ational measures V. F and V. H are o-finite on [a,b], then F is H-differentiable H-

a.e.in [a, b].

The following lemma can be proved by standard arguments (cf. for example [12,
Proposition 5.3.3]).

Lemma 2.3. Let F': [a,b] — R be given. If H: [a,b] — R is a strictly increasing
function, then for each x € [a,b] we have

— . F(d) — F(c)
(1) DpF(x) = 1%f ?61715 m

where ¢ is a positive number and the supremum is taken over all subintervals [c, d] of
[a,b] with 2 € [¢,d] and d — ¢ < §. If in addition H and F are continuous at x, then
the supremum in (1) can be taken over all subintervals [c,d] of [a,b] with z € (c,d)
andd—c<§é.
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Lemma 2.4. Let F': [a,b] — R be a continuous function. If H: [a,b] — R is a

continuous strictly increasing function, then Dy F is Borel-measurable.

Proof. In view of Lemma 2.3, Dy F(z) can be written as in (1) where the
supremum is taken over all subintervals [c,d] of [a,b] with z € (¢,d) and d — ¢ <
d. Then by standard arguments (see for example [17, Theorem 4.2]), the upper
derivative Dy F is Borel-measurable. O

Clearly the same considerations of Lemma 2.3 and Lemma 2.4 apply to D, F(x)
and |D|gF(z).

3. THE VARIATIONAL MEASURE

In order to study the properties of a variational measure, we introduce the follow-
ing notion of H-density.

Definition 3.1. Let H: [a,b] — R and let E be a subset of [a,b]. We say that
a point x € [a, b] is a point of H-density for E if

H(EN [z —r,
1imV (ENfz—rz+7r])

=1.
r—0t  ViH([x —rx+7])

The following lemma is a particular case of [11, Corollary 2.14].

Lemma 3.2. Let H: [a,b] — R be a continuous and strictly increasing function.
Let E be a V,H-measurable subset of [a,b]. Then H-almost all points of E are
H-density points for F.

In view of Remark 2.1 (ii) we have that if H: [a,b] — R is a continuous and strictly
increasing function, then V, H is the corresponding Lebesgue-Stieltjes measure. Now
we point out (see for example [7]) that the Vitali covering theorem holds for V. H.
Precisely, if a class of closed intervals covers a subset A C [a, b] in the sense of Vitali,
then there is a countable disjoint sequence of those intervals whose union differs from
A by at most an H-negligible subset. In the following proposition we prove a result
on the o-finiteness of a variational measure by a technique similar to that used in [3,
Theorem 3.1].

Proposition 3.3. Let F': [a,b] — R be given and let H: [a,b] — R be a con-
tinuous and strictly increasing function. If V. F' is o-finite on all H-negligible Borel
subsets of [a, b], then V. F is o-finite on [a, b].
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Proof. Let @ be the set of all points « € [a, b] for which V. F' is not o-finite on
any open interval (¢, d) of [a, b] containing x. Clearly @ is closed and has no isolated
points. Thus @ is a perfect set.

Now for any given interval I C [a,b], let {I;} denote the sequence of intervals
complementary to @ in I. Then a compactness argument shows that V. F is o-finite
on I; for each j. In particular, V. F is o-finite on the complement of @ in [a,b].
Therefore if V. H(Q) = 0, by the hypothesis it follows that V. F is o-finite on [a, b].

Assume by contradiction that V., H(Q) > 0 and let K¢ be the set of all points of Q
which are H-density points for Q. By Lemma 3.2, V,H(Q \ Kg) = 0. Let K denote
the set of all x € K¢ for which the following condition holds: if I C [a,b] is any
interval containing x, then V., H (Ko NintI) > 0. We claim that V. H(Kqg \ K) = 0.
The family B of all intervals I C [a, b] for which V., H(K¢gNintI) = 0 is a Vitali cover
of the set Ko \ K. By the Vitali covering theorem for Lebesgue-Stieltjes measures
there is a disjoint sequence {I,,} in B with z; € (K¢g \ K) N I,,, such that

2) KH(KQ\K (UI )>

For each i we have V,H(Kg Nintl;,) = 0, which together with the continuity of H
implies V. H (K¢ N I,) = 0. Then we have

(3) V*H(KQ N (U Im)) = 0.

Thus by (2) and (3) we have

V*H(KQ\K)V*H<KQ\K (UI )>+V*H<KQ\K (UI ))

We show now that V, F'is not o-finite on KNI, whenever I is an interval of [a, b] which
intersects K. As before let {I;} denote the sequence of intervals complementary to
Q@ in I. Write

I=(KNnDU(Q\K)NI)U (UI)

and by Remark 2.1 (ii)(b) find an H-negligible G5 set Y C [a,b] containing @ \ K.
Then we get

V.F(I) < VLF(KNI) +V.F(Y N 1)+ V*F<U Ij).
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By the hypothesis V. F' is o-finite on Y N I, and we have shown that it is o-finite
on (JI;. Hence the o-finiteness of V., F' on K NI would imply its o-finiteness on I,

J
which is not the case. This implies that for any gauge 6 we have

p
(4) Sl}gPZlF(bi) — F(a;)| = 00

i=1
where P = {([a1,b1],21),. .., ([ap, bp], xp)} runs over all §-fine partitions anchored in
KnI.

Fix an open interval (¢, d) containing a point of K. In view of Remark 2.1 (ii)(a),
we may assume that V. H((c,d)) < 1/2. Using (4) we can choose a finite collection
{[al(.l), bl(.l)], i =1,...p1} of intervals contained in (¢, d), such that

pP1
STIFGY) - Fai)] > 2.
=1

We may assume that the family consists of at least two intervals. Also we have that

the interior of each [a; (1) b( )] intersects K. Clearly,

ZVH M b)) < 1/2.

Thinking of [a,b] as [ago) bgo)], we construct inductively finite collections {[a; (k).

b(k)] i=1,...,px} such that the following conditions are satisfied for k = 1,2, .. .:

() K (@™ by £0fori=1,...p;

(k),bgk)] is contained in some [agk_l), b§k_1)];

(ii) each [a;
[a( 1) b(k 1)]
J

)
(iii) contains at least two intervals [az(-k), bz(-k)];
(iv)
(V)

ea
Pk
V.H (la? b)) < 27,
=1
|F(b§k)) - F(az(-k))| > 2F foreach j =1,...pp_1.
[ (k) b(_k)]c[a(‘k‘fl) b(k—l)]

x Pk
Now we define N = [ U [ (k) bgk)]. From conditions (i)—(iv) it follows that N is
k=1i=1

a perfect H-negligible set. As V. F'is o-finite on N, we can write N = U N, where
=1
Ny are disjoint V, F-measurable subsets of finite V, F-measure. Choose a gauge 6 on

N such that for every integer s > 1

supZ|F F(a;)] < o0
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where P = {([a1,b1],21),. .., ([ap, bp], xp)} runs over all §-fine partitions anchored in
Ns. Let L, = {z € N: §(z) > 1/m} for m = 1,2,.... Since N = {J (L, N Ny),

m,s

using the Baire category theorem we conclude that there exist integers m and s and
an interval I with N NI # () such that L,, N Ny is a dense subset of N N 1. We may
assume |I| < 1/m. By the choice of § we have

P
(5) sup D™ 1P(b:) — Fias)] < oo

i=1
where P = {([a1,b1],21),. .., ([ap, bp],xp)} runs over all §-fine partitions anchored in

L,,NN,. Since I intersects N, then for all sufficiently large k there is some j such that

[agk_l), b§k_1)] C I. Each interval [al(.k),bgk)] C [a§k_1),b§k_1)] contains a point of N

and consequently a point, say z;, of L, N Ns. Then {([al(.k), bz(-k)], Tik): [al(.k),bgk)] C

(k—1) b(_kq)]
Vg

af

i } is a d-fine partition anchored in L,, N N,. Condition (v) implies

3 IF(b) — F(a(V)| > 2*.
i [a(_k)7b(_k)]c[a(_k—1) ,b(‘k—l)]

For a sufficiently large k, the last inequality contradicts (5), and the proposition is
proved. (I

Theorem 3.4. Let F': [a,b] — R be given and let U: [a,b] — R be a continuous
function such that V..U is o-finite on [a, b]. If V. F is o-finite on all U-negligible Borel
subsets of [a,b], then V, F is o-finite on [a, b].

Proof. Since U is continuous we observe that V.U coincides with the full
variational measure AU* introduced by Thomson in [17]. Then by [17, Theorem 7.8]
the function U is VBG, in the sense of Saks and by a theorem of Ward (see [16,
p. 237]) there exists a continuous strictly increasing function H such that |D|yU(x) is
finite at every x € [a, b]. Therefore by [10, Lemma 3.8], V..U is absolutely continuous
with respect to V. H. This last property and the hypothesis imply that V. F' is o-
finite on all H-negligible Borel subsets of [a,b]. By Proposition 3.3, the o-finiteness
of V. F on [a,b] follows. O

Corollary 3.5. Let F': [a,b] — R be given and let U: [a,b] — R be a continuous
function such that V..U is o-finite on [a,b]. If V. F is o-finite on all U-negligible Borel
subsets of [a, b], then F is U-differentiable U-a.e. in [a, b].

Proof. By Theorem 3.4, V,F is o-finite on [a,b]. Then the corollary follows
from Lemma 2.2. g
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As a corollary of Theorem 3.4, we obtain a recently published result of V. Ene [9,
Theorem 3.2]. We whish to point out that this result allows one to furnish a full
descriptive characterization of the Henstock-Stieltjes integral introduced by Faure in
[10] (see [9, Theorem 5.1 (iii)]).

Corollary 3.6. Let F': [a,b] — R be given and let U: [a,b] — R be a continuous
function such that V.U is o-finite on [a,b]. If V. F is absolutely continuous with
respect to V.U, then V. F is o-finite on [a, b].

The following proposition allows us to represent V, F' on Borel sets in terms of the
Lebesgue integral with respect to a o-finite variational measure. It is based on a
result of B. Bongiorno [1, Theorem 1] where a finite measure is considered.

Proposition 3.7. Let F': [a,b] — R be given and let U: [a,b] — R be a continu-
ous function such that V.U is o-finite on [a,b]. If V. F is absolutely continuous with
respect to V.U, then

(6) V.F(E) = (L) /E TaAR VA

for every Borel set E C [a,b].

Proof. Inview of Corollary 3.5 the variational measure V. F' is o-finite on [a, b].
Therefore by Lemma 2.2, FY; exists U-a.e. We observe that by the absolute continuity
of V.. F with respect to V.U and Remark 2.1(i), the function F' is continuous. Let
E C [a,b] be a Borel set.

Assume first that U is strictly increasing. Since the set of all = € [a, b] for which
F/;(z) # DyF(z) is U-negligible and by Lemma 2.4 Dy F is Borel-measurable, we
have that F7; is V. U-measurable. Thus the Lebesgue integral (£) [, |F{,|dV.U exists
(possibly equal to +00). By Remark 2.1(ii), V..U is the Lebesgue-Stieltjes measure
generated by U and V,.U([c,d]) = U(d)—U(c). Thus FY; coincides with the derivative
of the set function [¢,d] — F(d) — F(c) with respect to the measure V,U.

Hence (6) follows by [1, Theorem 1] (cf. also [14, Proposition 10]).

Assume now V, U to be o-finite and let H denote, as in the proof of Theorem 3.3, a
continuous strictly increasing function on [a, b] such that V, U is absolutely continuous
with respect to Vi, H. Then by the first part of the proof we get

(7) V.U(E) = (£) /E U | AV, .

The hypothesis implies that V. F' is absolutely continuous with respect to V. H, hence
we also have

(8) V.F(E) = (L) /E \Fy| VL H.

144



Let N; denote the H-negligible, and hence U-negligible, subset of [a, b] such that F,
and Uy, exist for each z € [a,b] \ N1. Now let Ny = {z € [a,b] \ N1: Uj(x) = 0}.
We observe that Ny is V, H-measurable. Choose an ¢ > 0. Given z € N», find a
d(z) > 0 such that

U(d) — U(e)] < e(H(d) — H(c))

for any subinterval [c,d] of [a,b] with @ € [¢,d] and d — ¢ < §. If P =

{([a1,b1],z1), ..., ([ap,bp],zp)} is a d-fine partition anchored in N», then
P
D Ub:) = Ulai)| < e(H(b) — H(a)).
i=1

As € is arbitrary, the set Ny is U-negligible. Then the set N = N1UNj is U-negligible,
and for any x € [a,b] \ N we have

9) Ffy(x) = Fyy (2)(Up (2)) 7"

Since by (7), for every V. H-measurable function g: [a,b] — [0, c0] we have

<z:>/ gdV.U = w)/ UyylgdV. A,
E E

by virtue of (8) and (9) the theorem follows for g = |FY;|. O
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