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Abstract. It is shown that pseudo BL-algebras are categorically equivalent to certain
bounded D R/-monoids. Using this result, we obtain some properties of pseudo B L-algebras,
in particular, we can characterize congruence kernels by means of normal filters. Further,
we deal with representable pseudo B L-algebras and, in conclusion, we prove that they form
a variety.
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1. CONNECTIONS BETWEEN PSEUDO BL-ALGEBRAS AND D R/{-MONOIDS

Recently, pseudo BL-algebras were introduced by A.Di Nola, G. Georgescu and
A.Torgulescu in [3] as a noncommutative extension of Héjek’s BL-algebras (see [6]).
An algebra 2 = (A4,V,A,®,—,~,0,1) of type (2,2,2,2,2,0,0) is called a pseudo
BL-algebra iff (A,V,A,0,1) is a bounded lattice, (4,®,1) is a monoid and the fol-
lowing conditions are satisfied for all z,y, z € A:
D) zoy<zife<y—-ziffy <o~z
2) zhy=(@—y)0r=20(r~y),
@) @—yVy—z)=@~yVy~w~z)=L1
By [3, Corollary 3.29], pseudo BL-algebras satisfying the identity

(x~~0)—0=(x—0)~0=2z

are the duals of pseudo M V-algebras.

In the same way, (noncommutative) DR{-monoids extend Swamy’s D R{-semi-
groups which were introduced in [12] as a common generalization of abelian ¢-groups
and Brouwerian algebras.
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An algebra 2 = (A,+,0,V,A,—, ) of type (2,0,2,2,2,2) is a dually residuated
lattice ordered monoid, or simply a DR{-monoid, iff
(1) (A,+,0,V,A) is an f-monoid, that is, (4, 4+, 0) is a monoid, (A, V, A) is a lattice
and, for any z,y, s,t € A, the following distributive laws are satisfied:

s+(xVy) +t=(s+ax+t)V(s+y+t),
s+H(xAy)+t=(s+x+)A(s+y+t);
(2) for any x,y € A, x — y is the least s € A such that s+ y > z, and x «— y is the

least t € A such that y +t > ;
(3) A fulfils the identities

(z—=y)VO)+y<zVy, y+((z—y)V0) <z Vy,

T
r—z20, z—zx=>0.

Note that the inequalities + — = > 0 and © «— = > 0 can be omitted, and the
condition (2) is equivalent to the system of identities (see [10])

=y +y>z y+(r—y) >a,
r—=y<(zVz)—~y, z—y< (zVz)—y,
(x4+y)—~y<z, (y+a)—y<a

In [11], mutual relationships between B L-algebras and bounded representable com-
mutative D R{-monoids are described.

Theorem 1.1. Let A = (A,V,A,®,—,~,0,1) be a pseudo BL-algebra. If we
set

T+Y =0y, Vgy =T ANy, TNqYy:=xVYy,
r—=y=y—x, r~—y:=y~z 0g:=1, 15:=0
for any x,y € A, then Uyg = (A, +,04,Va, Na, —, ) is a bounded D R{-monoid with
the greatest element 14. In addition, this D R{-monoid satisfies the identities
» (@ = y) Aa (y = x) = 0q,
*
(x ~— y) Na (y ~— ) = 04.
Proof. Since (4,0,1,V,A) is an ¢-monoid, by [3, Propositions 3.3, 3.9], so
is (A,4,04,Vd,Adq). The rest follows directly by the definitions. Note that if a
DR¢-monoid 2 contains the greatest element 14 then 04 is its least element, by [8,
Theorem 1.2.3]. O
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In view of Theorem 1.1, it is easily seen that in the definition of a pseudo BL-
algebra, the condition (1) can be equivalently replaced by the following identities:

(x—y)or<y, 20 (@ ~y) <y,
t—oyzax—(YAz), c~y2a~ (YAz),
y—(zoy) >z y~(yoOx) >

Consequently, pseudo BL-algebras form a variety of algebras of type (2,2,2,2,2

) ) ) ) )

0,0). This variety is arithmetical; in accordance with [8, Theorem 3.1.1], the Pixley
term of the variety of pseudo BL-algebras can be taken as follows:
p(@,y,2) =((z ~y) = 2)A((z~y) = 2)A(zV 2).
Theorem 1.2. Let 2 = (A, +,0,V,A\,—, ) be a DR{-monoid with the greatest
element 1. For any x,y € A set
TOY:=r+Y, xVagy =T Ny, TNqYy = VYy,
T—oyi=y—x, r~y:=y~—uz, 0g:=1, 14:=0.

Then Aq = (A, Va, N, ©, —,~>,04,14) is a pseudo BL-algebra if and only if 2 sat-
isfies ().

Proof. In any DR/-monoid we have
tVy=((y—2)vVo)+z=x+ ((y — ) V0).
Since 2 is bounded, that is, 0 < x < 1 for any = € A, it follows that
TAY=(T—-y)Or=00 (T~ y).
The rest is obvious. O

Let PBL be the category of pseudo BL-algebras, that is, the category whose
objects are pseudo BL-algebras and morphisms are homomorphisms of pseudo BL-
algebras. Let DRL;(,) be the category of bounded D R/-monoids satisfying (). Its
morphisms are homomorphisms of D R/{-monoids which preserve also 1, thus in the
sequel, bounded DR{-monoids are regarded as algebras (A, +,0,V,A,—,+—,1) of
type (2,0,2,2,2,2,0).

Theorem 1.3. The categories PBL and DRL () are equivalent.

Proof. Theorems 1.1 and 1.2 enable us to define a functor F: PBL — DRL ()
as follows: (i) F(A) = 2, for any pseudo BL-algebra 2, and (ii) F(h) = h for
any pseudo BL-homomorphism h. It is easy to see that F is really a categorical
equivalence. O
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2. FILTERS

According to [3], a subset F of a pseudo BL-algebra 2 with the following properties
is said to be a filter of 2:
(F1) 1 € F;
(F2) Va,y e F;2 0y € F;
(F3) Ve FVye Aja<y=ycF.

For any subset M C A, the intersection of all filters containing M is called a filter
generated by M and denoted by [M). It is clear that

[M)={z€A; x>a1O..0a, for some ay,...,a, € M and n > 1},
and if we write briefly [a) for [{a}) then
[a) ={x € A; © > a" for some n > 1}.

In Section 1, we have already proved that D R¢-monoids include the duals of pseudo
BL-algebras. It is obvious that F' C A is a filter of a pseudo BL-algebra 2 iff it is
an ideal of the induced bounded D R/-monoid 24, that is,

(I1) 04 € F;
(12) Vaz,y e F;x+y € F;
(I38) Vee FVye Ajx 2qy=—y € F.

Ideals of noncommutative D R¢-monoids were studied in [9]. Considering the above
facts, we immediately obtain the following results.

Proposition 2.1. The set of all filters of any pseudo BL-algebra 2|, ordered by
set inclusion, is an algebraic Brouwerian lattice. For any filters F, G of 2, the relative
pseudocomplement of F' with respect to G is given by

Fx«G={a€c A, avVaxeG forallz e F}.

Let 2 be a pseudo BL-algebra and X C A. The set
Xt={acA ava=1forany z € X}

is called the polar of X. For any x € A we write 2 instead of {z}*.
A subset X of A is a polar in A iff X =Y for some Y C A.

Proposition 2.2 [3, Propositions 4.38, 4.39]. For all subsets X,Y of a pseudo
BL-algebra 2, (i) X+ is a filter of 2, (ii) X C X*+, (iii) X C Y implies Y+ C X+,
(iv) X+ = xX++t,
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Proposition 2.3. For any subset X of a pseudo BL-algebra 2, X is a polar in
Aiff X = X+,

Proof. Let X =Y, then X++ =y+1L =yvL =X. O
By Proposition 2.1, the pseudocomplement of a filter F' is

F*={a€A; aVz=1forany z € F}.

Moreover, it is clear that F- = F* whenever F is a filter, and conversely, any polar
is the pseudocomplement of some filter; in fact, X = (X*)*. Thus the polars in any
pseudo BL-algebra are precisely the pseudocomplements in the lattice of its filters.
Therefore, by the Glivenko-Frink Theorem, we directly obtain

Theorem 2.4. The set of all polars in any pseudo BL-algebra, ordered by set
inclusion, is a complete Boolean algebra.

A filter F of a pseudo BL-algebra 2 is said to be normal iff it satisfies the following
condition for each z,y € A:

r—yel < x~yck.
Proposition 2.5. For any filter F', the following conditions are equivalent:
(i) F is normal;
(ii) @ F =F®ux for each x € A.
Proposition 2.6. If F' and G are normal filters of 2 then

FvG={z€A; z>2a®b for somea € F,b € G}.

In addition, F'V G is a normal filter. Consequently, normal filters of any pseudo
BL-algebra form a complete sublattice of the lattice of all its filters.

Theorem 2.7. In any pseudo BL-algebra, there is a one-to-one correspondence

between the normal filters and the congruence relations. In fact, F corresponds to
O(F) defined by

(z,y) € O(F) = 01(F) <= (z—y)A(y—x) €F,
or equivalently,
(x,y) €O(F) =09(F) <= (z~y)A(y~x)€F.
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As proved in [3], and in general for noncommutative DR¢-monoids in [9], if F
is not a normal filter then the binary relations defined in the previous theorem,
O1(F) and O5(F), are two distinct congruence relations on the distributive lattice
L£(A) = (A,V,A,0,1). In the quotient lattices £(2)/01(F) and £(A)/O2(F') we have

(2.1) [2]01(F) < [Y]O1(F) <= 2 —y e F
and

(2.2) [2]02(F) < [y]O2(F) <= z~y€EF,
respectively.

Let 2 be a pseudo BL-algebra. A filter F' of 2 is said to be prime if it is a finitely
meet-irreducible element in the lattice of filters of 2.

By [3, Theorem 4.28], for any filter F' of a pseudo BL-algebra 2 and for each ideal
I of the lattice £(2), if F NI = () then there exists a prime filter P of A with F' C P
and PNI = (). Consequently, every proper filter is the intersection of all prime filters
including it. In particular, the intersection of all prime filters is equal to {1}.

Theorem 2.8. For any filter F' of a pseudo B L-algebra 2, the following conditions
are equivalent:
(i) F is prime;
i) for all filters G, H of A, GNH C F implies G C F or H C F;
for any z,y € A, x Vy € F impliesx € F ory € F;
for any x,y € A, x Vy =1 impliesx € F ory € F;

for any z,y € A, x ~ye€ Fory~xel;

£(A)/01(F) is totally ordered;

L£(A)/O2(F) is totally ordered;

(ix) the set of all filters including F' is totally ordered under set inclusion.

)
)
)
(v) foranyz,y € A,x wy€ Fory—xz€F;
)
)
)

Remark. The equivalence of (iii), (v), (vi), (vii) and (viii) is due to [3, Propo-
sition 4.25].

Proof. (i) = (ii): Using the distributivity of the lattice of filters, GN H C F
implies F=FV(GNH)=(FVG)N(FVH), whence F=FVGor F=FVH,
that is, F D Gor FF D H.

(ii) = (iii): Obviously, z Vy € F yields [x) N [y) = [z Vy) C F. Hence, by (ii),
[t) CFory) C Fand thusz € Fory € F.

(iii) = (iv): This is evident since 1 € F'.

204



(iv) = (v) and (iv) = (vi): By the definition of a pseudo BL-algebra,
=y V(y—a)=(@wyVy~r) =1,

which implies the assertion by (iv).
(v) = (vii) and (vi) = (viii): This is obvious from (2.1) and (2.2), respectively.
(vii) = (ix): If F C G,H and neither G C H nor H C G then there exist
a,b € A witha € G\ H and b € H\ G. For instance, let a — b € F. Then
b>aNb=(a—b)®ac G, whence b € G; a contradiction. Similarly (viii) = (ix).
(ix) = (i): F = GNH entails F = G or F = H, because either G C H or
HCG. O

3. REPRESENTABLE PSEUDO BL-ALGEBRAS

Proposition 3.1. If P is a minimal prime filter of a pseudo BL-algebra 2l then
A\ P is a maximal ideal of the lattice £(2).

Proof. By Zorn’s Lemma, there is a maximal ideal I of £() with A\ P C I.
(Since P is also a prime filter of £(2), it follows that A\ P is a prime ideal of £(2)
which is included in some maximal (prime) ideal.) We will show that I = A\ P.
Denote Q = |J{at; a € I}. We claim that P = Q.

If v € a* for some a € I, then xVa =1and x ¢ I. Indeed, if z € I then xVa # 1
since x Va = 1 would mean I = A. Thus x € A\I C A\ (A\ P) = P, whence
at C A\ I C P and consequently, Q C A\ I C P.

We shall now prove that @ is a prime filter of 2. (F1): Since any principal polar
a’ contains 1, so does Q. (F2): If x,y € Q, that is, x € a*,y € b+ for some a,b € I,
then a Vb € I and

(zOy)VaVbz(xVaVvbd)®(yVavb)=1601=1.

Therefore z ®y € (a vV b)* C Q. (F3): It is obvious since a* is a filter of 2 for each
a€l

To prove that @ is prime, suppose ©Vy =1 and x ¢ Q, that is, z V a # 1 for all
a € I. If x ¢ I then the ideal in the lattice £() generated by I U {z}, (I U{x}], is
proper, i.e., A\NP C I C (IU{x}]# A, since (I U{x}] = A would entail 1 <z Va
for some a € I; a contradiction. Hence = € I and thus y € - C Q, proving that Q

is prime.
However, P is a minimal prime filter of ; thus Q C A\I C PyieldsQ = A\I = P
as claimed. Therefore I = A\ P. O
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Corollary 3.2. If P is a minimal prime filter then
P=|J{a*; ag P}

Proof. By the proof of the previous proposition, P = (J{at; a € I}, where
I=A\P. O

A pseudo BL-algebra is said to be representable if it is a subdirect product of
linearly ordered pseudo BL-algebras.

By Theorems 2.7 and 2.8, subdirect representations by totally ordered pseudo
B L-algebras are associated with families of normal prime filters whose intersections
are precisely {1}. Therefore it is obvious that every BL-algebra is representable (see
also [11]). In contrast, for pseudo BL-algebras, this assertion fails.

The following results generalize the similar properties of pseudo MV-algebras, [4,
Theorem 2.20], [1, Theorem 5.9], and [2, Theorem 6.11].

Theorem 3.3. For any pseudo BL-algebra 2, the following statements are equiv-
alent.
(i) 2 is representable.
(ii) There exists a family {P;};c; of normal prime filters of 2 such that

(P ={1}.

el

(iii) Any polar of 2 is a normal filter of 2.
(iv) Any principal polar is a normal filter.
)

(v) Any minimal prime filter is normal.

Proof. As argued above, the equivalence of (i) and (ii) is clear.
(i) = (iii): Suppose that 2 is a subdirect product of linearly ordered pseudo
BL-algebras {2;};c;. Observe that

for all x,y € A, since 2; are totally ordered.

Let now P be a polar in U, i.e. P = P, Let 2 € A,a € P and y € P*.
Then z ®a < z implies x ©a = (r@a) Az = (x — (r ®a)) ©z. Further,
{liel; z;i —» (z;©a;) # 1;} C{i € I; a; # 1;}. Indeed, if a; = 1; then x; —
(x; ©a;) =x; — (; ©1;) = ; — x; = 1;. Hence we obtain

{iel; i = (x;0a0;) #Li}n{ie Ly L, C{iel a; #Lin{i e I; y; #1;} =0
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by (3.1), since a € P and y € Pt. Therefore (z — (r ® a)) Vy = 1, and thus
r— (x®a) € P =P. Hence r©a = (z — (r®a)) ®x € P x, proving
rOPCPO®z.

(iii) = (iv): Obvious.

(iv) = (v): By Corollary 3.2, P = | J{at; a ¢ P} for any minimal prime filter P.
If z — y € P then there is a ¢ P with x — y € a’ which is a normal filter, and
hence x ~ y € a~ C P. Summarizing, x — y € P iff z ~ y € P.

(v) = (i): Since any prime filter contains a minimal prime filter and the inter-
section of all prime filters of 2 is obviously {1}, so does the intersection of minimal
prime filters. Thus, by (ii), 2 is representable. O

Theorem 3.4. A pseudo BL-algebra is representable if and only if it satisfies the

identities
(3.2) (y—2)Viz~ ((z—y)02) =1,
(33) (y~a)V(z—(z0@~y)) =1

Consequently, the class of representable pseudo BL-algebras is a variety.

Proof. In any linearly ordered pseudo BL-algebra 2, either y — =z = 1 or
x—y=1(and also y ~ 2 =1 or  ~ y = 1), and so it is easy to verify that
fulfils (3.2) and (3.3). Therefore the part “only if” is obvious.

Conversely, suppose that (3.2) and (3.3) are satisfied by 2. In view of Theorem 3.3
(iv), it suffices to prove that any principal polar 2+ is a normal filter of 2.

Let y € -, that is, y V 2 = 1. Observe that in this case

r=1l-zs=@wyVe)mz=y—-)AN(z—z)=y—-x) \Nl=y—=zx
and similarly y = 2 — y. Hence, by (3.2),
V(e (O 2) = (g — 1)V (2 (2 — ) ©2) = 1,
thus z ~ (y ©® z) € . Further, y© 2z < z implies y© 2z = (YO 2) Az = 2 ® (2 ~

(y®z)) € z0xt, which shows 2+ ® 2z C z®a*. The other inclusion follows similarly
by (3.3). O
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