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Abstract. Closure GMV-algebras are introduced as a commutative generalization of
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1. INTRODUCTION

It is well known that Boolean algebras are algebraic counterparts of the clas-
sical propositional two-valued logic similarly as MV-algebras (see [1], [2]) are for
Lukasiewicz infinite valued logic. Every MV-algebra contains a Boolean algebra,
which is formed by the set of its idempotent elements. The same property is pos-
sessed also by GM V-algebras, the non-commutative generalization of M V-algebras
(see [5] or [9]).

In the paper [11], closure MV -algebras are introduced and studied as a natural
generalization of topological Boolean algebras (see [12]). The additive closure opera-
tor is here introduced as a natural generalization of the topological closure operator
on topological Boolean algebras. The aim of this paper is to generalize the results
of [11] to the case of GMV-algebras.

The paper is divided into Introduction and three main sections. In Section 2,
the closure GMV-algebras are introduced and the relation between additive closure
operators and multiplicative interior operators on GM V-algebras is described. In the
case of closure MV -algebras there is a one-to-one correspondence between additive
closure operators and multiplicative interior operators. In the paper, it is shown that
this correspondence exists also for closure GMV-algebras, but the relation is there
a little bit different.
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In Section 3 one works with idempotent elemets of a closure GM V-algebra, for ex-
ample, it is shown that every idempotent element of a closure GMV -algebra induces
a new closure GMV-algebra, similarly as is the case for closure MV -algebras.

Finally, in the last section GM V' -algebras are factorized via their normal ideals and
the connections between congruences and normal c-ideals of closure GM V-algebras
are described with help of DRI-monoids, which are studied in [6] or in [13].

2. CLOSURE GMV-ALGEBRAS

Definition 1. An algebra & = (A4,®,—,~,0,1) of signature (2,1,1,0,0) is
called a GMV -algebra, iff the following conditions are satisfied for each z,y, z € A:

(GMV1) 2@ (y@z)=(xd@y) D 2,

(GMV2) z@0=0=0@uz,

(GMV3) z@l=1=1®uz,

(GMV4) ~1=0, -1 =0,

(GMV5) ~(-z @ —y) = ~(~x & ~y),

(GMV6) y@(z0~y)=(yoz)dy=a®(yo~z)=(20y) b,
(GMVT) yo(z@~y) = (ry®z) 0y,

(GMV8) ~(—z) ==,

where z © y := ~(—x ® —y).

Remark 1. We can define the relation of the partial order < on every GMV -
algebra 7. We put
r<ye chby=1 Vr,y € A.

Then (A, <) is a distributive lattice, where each x, y satisfy
cxVy=yd @0~y =(yor) oy,
e s Ny=yo(xd~y)=(ydzx)Oy.

Definition 2. An algebraic structure G = (G, +,0, V, A) of signature (2,0, 2, 2)
is called an [-group iff
1. (G,+,0) is a group,
2. (G,V, ) is a lattice,
J.z+(yVa)+tw=(@@+y+w)V(z+z+w) Vr,y,z,w € G,
z+ynz)ftw=(@@+y+w A(x+z+w) Vz,y,z,w € G.
An element u € G (u > 0) is said to be a strong unit of an I-group G iff

(Va € G)(3n € N)(a < nu),

def
where nu = u +u+ ...+ u.
— ——

n
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If an I-group G contains a strong unit u, then we call it a unital I-group and write

(G, u).

Let < be the lattice order on (G, V, A). Then for the I-group G we can use notation
G = (G, +,0, <), which is equivalent to the former notation.

Remark 2.
a) Let (G,+,0,<) be an l-group and let u be a strong unit of G. If we put

r@y:=(x+y)Au, —ri=u— x, ~T = —x + u,

then I'(G, u) = ([0, u], ®, 7, ~,0,u) is a GMV-algebra.
b) On the other hand, A.Dvureéenskij has shown that for each GMV-algebra o7/
there exists a unital I-group (G, u) such that &/ = T'(G, u)—see [4].

We can now define the additive closure and the multiplicative interior operator
in the same way as for the MV-algebras. From [12], Theorem 5 and Theorem 6,
we know that additive closure operators on an M V-algebra <7 generalize topological
closure operators on the Boolean algebra B(7) of its idempotent elements.

Definition 3.
a) Let o = (A,®,—,~,0,1) be a GMV-algebra and Cl: A — A a mapping. Then
Cl is called an additive closure operator on & iff for each a,b € A
1. Cl(a @ b) = Cl(a) @ CI(b);
2. a < Cl(a);
3. Cl(Cl(a)) = Cl(a);
4. C1(0) = 0.
b) If Cl is an additive closure operator on & then & = (A, ®,—,~,0,1,Cl) is
called a closure GMV -algebra and Cl(a) is called the closure of an element
a € A. An element a is said to be closed iff Cl(a) = a.

Definition 4.

a) Let & = (4,®,—,~,0,1) be a GMV-algebra and Int: A — A a mapping.
Then Int is called a multiplicative interior operator on < if and only if for each
a,be A

1’. Int(a ® b) = Int(a) ® Int(b);
2. Int(a) < a;

3. Int(Int(a)) = Int(a);

4. Int(1) = 1.

b) If Int is a multiplicative interior operator on .7, then an algebra & =
(A, ®,—,~,0,1,Int) is called an interior GMV -algebra and Int(a) is called
the interior of an element a € A. An element a is said to be open iff Int(a) = a.
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Lemma 1. Let & = (A, ®,—,~,0,1,Cl) be a closure GMV -algebra. We put

a) Int™(a) = ~Cl(~a),

b) Int™~(a) = ~Cl(—a)
for each a € A. Then these two operators are multiplicative interior operators on &/
and for each a,b € A we have

a) Cl(a) = ~Int™(—a),

b) Cl(a) = —~Int™(~a).

Proof. We restrict ourselves to the case a), since b) can be proved analogously.
1. It™(a®b) = =Cl(~(a®b)) = =Cl(~ad~b) = =(Cl(~a)DCl(~b)) = =Cl(~a)®
=Cl(~b) = Int"(a) ® Int™(b);
2'. Int™(a) = =Cl(~a) < ~~a = a;
3. Int™(Int"(a)) = ~Cl(~—Cl(~a)) = =Cl(Cl(~a)) = —-Cl(~a) = Int"(a);
4. Int™(1) = =Cl(~1) = =Cl(0) = -0 = 1. O

The next lemma shows that the operator Cl from Definition 3 and the operators

Int™, Int™ from Lemma 1 are all isotone.

Lemma 2. Ifa < b for any a,b € A, then Cl(a) < Cl(b) and Int™(a) < Int™(b),
as well as Int™(a) < Int™ (D).

Proof. Let a < b. Then Cl(b) = Clla V) = Clla @ (b ® ~a)). Therefore
CL(b) = Cl(a) & Cl(b ® ~a) > Cl(a) V CL(b ® ~a), and so Cl(a) < CL(b).

Similarly from @ < b we have Int™(a) = Int~(a A D) = Int™(b © (a & ~b)) =
Int™(b) © Int™(a & ~b) < Int™(b) A Int™~(a & ~b), hence Int™(a) < Int™(b) and
analogously for Int™. O

In the case of closure MV -algebras, here we were able to construct from one closure
operator just one interior operator by the rule Int(z) = ~Cl(—z) and then get back to
the original one. Now, let us try to describe the situation for closure GMV-algebras.

Remark 3. Let us consider a closure GMV-algebra &/ and a mapping f: A —
A. We can define two new operators ®7(f) and ®~(f) on A by the reles ®7(f)(a) =
—f(~a) and ®~(f)(a) = ~f(—a). Then we clearly have that ®~o®™~ =id = P~ o P~
and if we take an additive closure operator Cl on .« instead of the arbitrary mapping
f on &7, then (by Lemma 1) we see that there exists a one-to-one correspondence
between the aditive closure operators and the multiplicative interior operators on
the closure GMV-algebras. Compared to closure M V-algebras, the relation is here
a little bit different as we are going to show.
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Let us denote for each even non-negative integer ¢ and for an operator Clg

Cll=®"o...0 0" (Cly),
—_———

Cl¥ =@~ o...0d™(Cly)
—_———

i

and for each odd non-negative integer 4

Int; =9 o0...097(Clp),
———

Int =P~ o...0d~(Cly).
—_———

%

The following theorem is an easy consequence of the preceding Remark 3 and of
Lemma 1.

Theorem 3. Let Cly be an additive closure operator on a GMV -algebra <.
Then we have for each k € NU {0}

a) Cly,. and Cl3;, are additive closure operators on </;

b) Inty,,, and Int3,  , are multiplicative interior operators on .7 .

3. IDEMPOTENT ELEMENTS OF CLOSURE GM V-ALGEBRAS

Now, we can consider the set B(</) = {a € A; a®a = a} of additively idempotent
elements of a GMV-algebra /. One can show that B(«7) is just the set of multi-
plicatively idempotent elements in 7. B(&) is a sublattice of the lattice (A, V, A),
contains 0 a 1 and is also a Boolean algebra. Analogously as for MV -algebras one

can show that the operations ®, ® coincide on B(«7) with the lattice operations V,
N—see [10].

Lemma 4. Let o7 be a GMV-algebra and let a be an idempotent element in < .
Then

a) yOa=aO0y=aly,

b) a6 (@®y) = (a0 2) @ (oY),

c) (zdy)Oa=(r0a)®(y©a)
for each x,y € A.

Proof. a)Lety<a. Thena<y®a<ada=a,thus y®a = a and hence,
by [9], Theorem 7, y ®a =y =y A a.
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Let now y € A be arbitrary. Clearly y ©® a < y,a. Let z € A,z < y,a. Then also
z=2z0a<yOa, and consequently y ®a =y A a. Similarly a ©y = a A y.
b) Let a € B(«/). Using distributivity of “@” over “A” we obtain

(anz)@(any)=(a@a)N(zda)A(ady)A(zDy),

hence by a), a ® (z®y) = (a @ z) ® (a O y).
¢) Analogously to the case b). O

Similarly as for closure M V-algebras, we can show that every idempotent element
a in a closure GMV-algebra o/ determines a new closure GM V-algebra on the
interval [0, a].

Theorem 5. Let &/ = (A, ®,—,~,0,1,Cl) be a closure GMV -algebra and let a
be an idempotent element in </. We put

* rDy=rDY,

o = —(z® ~a),

° Na;c:rv(—@@x)’
e 0, =0,
o 1,=a,

e Cly(z) =a® Cl(z)
for each ©,y € A. Then «, = ([0,a],®q, "a,~a, 04, 1la, Cly) is a closure GMV -
algebra and we have

e LO.Yy=10Y,

e Int)(z) =a®Int™(—a ® x),

e Inty(x) =a®Int™(z & ~a).

Proof.  Availability of axioms (GMV1)-(GMVS) from Definition 1 for the
algebra ([0, a], ®q, —a, ~a,0,a) are proved in [9], so <7, is a GMV-algebra. In the
second part of the proof we need to show that Cl, is an additive closure operator
on .

1. Cly(z®y) =a0Cllz®y) =a® (Cl(z) ®Cl(y)) = (a® Cl(x)) ® (a ® Cl(y)) =
Cla(z) @ Cl ( )i

2. Cly(z) = Cllz) 2a0x=aNx=u;

3. Cly(Cl, (= )) =a©®Clla® Cl(z)) < a® Cl(Cl(x)) = a @ Cl(z) = Clg(z); on

the other hand, according to 2 we get Cl,(z) = a ® Cl(z) < Cl,(a ® Cl(z)) =
Cla(Clg(x)), so, together we have Cl,(Cl,(z)) = Cly(z);
4. Cl,(0)=a®Cl(0)=a®0=aA0=0.
Further, Int;(z) = —,Cla(~ex) = —((a ® Cl(~(—a @ 2))) & ~a) = (—a @
—Cl(~(-a @ x)))@a = (-a®Int”(-a®z))©a =Int"(-adz)Aa = a®Int " (—adx).
Analogously for Int". O
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Corollary 6. Let of be a GMV -algebra and a € A an idempotent element. Then
a mapping h given by the formula h(x) = a ® x for each x € A is a homomorphism
from &/ onto <7,.

Proof. Let z,y € A. Then
MrOy)=a0(@0y)=a0a0(z0y)=a0(a0r)Oy.
By Lemma 4a) we have
a®(@0zr)0y=a0(x0a)y=(a0z)®(a®y)=h(z) O h(y).

Further,
e h~gz) =a®O~x =alA~x =r~rzAa=a0 (vx®~a) =a@~EOa) =
00 ~a© ) = 4® ~h(z) = ~(~0 & h(z)) = ~ah(z),
o h(—gx) =a®~x =ah—z=-2Aa=(nadx)Oa=-(a@z)Oa=-h(x)Oa=
=(h(z) ® ~a) = —ah(z),
o (0)=0=0,
and finally
o hz@®y) = h(~(-z @ ) = ~h(~z O y) = ~a(h(-x) Oa h(-y))
~a(7ah() ©a 7ah(y)) = W(x) Ba h(y).
So h is a homomorphism from the GMV-algebra o/ into the GM V-algebra <7, and
since © = a ©® x = h(z) for each z € [0, a], h is surjective. O

Definition 5. Let @ = (A;,®1,1,~1,01,11,Cly) and oh = (Az, B2, 79, ~a,
02, 12, Cly) be closure GM V-algebras and let h: A; — Ay be a homomorphism from
o/ into /. Then h is said to be a c-homomorphism from 7 into <7 iff
(C1) A(Cly(x)) = Cla(h(=))
for each z € A;.

Lemma 7. Let us consider closure GMV -algebras <71 and <f5. A homomorphism
h from the GMV -algebra <7, into the GM'V -algebra <7, is a c-homomorphism from
o7, into o/, if and only if one of the following two equivalent conditions is satisfied:
(C2) A(Int7(2)) = Tnt; (h(x)),
(C3) h(Int7(x)) = Intg’ (h(x))
for each z € A;.

Proof. A homomorphism h from &/ into % is a c-homomorphism iff

h(Chi(2)) = Cly(h(x))
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for each x € Ay, so for =1z, too. From the last equation we get
NQh(Cll(_qSC)) = NQCIQ(h(_‘lx)).

Since h is a homomorphism from o7 into %, we have got h(—12) = —oh(z) and
also h(~1x) = ~gh(x) for each x € A;. Therefore we can write instead of the last
equation

h(~1Cli (1)) = ~2Cla(m2h(x)),

which is equivalent to the axiom (C3), thus
h(IntT (z)) = Int3’ (h(x)).
The equivalence of the conditions (C1), (C2) we can be proved analogously. O

The following theorem refers to Theorem 5 and Corollary 6 and completes our
description of the relation of closure GMV-algebras & = (A, ®,,~,0,1,Cl) and
fQ{a = ([O, a], Da> Ta> ~as 0a, La, Cla)-

Theorem 8. Let o be a closure GMV -algebra and let a be its idempotent
element, which is open to at least one of multiplicative interior operators Int™ and
Int™ on /. Finally, let h: A — [0,a] be a mapping such that h(x) = a ® x for each
x € A. Then h is a surjective c-homomorphism &/ onto .

Proof. Let us consider a mapping h: A — [0,a] such that h(z) = a ® x
for each z € A. We know from Lemma 6 that h is a surjective homomorphism of
GMYV -algebras o/ and <7,.

We need to show now that h is a cchomomorphism. Let a be open for example
with respect to Int™. Then it is enough to check availability of the condition (C3)
from Lemma 7. For each x € A we have

h(Int™(z)) = a © Int™ (z) = Int™(a) © Int™(z) = Int™(a © x) = Int™ (h(x)).
Let y < a. Then
Int™(y) =Int~(a Ay) =Int™(a ® (y ® ~a)) = a® Int™(y @ ~a) = Int; (y).
Altogether we have
h(Int™(z)) = Int™ (h(x)) = Int] (h(x))
for each z € A. O

Note. If ais open with respect to Int™, then we check availability of the condition
(C2) from Lemma 7.

344



4. FACTORIZATION ON CLOSURE GMV-ALGEBRAS

Definition 6. Let us consider a GMV-algebra o7. Then aset I C A, ) # I is
called an ideal of the GM V-algebra o iff

Iy oer;

(12) if x,y € I, then z ® y € I;

M@B)ifxel,yec Aay<x, thenyel.

An ideal I of a GMV-algebra o/ is called a normal ideal iff for each z,y € A

(I4) zoyeleyo~zel.

Definition 7. A normal ideal I of a closure GMV-algebra <7 is called a normal
c-ideal iff Cl(a) € I for each a € I.

Remark 4. Normal ideals of GMV-algebra o7 are in a one-to-one correspon-
dence with congruences on <.
a) If = is a congruence on &/, then 0/= = {z € A; x =0} is a normal ideal of &.
b) Let H be a normal ideal of 7. The relation =g, where

r=gy<—= (-yoz)d(~zOy) € H,

or equivalently
T=py <= (yo~z)®(rO~y) € H,

is a congruence on &/ and H = {x € A; x =g 0} = 0/=g holds.
More detail is found in [5].

Note.

a) We denote by «//I = &/ /= the factor GMV-algebra of a GMV-algebra &/
according to a congruence =; on & and by Z the class of A/I which contains
the element =z.

b) Let &7 be a closure GMV-algebra and let I be its normal c-ideal. Let us put

Cl; (%) := Cl(z) for each x € A. This definition of the operator Cl; is correct as
we will show in the proof of Theorem 9.

Remark 5. A DRIl-monoid is an algebraic structure o7 = (A, +,0,V, A, =, )
of signature (2,0,2,2,2,2), where (A4,+,0) is a monoid, (A,V,A) is a lattice,
(A,+,V,A,0) is a lattice ordered monoid and the operations — and — are left
and right dual residuations—see e.g. [6].

There are mutual relations between GM YV -algebras and D RI-monoids which are
described in [9], Theorems 12, 13.
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Theorem 9. Let &/ be a closure GMV-algebra and let I be its normal c-ideal.
Then the factor GMV -algebra </ /I endowed with the operator Cl; from the pre-
ceding Note b) is a closure GMV -algebra.

Proof. Let us consider x =; y. Then (-2 ® y) & (—y ® ) € I, therefore
—z0y,~y O €I and Cl(—z ®y),Cl(—y ® x) € I. Further we have
Cl(—y @ z) @ Cl(y) = Cl((~y © z) ®y) = Cl(z Vy) = Cl(x).
Since 7 is actually a D RI-monoid, we get

Cl(—y ® z) > Cl(z) — Cl(y) = =Cl(y) ® Cl(z).

So we have —Cl(y) ® Cl(x) € I, since Cl(—y ® x) € I. We can show analogously that
—Cl(z)®Cl(y) € I. Therefore we can see that (-Cl(z) ®Cl(y))® (—-Cl(y)©Cl(z)) € I,
so Cl(z) =1 Cl(y), and the operation Cl; is therefore correctly defined on A/I.
Moreover, Cly: A/I — A/I satisfies axioms 1-4 from Definition 3, because

1. Cly(@®b) = Clz(a © b) = Cl(a @ b) = Cl(a) ® Cl(b) = Cl(a) ® Cl(b) = Cl;(a) ®

Clz(b),
2. Cly(a) = Cl(a) > a,
3. Cl;(Cly(a)) = Cli(Cl(a)) = Cl(Cl(a)) = Cl(a) = Cl;(a),
4. Cl;(0) = C1(0) = 0. O

Corollary 10. There is a one-to-one correspondence between the normal c-ideals
and the congruences of the closure GMV -algebras.
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