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1. Introduction

It is well known that Boolean algebras are algebraic counterparts of the clas-

sical propositional two-valued logic similarly as MV -algebras (see [1], [2]) are for

 Lukasiewicz infinite valued logic. Every MV -algebra contains a Boolean algebra,

which is formed by the set of its idempotent elements. The same property is pos-

sessed also by GMV -algebras, the non-commutative generalization of MV -algebras

(see [5] or [9]).

In the paper [11], closure MV -algebras are introduced and studied as a natural

generalization of topological Boolean algebras (see [12]). The additive closure opera-

tor is here introduced as a natural generalization of the topological closure operator

on topological Boolean algebras. The aim of this paper is to generalize the results

of [11] to the case of GMV -algebras.

The paper is divided into Introduction and three main sections. In Section 2,

the closure GMV -algebras are introduced and the relation between additive closure

operators and multiplicative interior operators on GMV -algebras is described. In the

case of closure MV -algebras there is a one-to-one correspondence between additive

closure operators and multiplicative interior operators. In the paper, it is shown that

this correspondence exists also for closure GMV -algebras, but the relation is there

a little bit different.
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In Section 3 one works with idempotent elemets of a closure GMV -algebra, for ex-

ample, it is shown that every idempotent element of a closure GMV -algebra induces

a new closure GMV -algebra, similarly as is the case for closure MV -algebras.

Finally, in the last section GMV -algebras are factorized via their normal ideals and

the connections between congruences and normal c-ideals of closure GMV -algebras

are described with help of DRl -monoids, which are studied in [6] or in [13].

2. Closure GMV -algebras

Definition 1. An algebra A = (A,⊕,¬,∼, 0, 1) of signature 〈2, 1, 1, 0, 0〉 is

called a GMV -algebra, iff the following conditions are satisfied for each x, y, z ∈ A:

(GMV1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,

(GMV2) x ⊕ 0 = 0 = 0 ⊕ x,

(GMV3) x ⊕ 1 = 1 = 1 ⊕ x,

(GMV4) ∼1 = 0, ¬1 = 0,

(GMV5) ∼(¬x ⊕ ¬y) = ¬(∼x ⊕∼y),

(GMV6) y ⊕ (x �∼y) = (¬y � x) ⊕ y = x ⊕ (y �∼x) = (¬x � y) ⊕ x,

(GMV7) y � (x ⊕∼y) = (¬y ⊕ x) � y,

(GMV8) ∼(¬x) = x,

where x � y := ∼(¬x ⊕ ¬y).

�����������
1. We can define the relation of the partial order 6 on every GMV -

algebra A . We put

x 6 y ⇔ ¬x ⊕ y = 1 ∀x, y ∈ A.

Then (A, 6) is a distributive lattice, where each x, y satisfy

• x ∨ y = y ⊕ (x �∼y) = (¬y � x) ⊕ y,

• x ∧ y = y � (x ⊕∼y) = (¬y ⊕ x) � y.

Definition 2. An algebraic structure G = (G, +, 0,∨,∧) of signature 〈2, 0, 2, 2〉

is called an l-group iff

1. (G, +, 0) is a group,

2. (G,∨,∧) is a lattice,

3. x + (y ∨ z) + w = (x + y + w) ∨ (x + z + w) ∀x, y, z, w ∈ G,

x + (y ∧ z) + w = (x + y + w) ∧ (x + z + w) ∀x, y, z, w ∈ G.

An element u ∈ G (u > 0) is said to be a strong unit of an l-group G iff

(∀a ∈ G)(∃n ∈ � )(a 6 nu),

where nu
def
= u + u + . . . + u

︸ ︷︷ ︸

n

.
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If an l-group G contains a strong unit u, then we call it a unital l-group and write

(G, u).

Let 6 be the lattice order on (G,∨,∧). Then for the l-group G we can use notation

G = (G, +, 0, 6), which is equivalent to the former notation.
�����������

2.

a) Let (G, +, 0, 6) be an l-group and let u be a strong unit of G. If we put

x ⊕ y := (x + y) ∧ u, ¬x := u − x, ∼x := −x + u,

then Γ(G, u) = ([0, u],⊕,¬,∼, 0, u) is a GMV -algebra.

b) On the other hand, A. Dvurečenskij has shown that for each GMV -algebra A

there exists a unital l-group (G, u) such that A ∼= Γ(G, u)—see [4].

We can now define the additive closure and the multiplicative interior operator

in the same way as for the MV -algebras. From [12], Theorem 5 and Theorem 6,

we know that additive closure operators on an MV -algebra A generalize topological

closure operators on the Boolean algebra B(A ) of its idempotent elements.

Definition 3.

a) Let A = (A,⊕,¬,∼, 0, 1) be a GMV -algebra and Cl: A → A a mapping. Then

Cl is called an additive closure operator on A iff for each a, b ∈ A

1. Cl(a ⊕ b) = Cl(a) ⊕ Cl(b);

2. a 6 Cl(a);

3. Cl(Cl(a)) = Cl(a);

4. Cl(0) = 0.

b) If Cl is an additive closure operator on A then A = (A,⊕,¬,∼, 0, 1, Cl) is

called a closure GMV -algebra and Cl(a) is called the closure of an element

a ∈ A. An element a is said to be closed iff Cl(a) = a.

Definition 4.

a) Let A = (A,⊕,¬,∼, 0, 1) be a GMV -algebra and Int : A → A a mapping.

Then Int is called a multiplicative interior operator on A if and only if for each

a, b ∈ A

1′. Int(a � b) = Int(a) � Int(b);

2′. Int(a) 6 a;

3′. Int(Int(a)) = Int(a);

4′. Int(1) = 1.

b) If Int is a multiplicative interior operator on A , then an algebra A =

(A,⊕,¬,∼, 0, 1, Int) is called an interior GMV -algebra and Int(a) is called

the interior of an element a ∈ A. An element a is said to be open iff Int(a) = a.
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Lemma 1. Let A = (A,⊕,¬,∼, 0, 1, Cl) be a closure GMV -algebra. We put

a) Int¬(a) = ¬Cl(∼a),

b) Int∼(a) = ∼Cl(¬a)

for each a ∈ A. Then these two operators are multiplicative interior operators on A

and for each a, b ∈ A we have

a) Cl(a) = ∼Int¬(¬a),

b) Cl(a) = ¬Int∼(∼a).

�������! 
. We restrict ourselves to the case a), since b) can be proved analogously.

1′. Int¬(a�b) = ¬Cl(∼(a�b)) = ¬Cl(∼a⊕∼b) = ¬(Cl(∼a)⊕Cl(∼b)) = ¬Cl(∼a)�

¬Cl(∼b) = Int¬(a) � Int¬(b);

2′. Int¬(a) = ¬Cl(∼a) 6 ¬∼a = a;

3′. Int¬(Int¬(a)) = ¬Cl(∼¬Cl(∼a)) = ¬Cl(Cl(∼a)) = ¬Cl(∼a) = Int¬(a);

4′. Int¬(1) = ¬Cl(∼1) = ¬Cl(0) = ¬0 = 1. �

The next lemma shows that the operator Cl from Definition 3 and the operators

Int∼, Int¬ from Lemma 1 are all isotone.

Lemma 2. If a 6 b for any a, b ∈ A, then Cl(a) 6 Cl(b) and Int¬(a) 6 Int¬(b),

as well as Int∼(a) 6 Int∼(b).

�������! 
. Let a 6 b. Then Cl(b) = Cl(a ∨ b) = Cl(a ⊕ (b � ∼a)). Therefore

Cl(b) = Cl(a) ⊕ Cl(b �∼a) > Cl(a) ∨ Cl(b �∼a), and so Cl(a) 6 Cl(b).

Similarly from a 6 b we have Int∼(a) = Int∼(a ∧ b) = Int∼(b � (a ⊕ ∼b)) =

Int∼(b) � Int∼(a ⊕ ∼b) 6 Int∼(b) ∧ Int∼(a ⊕ ∼b), hence Int∼(a) 6 Int∼(b) and

analogously for Int¬. �

In the case of closure MV -algebras, here we were able to construct from one closure

operator just one interior operator by the rule Int(x) = ¬Cl(¬x) and then get back to

the original one. Now, let us try to describe the situation for closure GMV -algebras.

�����������
3. Let us consider a closure GMV -algebra A and a mapping f : A →

A. We can define two new operators Φ¬(f) and Φ∼(f) on A by the reles Φ¬(f)(a) =

¬f(∼a) and Φ∼(f)(a) = ∼f(¬a). Then we clearly have that Φ¬◦Φ∼ = id = Φ∼◦Φ¬

and if we take an additive closure operator Cl on A instead of the arbitrary mapping

f on A , then (by Lemma 1) we see that there exists a one-to-one correspondence

between the aditive closure operators and the multiplicative interior operators on

the closure GMV -algebras. Compared to closure MV -algebras, the relation is here

a little bit different as we are going to show.
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Let us denote for each even non-negative integer i and for an operator Cl0

Cl¬i = Φ¬ ◦ . . . ◦ Φ¬

︸ ︷︷ ︸

i

(Cl0),

Cl∼i = Φ∼ ◦ . . . ◦ Φ∼

︸ ︷︷ ︸

i

(Cl0)

and for each odd non-negative integer i

Int¬
i

= Φ¬ ◦ . . . ◦ Φ¬

︸ ︷︷ ︸

i

(Cl0),

Int∼
i

= Φ∼ ◦ . . . ◦ Φ∼

︸ ︷︷ ︸

i

(Cl0).

The following theorem is an easy consequence of the preceding Remark 3 and of

Lemma 1.

Theorem 3. Let Cl0 be an additive closure operator on a GMV -algebra A .

Then we have for each k ∈ � ∪ {0}

a) Cl¬2k
and Cl∼2k

are additive closure operators on A ;

b) Int¬
2k+1

and Int∼
2k+1

are multiplicative interior operators on A .

3. Idempotent elements of closure GMV -algebras

Now, we can consider the set B(A ) = {a ∈ A ; a⊕a = a} of additively idempotent

elements of a GMV -algebra A . One can show that B(A ) is just the set of multi-

plicatively idempotent elements in A . B(A ) is a sublattice of the lattice (A,∨,∧),

contains 0 a 1 and is also a Boolean algebra. Analogously as for MV -algebras one

can show that the operations ⊕, � coincide on B(A ) with the lattice operations ∨,

∧—see [10].

Lemma 4. Let A be a GMV -algebra and let a be an idempotent element in A .

Then

a) y � a = a � y = a ∧ y,

b) a � (x ⊕ y) = (a � x) ⊕ (a � y),

c) (x ⊕ y) � a = (x � a) ⊕ (y � a)

for each x, y ∈ A.

�������! 
. a) Let y 6 a. Then a 6 y ⊕ a 6 a ⊕ a = a, thus y ⊕ a = a and hence,

by [9], Theorem 7, y � a = y = y ∧ a.
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Let now y ∈ A be arbitrary. Clearly y � a 6 y, a. Let z ∈ A, z 6 y, a. Then also

z = z � a 6 y � a, and consequently y � a = y ∧ a. Similarly a � y = a ∧ y.

b) Let a ∈ B(A ). Using distributivity of “⊕” over “∧” we obtain

(a ∧ x) ⊕ (a ∧ y) = (a ⊕ a) ∧ (x ⊕ a) ∧ (a ⊕ y) ∧ (x ⊕ y),

hence by a), a � (x ⊕ y) = (a � x) ⊕ (a � y).

c) Analogously to the case b). �

Similarly as for closure MV -algebras, we can show that every idempotent element

a in a closure GMV -algebra A determines a new closure GMV -algebra on the

interval [0, a].

Theorem 5. Let A = (A,⊕,¬,∼, 0, 1, Cl) be a closure GMV -algebra and let a

be an idempotent element in A . We put

• x ⊕a y = x ⊕ y,

• ¬ax = ¬(x ⊕∼a),

• ∼ax = ∼(¬a ⊕ x),

• 0a = 0,

• 1a = a,

• Cla(x) = a � Cl(x)

for each x, y ∈ A. Then Aa = ([0, a],⊕a,¬a,∼a, 0a, 1a, Cla) is a closure GMV -

algebra and we have

• x �a y = x � y,

• Int¬
a
(x) = a � Int¬(¬a ⊕ x),

• Int∼a (x) = a � Int∼(x ⊕∼a).

�������! 
. Availability of axioms (GMV1)–(GMV8) from Definition 1 for the

algebra ([0, a],⊕a,¬a,∼a, 0, a) are proved in [9], so Aa is a GMV -algebra. In the

second part of the proof we need to show that Cla is an additive closure operator

on Aa.

1. Cla(x⊕ y) = a�Cl(x ⊕ y) = a� (Cl(x) ⊕Cl(y)) = (a�Cl(x)) ⊕ (a�Cl(y)) =

Cla(x) ⊕ Cla(y);

2. Cla(x) = a � Cl(x) > a � x = a ∧ x = x;

3. Cla(Cla(x)) = a � Cl(a � Cl(x)) 6 a � Cl(Cl(x)) = a � Cl(x) = Cla(x); on

the other hand, according to 2 we get Cla(x) = a � Cl(x) 6 Cla(a � Cl(x)) =

Cla(Cla(x)), so, together we have Cla(Cla(x)) = Cla(x);

4. Cla(0) = a � Cl(0) = a � 0 = a ∧ 0 = 0.

Further, Int¬
a
(x) = ¬aCla(∼ax) = ¬((a � Cl(∼(¬a ⊕ x))) ⊕ ∼a) = (¬a ⊕

¬Cl(∼(¬a ⊕ x)))�a = (¬a⊕Int¬(¬a⊕x))�a = Int¬(¬a⊕x)∧a = a�Int¬(¬a⊕x).

Analogously for Int∼
a

. �
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Corollary 6. Let A be a GMV -algebra and a ∈ A an idempotent element. Then

a mapping h given by the formula h(x) = a � x for each x ∈ A is a homomorphism

from A onto Aa.

�������! 
. Let x, y ∈ A. Then

h(x � y) = a � (x � y) = a � a � (x � y) = a � (a � x) � y.

By Lemma 4a) we have

a � (a � x) � y = a � (x � a) � y = (a � x) � (a � y) = h(x) �a h(y).

Further,

• h(∼ax) = a � ∼x = a ∧ ∼x = ∼x ∧ a = a � (∼x ⊕ ∼a) = a � ∼(x � a) =

a �∼(a � x) = a �∼h(x) = ∼(¬a ⊕ h(x)) = ∼ah(x),

• h(¬ax) = a�¬x = a∧¬x = ¬x∧a = (¬a⊕¬x)�a = ¬(a�x)�a = ¬h(x)�a =

¬(h(x) ⊕∼a) = ¬ah(x),

• h(0) = 0 = 0a

and finally

• h(x ⊕ y) = h(∼(¬x ⊕ ¬y)) = ∼ah(¬x � ¬y) = ∼a(h(¬x) �a h(¬y)) =

∼a(¬ah(x) �a ¬ah(y)) = h(x) ⊕a h(y).

So h is a homomorphism from the GMV -algebra A into the GMV -algebra Aa and

since x = a � x = h(x) for each x ∈ [0, a], h is surjective. �

Definition 5. Let A1 = (A1,⊕1,¬1,∼1, 01, 11, Cl1) and A2 = (A2,⊕2,¬2,∼2,

02, 12, Cl2) be closure GMV -algebras and let h : A1 → A2 be a homomorphism from

A1 into A2. Then h is said to be a c-homomorphism from A1 into A2 iff

(C1) h(Cl1(x)) = Cl2(h(x))

for each x ∈ A1.

Lemma 7. Let us consider closure GMV -algebras A1 and A2. A homomorphism

h from the GMV -algebra A1 into the GMV -algebra A2 is a c-homomorphism from

A1 into A2 if and only if one of the following two equivalent conditions is satisfied:

(C2) h(Int¬1 (x)) = Int¬2 (h(x)),

(C3) h(Int∼1 (x)) = Int∼2 (h(x))

for each x ∈ A1.

�������! 
. A homomorphism h from A1 into A2 is a c-homomorphism iff

h(Cl1(x)) = Cl2(h(x))
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for each x ∈ A1, so for ¬1x, too. From the last equation we get

∼2h(Cl1(¬1x)) = ∼2Cl2(h(¬1x)).

Since h is a homomorphism from A1 into A2, we have got h(¬1x) = ¬2h(x) and

also h(∼1x) = ∼2h(x) for each x ∈ A1. Therefore we can write instead of the last

equation

h(∼1Cl1(¬1x)) = ∼2Cl2(¬2h(x)),

which is equivalent to the axiom (C3), thus

h(Int∼1 (x)) = Int∼2 (h(x)).

The equivalence of the conditions (C1), (C2) we can be proved analogously. �

The following theorem refers to Theorem 5 and Corollary 6 and completes our

description of the relation of closure GMV -algebras A = (A,⊕,¬,∼, 0, 1, Cl) and

Aa = ([0, a],⊕a,¬a,∼a, 0a, 1a, Cla).

Theorem 8. Let A be a closure GMV -algebra and let a be its idempotent

element, which is open to at least one of multiplicative interior operators Int¬ and

Int∼ on A . Finally, let h : A → [0, a] be a mapping such that h(x) = a � x for each

x ∈ A. Then h is a surjective c-homomorphism A onto Aa.
�������! 

. Let us consider a mapping h : A → [0, a] such that h(x) = a � x

for each x ∈ A. We know from Lemma 6 that h is a surjective homomorphism of

GMV -algebras A and Aa.

We need to show now that h is a c-homomorphism. Let a be open for example

with respect to Int∼. Then it is enough to check availability of the condition (C3)

from Lemma 7. For each x ∈ A we have

h(Int∼(x)) = a � Int∼(x) = Int∼(a) � Int∼(x) = Int∼(a � x) = Int∼(h(x)).

Let y 6 a. Then

Int∼(y) = Int∼(a ∧ y) = Int∼(a � (y ⊕∼a)) = a � Int∼(y ⊕∼a) = Int∼
a

(y).

Altogether we have

h(Int∼(x)) = Int∼(h(x)) = Int∼
a

(h(x))

for each x ∈ A. �

"#��$%�
. If a is open with respect to Int¬, then we check availability of the condition

(C2) from Lemma 7.
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4. Factorization on closure GMV -algebras

Definition 6. Let us consider a GMV -algebra A . Then a set I ⊂ A, ∅ 6= I is

called an ideal of the GMV -algebra A iff

(I1) 0 ∈ I ;

(I2) if x, y ∈ I , then x ⊕ y ∈ I ;

(I3) if x ∈ I, y ∈ A a y 6 x, then y ∈ I .

An ideal I of a GMV -algebra A is called a normal ideal iff for each x, y ∈ A

(I4) ¬x � y ∈ I ⇔ y �∼x ∈ I .

Definition 7. A normal ideal I of a closure GMV -algebra A is called a normal

c-ideal iff Cl(a) ∈ I for each a ∈ I .

�����������
4. Normal ideals of GMV -algebra A are in a one-to-one correspon-

dence with congruences on A .

a) If ≡ is a congruence on A , then 0/≡ = {x ∈ A ; x ≡ 0} is a normal ideal of A .

b) Let H be a normal ideal of A . The relation ≡H , where

x ≡H y ⇐⇒ (¬y � x) ⊕ (¬x � y) ∈ H,

or equivalently

x ≡H y ⇐⇒ (y �∼x) ⊕ (x �∼y) ∈ H,

is a congruence on A and H = {x ∈ A ; x ≡H 0} = 0/≡H holds.

More detail is found in [5].

"#��$%�
.

a) We denote by A /I = A /≡I the factor GMV -algebra of a GMV -algebra A

according to a congruence ≡I on A and by x the class of A/I which contains

the element x.

b) Let A be a closure GMV -algebra and let I be its normal c-ideal. Let us put

ClI(x) := Cl(x) for each x ∈ A. This definition of the operator ClI is correct as

we will show in the proof of Theorem 9.

�����������
5. A DRl -monoid is an algebraic structure A = (A, +, 0,∨,∧, ⇀, ↽)

of signature 〈2, 0, 2, 2, 2, 2〉, where (A, +, 0) is a monoid, (A,∨,∧) is a lattice,

(A, +,∨,∧, 0) is a lattice ordered monoid and the operations ⇀ and ↽ are left

and right dual residuations—see e.g. [6].

There are mutual relations between GMV -algebras and DRl-monoids which are

described in [9], Theorems 12, 13.
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Theorem 9. Let A be a closure GMV -algebra and let I be its normal c-ideal.

Then the factor GMV -algebra A /I endowed with the operator ClI from the pre-

ceding Note b) is a closure GMV -algebra.

�������! 
. Let us consider x ≡I y. Then (¬x � y) ⊕ (¬y � x) ∈ I , therefore

¬x � y,¬y � x ∈ I and Cl(¬x � y), Cl(¬y � x) ∈ I . Further we have

Cl(¬y � x) ⊕ Cl(y) = Cl((¬y � x) ⊕ y) = Cl(x ∨ y) > Cl(x).

Since A is actually a DRl-monoid, we get

Cl(¬y � x) > Cl(x) ⇀ Cl(y) = ¬Cl(y) � Cl(x).

So we have ¬Cl(y)�Cl(x) ∈ I , since Cl(¬y �x) ∈ I . We can show analogously that

¬Cl(x)�Cl(y) ∈ I . Therefore we can see that (¬Cl(x)�Cl(y))⊕(¬Cl(y)�Cl(x)) ∈ I ,

so Cl(x) ≡I Cl(y), and the operation ClI is therefore correctly defined on A/I .

Moreover, ClI : A/I → A/I satisfies axioms 1–4 from Definition 3, because

1. ClI(a⊕ b̄) = ClI(a ⊕ b) = Cl(a ⊕ b) = Cl(a) ⊕ Cl(b) = Cl(a)⊕Cl(b) = ClI(a)⊕

ClI(b̄),

2. ClI(a) = Cl(a) > a,

3. ClI(ClI(a)) = ClI(Cl(a)) = Cl(Cl(a)) = Cl(a) = ClI (a),

4. ClI(0) = Cl(0) = 0. �

Corollary 10. There is a one-to-one correspondence between the normal c-ideals

and the congruences of the closure GMV -algebras.
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