# RAINBOW HAMILTONIAN PATHS AND CANONICALLY COLORED SUBGRAPHS IN INFINITE COM-PLETE GRAPHS

### Paul Erdős

Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda u. 13-15, Hungary.

### Zsolt Tuza\*

Computer and Automation Institute of the Hungarian Academy of Sciences, 1111 Budapest, Kende u. 13-17, Hungary.

Received April 1988

AMS Subject Classification: 05 C 55, 05 C 15

Keywords: edge coloring, infinite graph, Hamiltonian path, rainbow subgraph, canonical coloring, 0-1 measure

Abstract: A sufficient condition is given for the existence of a Hamiltonian path all of whose edges have a distinct color, in edge-colored infinite complete graphs. Also, a variant of the Erdős-Rado theorem is presented for canonically colored subgraph.

<sup>\*</sup> Research supported in part by the "AKA" Research Fund of the Hungarian Academy of Sciences.

#### 0. Introduction

In this note we consider complete graphs K=(X,E) with an infinite vertex set X and edge set  $E=\{xx':x,x'\in X\}$ . For a given coloring  $\varphi$  of the edge set, a subgraph  $G\subset K$  is called a rainbow subgraph of K if  $G|_{\varphi}$ , the coloring of G induced by  $\varphi$ , contains no monochromatic pair of edges.

If  $Y \subset X$  and G is the complete subgraph induced by Y in K, then we write  $Y|_{\varphi}$  instead of  $G|_{\varphi}$ .

Our first aim is to find a condition ensuring the existence of a rainbow Hamiltonian path (i.e., a path visiting all vertices of K) when X is countable. As shown in Theorem 1, it is enough to exclude canonically colored infinite subgraphs (see definition below) from  $K|_{\varphi}$ , provided that at each vertex, each color class has a finite or 0-measure infinite degree. This result generalizes a theorem of Hahn and Thomassen [6]. Examples show that the condition in Theorem 1 is nearly the best possible; it would be interesting, however, to see an "if and only if"-type characterization, in terms of forbidden subgraphs (cf. Problem 6).

In the second part of the paper we investigate the question how large canonically colored subgraphs exist in K when X is an ordered set of arbitrary cardinality. We consider a particular class of (so-called "properly ordered") colorings and show that if rainbow triangles are forbidden in  $K|_{\varphi}$  then there can be found a canonically colored complete subgraph on a vertex set of cardinality |X| (Theorem 3). The exclusion of a rainbow  $K_4$ , however, is not sufficient, as shown by a suitable coloring for  $X = \mathbb{R}$  (the set of real numbers).

## 1. Rainbow Hamiltonian paths in $K_{\omega}$

Throughout this section, K denotes the *countable* complete graph with vertex set  $X = \{x_1, x_2, \ldots\}$  and edge set  $E = \{x_i x_j : i \neq j\}$ . We assume there is a 0-1 measure  $\mu$  on X, i.e., for every  $Y \subset X$ ,  $\mu(Y) \in \{0,1\}, \mu$  is finitely additive,  $\mu(X) = 1$ , and  $\mu(Y) = 0$  for all

finite  $Y \subset X$ .

For convenience, we denote the colors by integers 1,2,.... Two colorings  $\varphi$ ,  $\varphi'$  of a graph G are said to be isomorphic if  $\varphi'$  can be obtained from  $\varphi$ , as well as  $\varphi$  from  $\varphi'$ , by renumbering (but not indentifying) the colors. In this sense, two edge-colored graphs  $G_1, G_2$  are isomorphic if for their colorings  $\varphi_1, \varphi_2$  we have  $G_1|_{\varphi_1} \cong G_2|_{\varphi_2}$ , i.e., there is a one-to one mapping between the vertex sets  $V(G_1)$  and  $V(G_2)$ , yielding the isomorphism of  $\varphi_1$  und  $\varphi_2$ .

Denote by  $Z^*$  the complete graph with a countable vertex set  $\{z_0, z_1, z_2, \ldots\}$  and having the (canonical) edge coloring in which  $z_i z_j$  has color j whenever i < j.

**Theorem 1.** Suppose  $\varphi: E \to \mathbb{N}$  is a coloring of K, such that for each vertex  $x_i$  and each color j, the vertices adjacent to  $x_i$  by an edge of color j form a set of measure 0. If  $K|_{\varphi}$  contains no subgraph isomorphic to  $Z^*$  then K has a one-way infinite and a two-way infinite rainbow Hamiltonian path.

**Proof.** We construct a sequence  $P_1, P_2, \ldots$  of (finite) rainbow paths with the following properties:  $x_i \in P_i$  for all  $i \geq 1$ , and  $P_i \subset P_{i+1}$  in the sense that all edges of  $P_i$  are edges of  $P_{i+1}$  too. This clearly implies that  $\cup P_i$  is a rainbow Hamiltonian path of K.

Let  $P_1 = (x_1), P_2 = (x_1x_2)$ . If the Hamiltonian path to be found is one-way infinite then we extend  $P_i$  at the end different from  $x_1$ ; if it should be two-way infinite, we extend  $P_i$  at the end being closer to  $x_1$ .

Suppose  $P_i$  is a rainbow path covering  $\{x_1, \ldots, x_i\}$ . If  $x_{i+1} \in P_i$  define  $P_{i+1} = P_i$ . Otherwise, denote by  $y_j$  the  $j^{th}$  vertex of  $P_i$ , i.e.,  $P_i = (y_1 y_2 \ldots y_k)$  where  $k = |P_i|$ . Set  $Y = X \setminus (\{x_{i+1}\} \cup \{y_l, \ldots, y_k\})$ .

Delete all vertices y from Y, for which  $\varphi(y_k y)$  or  $\varphi(x_{i+l} y)$  appears on some edge of  $P_i$ . The resulting vertex set Y' has  $\mu(Y') = 1$ , since each of the k-1 colors appearing in  $P_i$  defines a neighborhood of  $x_{i+1}$  and  $y_k$  of measure 0 (and  $\mu$  is finitely additive). If there is a  $y \in Y'$  such that  $\varphi(x_{i+1}y) \neq \varphi(y_k y)$  then  $P_{i+1} = (y_1 \dots y_k y x_{i+1})$  is a rainbow path containing  $x_{i+1}$ . Otherwise,  $\varphi(x_{i+1}y) = \varphi(y_k y)$  for all  $y \in Y'$ . Let  $Y_1 \cup Y_2 \cup \ldots = Y'$  be the partition of Y' in which two vertices y and y' belong to the same class if and only if  $\varphi(y_k y) = \varphi(y_k y')$ . Then  $\mu(Y_m) = 0$  for all  $m \geq 1$ .

Choose an arbitrary  $y' \in Y'$ , and delete all y from Y' for which  $\varphi(y'y)$  appears in  $P_i$  or is identical to  $\varphi(y_ky')$ . The set of those y

is of measure 0, so that the resulting set Y'' has  $\mu(Y'') = 1$ . If, for some  $y'' \in Y''$ ,  $\varphi(y''y') \neq \varphi(y''y_k)$  then  $P_{i+1} = (y_1 \dots y_k y'' y' x_{i+1})$  is a rainbow path containing  $x_{i+1}$  and we are home. Otherwise, choose a  $y'' \in Y''$  and repeat the same argument. Either a rainbow  $P_{i+1}$ , containing  $x_{i+1}$ , is found after a finite number of steps, or an infinite sequence y', y'', y''', ... of vertices is defined with the property that  $\varphi(y^{(p)}y^{(q)}) = \varphi(y_k y^{(q)})$  for all p < q. In the latter case, however, those vertices would induce a subgraph isomorphic to  $Z^*$ , condradicting our assumptions, so that  $P_i$  can be extended to a rainbow path  $P_{i+1}$ , for all i.

 $\Diamond$ 

Corollary 1.1. (Hahn and Thomassen [6]) If all monochromatic subgraphs are locally finite in a  $Z^*$ -free coloring of K, then K contains a rainbow Hamiltonian path.



An interesting particular case is when any two edges of the same color in  $K|_{\varphi}$  are vertex-disjoint. Such a  $\varphi$  is called a *proper edge coloring* of K.

Corollary 1.2. Every proper edge coloring of K contains a rainbow Hamiltonian path.



Though  $Z^*$  itself contains a rainbow Hamiltonian path, it is very close to being non-Hamiltonian in the following sense. Denote by  $Z^{\Delta}$  the graph which is obtained from  $Z^*$  by recoloring the edge  $z_0z_1$  to color 2.

**Proposition 2.** The graph  $Z^{\Delta}$  contains no rainbow Hamiltonian paths.

Based on a similar idea, the following more general class of examples can be given. Consider an arbitrary complete graph  $K_n$  on n vertices, with a coloring  $\varphi_n$  which does not contain a rainbow Hamiltonian path. Suppose  $\varphi_n$  uses colors 1',2',..., none of them appearing among the colors 1,2,.... Replace  $z_0$  by  $K_n|_{\varphi_n}$  in  $Z^*$ , and define the edge  $z_iy$  to have color i, whenever  $y \in V(K_n)$  and  $i \geq 1$ . Denote this edge-colored graph by  $Z^*(\varphi_n)$ . Now Proposition 2 can be stated in the following stronger form.

**Proposition 2'.** If  $K_n|_{\varphi_n}$  contains no rainbow Hamiltonian path then neither does  $Z^*(\varphi_n)$ .

**Proof.** Suppose to the contrary that P is a rainbow Hamiltonian path in  $Z^*(\varphi_n)$ . Then the vertices of  $K_n$  induce at least two subpaths  $P_1, P_2$  (both maximal under inclusion) in P. We may assume all vertices between  $P_1$  and  $P_2$  belong to  $Z^*$   $z_0$ . Let  $z_m$  be the vertex between  $P_1$  and  $P_2$  in P having maximum subscript. Then the two neighbors of  $z_m$  in P are adjacent to  $z_m$  by edges of color m, contradicting the assumption that P is rainbow.



In particular, any coloring of  $K_n$  with at most n-2 colors satisfies the assumptions on  $\varphi_n$ .

# 2. Canonically colored subgraphs

In this section we consider infinite complete graphs K = (X, E) with a vertex set X of arbitrary cardinality. We assume there is an ordering < given on X.

Erdős and Rado [2] proved that every coloring  $\varphi$  of K contains an infinite  $Y \subset X$  such that  $Y|_{\varphi}$  is rainbow or monochromatic or,  $\varphi(yy') = \varphi(yy'')$  either for all y < y' < y'' or for all  $y'' < y' < y \ (y,y',y'' \in Y)$ . Call a  $Y \subset X$  cannonically colored if for all  $y,y',y'' \in Y, y < y' < y'', \varphi(yy') = \varphi(yy'')$ . We are interested in the question how large canonically colored complete subgraphs must exist in  $K|_{\varphi}$ . The following particular class of colorings will be considered. We say that  $\varphi$  is properly ordered if  $\varphi(xx') \neq \varphi(xx'')$  whenever  $x'' < x' < x(x,x',x'' \in X)$ .

**Theorem 3.** Let  $\varphi$  be a properly ordered coloring of K, not containing rainbow triangles. Then there is a  $Y \subset X$ , |Y| = |X|, such that  $Y|_{\varphi}$  is canonically colored.

**Proof.** For any three elements  $x, y, z \in X$ , x < y < z, either  $\varphi(xy) = \varphi(xz)$  or  $\varphi(xy) = \varphi(yz)$ , since  $\varphi(xz) \neq \varphi(yz)$ .

If X contains a maximum element  $x_0$  then set  $X' = X \setminus \{x_0\}$ ; otherwise, X' = X. Now any two monochromatic edges of X' share a

vertex. Indeed, suppose  $\varphi(uv) = \varphi(yz)$ . Choose an  $x \in X$  such that  $x > \max(u, v, y, z)$ . Then there is an edge of color  $\varphi(uv)$  that joins x to uv and also to yz. Those two edges must coincide, however, since we have a properly ordered coloring.

Thus, each monochromatic subgraph of  $X'|_{\varphi}$  is a star, since monochromatic triangles cannot occur in properly ordered colorings.

Call a monochromatic star non-trivial if it contains at least two edges. Such a star has a (unique) centre, the common vertex of its edges. Observe that every  $x \in X'$  is the centre of at most one (non-trivial) star. Otherwise, let  $\varphi(xy) = \varphi(xy') \neq \varphi(xz) = \varphi(xz')$ . Choose a  $w \in X$ ,  $w > \max(x, y, y', z, z')$ . Then  $\varphi(xy) = \varphi(xw) = \varphi(xz)$  should hold, a contradiction. Since each triangle contains a pair of monochromatic edges, there are at most two vertices x', x'' that are not centres of some star. Set  $X'' = X' \setminus \{x', x''\}$ .

Thus, each  $x \in X''$  is the centre of exactly one non-trivial star  $S_x$ . Renumbering the colors, if necessary, we may assume  $S_x$  is colored by color x. We define a partition  $X_1 \cup X_2 = X''$  as follows:  $x \in X_1$  if y < x implies  $\varphi(xy) \neq x$ ;  $x \in X_2$  if there is a y < x with  $\varphi(xy) = x$ . The proof will be done if we show  $X_1|_{\varphi}$  and  $X_2|_{\varphi}$  are both canonically colored.

Suppose  $x \in X_2$ . If there were a z > x such that  $\varphi(xz) \neq x$  then  $\varphi(yz) = x$  would follow for any  $y, \varphi(xy) = x$ , a contradiction as  $S_y$  cannot have color x. Hence,  $X_2$  is canonically colored, and  $y \in X_1$  whenever  $\varphi(xy) \neq y, y < x$ .

Suppose  $X_1$  is not canonically colored, i.e., there are three elements  $x,y,z \in X_1$ , x < y < z,  $\varphi(xy) = a \neq b = \varphi(xz)$ . Then  $\varphi(yz) = a$  (since  $\varphi$  is properly ordered), so that  $y \in X_2$ , contrary to our assumption.

 $\Diamond$ 

We note that the above argument yields the following result for the finite case.

**Theorem 3'.** Every properly ordered coloring of  $K_n$  with no rainbow triangle contains a canonically colored  $K_{\lfloor n/2 \rfloor - 1}$ .



Instead of  $K_3$ , the exclusion of a rainbow  $K_4$  is not sufficient in Theorem 3. This fact can be proved in the following stronger form. ( $\mathbb{R}$  denotes the set of real numbers.)

**Theorem 4.** For  $X = \mathbb{R}$ , there exists a properly ordered coloring  $\varphi$  with the following properties:

- (i) Every canonically colored Y is countable;
- (ii)  $X|_{\varphi}$  contains no rainbow finite subgraphs of minimum degree greater than 2. (In particular,  $X|_{\varphi}$  is rainbow- $K_4$ -free.)

**Proof.** First, consider the properly ordered (canonical) coloring  $\varphi^+$  defined by  $\varphi^+(xy) = x$  for all x < y. We modify  $\varphi^+$  by splitting each color class into two parts, and replacing each color x by two colors x', x''. (Clearly, after any kind of splitting, the obtained coloring remains properly ordered.)

The splitting is based on idea due to Sierpiński [5]. Consider a well-ordering  $<_L$  of  $\mathbb{R}$ . For x < y, define  $\varphi(xy)$  to be x' if  $x <_L y$  and to be x'' if  $y <_L x$ . Let  $Y|_{\varphi}$  be canonically colored, for some  $Y \subset X = \mathbb{R}$ . We show Y is countable.

Set  $E_x = \{xy : x < y \in Y\}$  for  $x \in Y$ . If Y is canonically colored then each  $E_x$  is monochromatic. Divide Y into two (disjoint) parts  $Y_1$ ,  $Y_2$  as follows:  $x \in Y_1$  if  $E_x$  has color x' and  $x \in Y_2$  if  $E_x$  has color x''. By the definition of  $<_L$ , for each  $x \in Y_1$ , the set  $\{y \in Y_1 : y > x\}$  contains a minimum element  $y_x$ . Picking a rational number from the interval  $[x, y_x)$ , it follows that  $Y_1$  is countable. By a similar argument, considering the sets  $\{y \in Y_2 : y < x\}$  and the intervals  $(y_x, x]$ , it follows that  $Y_2$  is countable.

Let G be a finite rainbow subgraph of  $X|_{\varphi}$ , with a vertex set  $\{x_1, \ldots, x_n\}$ . Then  $x = \min x_i$  has degree at most 2, since all edges incident to x in G have color x' or x''.

#### $\Diamond$

### 3. Concluding remarks

I. Corollary 1.2 is much easier to prove than Theorem 1. As a matter of fact, in a proper edge coloring,  $P_i$  can be extended to a suitable  $P_{i+1}$  by adding  $x_{i+1}$  and at most one extra vertex. The finite version of Corollary 1.2, however, is unknown. A nice construction of Maamoun and Meyniel [3] shows there is a proper edge coloring of the complete graph  $K_n$  on  $n=2^k$  vertices (for all  $k \geq 2$ ) not containing a rainbow Hamiltonian path. It would be interesting to see such colorings for all

even n.

On the other hand, Andersen [1] conjectures that every proper edge coloring of  $K_n$  contains a rainbow path covering all vertices but one. Some lower bounds on the length of a maximum rainbow path are given by Rödl und Tuza [4]. Here we raise the following related question.

**Problem 5.** Find the minimum number f(n) of colors, such that every proper edge coloring of  $K_n$  by at least f(n) colors contains a rainbow Hamiltonian path.

The examples of [3] show  $f(n) \leq n-1$  does not hold in general. It seems to be reasonable to conjecture, however, that f(n) is very close (or, perhaps, equal) to n.

II. All our examples for colorings of a countable complete graph without a rainbow Hamiltonian path have a canonical structure (cf. Proposition 2). Now the following two problems arise.

**Problem 6.** (a) Find a class  $\underline{F}$  of edge-colored countable complete graphs with the following properties:

- (i) No  $F \in \underline{F}$  contains a rainbow Hamiltonian path.
- (ii) All infinite complete subgraphs of  $K|_{\varphi}$  have a rainbow Hamiltonian path if and only if  $K|_{\varphi}$  contains no subgraph isomorphic to any  $F \in F$ .
- (b) Do all  $f \in \underline{F}$  have a canononical structure?

<u>III.</u> It is easy to show there is a subset  $\{a_1, a_2, \ldots\}$  of the natural numbers such that every positive integer occurs exactly once among the numbers and  $|a_i - a_j|$ ,  $1 \le i < j$ . In other words, if color |i - j| is assigned to edge  $x_i x_j$  then in this coloring of  $K_{\omega}$  some rainbow complete subgraph contains all colors. This observation leads to the following questions.

**Problem 7.** (a) Under what conditions does a countable (or an arbitrary infinite) complete graph K contain a rainbow complete subgraph involving all colors that appear in K?

- (b) Find theorems of this type for finite complete graphs.
- (c) Let  $0 < a_1 < a_2 < \ldots < a_k$ , and suppose that for each integer  $i, 1 \le i \le n$ , there is exactly one pair  $j, m(1 \le j < m \le k)$  such that

 $a_m - a_j = i$ . Find  $a(n) = \min a_k$ . Also, find the minimum value of k = k(n), for which such a sequence  $a_1, \ldots, a_k$  exists.

Note that a greedy argument shows  $a(n) \leq 0(n^3)$ . In fact, there exists an infinite sequence  $a_1, a_2, \ldots$  with  $a_n \leq cn^3$  (for some constant c), whose  $(2n)^{th}$  slice satisfies the requirements, for all  $n \geq 1$ .

IV. Concerning Theorem 3, one should ask that, instead of triangles, what sort of rainbow subgraphs F can be excluded so that  $X|_{\varphi}$  must contain a canonically colored subgraph Y of cardinality |Y| = |X|. Theorem 4 shows F always has minimum degree at most 2 (when F is finite).

### References

- [1] ANDERSON, L.D.: Hamilton circuits with many colours in properly edgecoloured complete graphs, *Math. Scandin.* (to appear).
- [2] ERDÖS, P. and RADO, R.: A combinatorial problem, J. London Math. Soc. 25 (1950), 249-255.
- [3] MAAMOUN, M. and MEYNIEL, H.: On a problem of G. Hahn about coloured Hamiltonian paths in K<sub>2n</sub>, Discrete Math. **51** (1984), 213-214.
- [4] RÖDL, V. and TUZA, Zs.: Rainbow subraphs in properly edge-colored graphs, (to appear).
- [5] SIERPIŃSKI, W.: Sur un problème de la théorie des relations, Annali R. Scuola Normale Superiore de Pisa, Ser. 2, 2 (1933), 285-287.
- [6] HAHN, G. and THOMASSEN, C.: Path and cycle sub-Ramsey numbers and an edge-colouring conjecture, *Discrete Math.* 62 (1986), 29-33.