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0. Introduction

In this note we consider complete graphs K = (X, E) with an
infinite vertex set X and edge set E = {zz' : z,z' € X}. For a
given coloring ¢ of the edge set, a subgraph G C K is called a rainbow
subgraph of K if G|,, the coloring of G induced by ¢, contains no
monochromatic pair of edges.

IfY C X and G is the complete subgraph induced by ¥ in K, then we
write Y|, instead of G|,.

QOur first aim is to find a condition ensuring the existence of a rainbow
Hamiltonian path (i.e., a path visiting all vertices of K) when X is
countable. As shown in Theorem 1, it is enough to exclude canonically
colored infinite subgraphs (see definition below) from K|,, provided
that at each vertex, each color class has a finite or 0-measure infinite
degree. This result generalizes a theorem of Hahn and Thomassen [6].
Examples show that the condition in Theorem 1 is nearly the best
possible; it would be interesting, however, to see an ”if and only if”-
type characterization, in terms of forbidden subgraphs (cf. Problem
6).

In the second part of the paper we investigate the question how large
canonically colored subgraphs exist in K when X is an ordered set
of arbitrary cardinality. We consider a particular class of (so-called
"properly ordered”) colorings and show that if rainbow triangles are
forbiddenin K|, then there can be found a canonically colored complete
subgraph on a vertex set of cardinality |X| (Theorem 3). The exclusion
of a rainbow K,, however, is not sufficient, as shown by a suitable
coloring for X =R (the set of real numbers).

1. Rainbow Hamiltonian paths in K,

Throughout this section, K denotes the countable complete graph
with vertex set X = {z1, z3,...} and edge set £ = {z;z; : i # j}.
We assume there is a 0-1 measure g on X, i.e., for every ¥ C X,
u(Y) € {0,1},p is finitely additive, u(X) = 1, and p(¥) = 0 for all
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finite ¥ C X.

For convenience, we denote the colors by integers 1,2,.... Two
colorings ¢, ¢' of a graph G are said to be isomorphic if ' can
be obtained from ¢, as well as ¢ from ', by renumbering (but not
indentifying) the colors. In this sense, two edge-colored graphs G1,G>
are isomorphic if for their colorings ¢1,92 we have Gily, = Galy,,
i.e., there is a one-to one mapping between the vertex sets V(G1) and
V(G3), yielding the isomorphism of ¢; und ;.

Denote by Z* the complete graph with a countable vertex set {zp, 21,
z3,...} and having the (canonical) edge coloring in which z;z; has color
J whenever 1 < j.

Theorem 1. Suppose ¢ : E — N is a coloring of K, such that for each
vertez w; and each color j, the vertices adjacent to z; by an edge of color
J form a set of measure 0. If K|, contains no subgraph isomorphic
to Z* then K has a one-way infinite and a two-way infinite rainbow
Hamiltonian path.

Proof. We construct a sequence P, P,,... of (finite) rainbow paths
with the following properties: z; € P; for all 1 > 1, and P; C P;y; in
the sense that all edges of P; are edges of P;y; too. This clearly implies
that UP; is a rainbow Hamiltonian path of K.

Let Py = (1), P2 = (z1z3). If the Hamiltonian path to be found is
one-way infinite then we extend P; at the end different from zi; if it
should be two-way infinite, we extend P; at the end being closer to z;.

Suppose P; is a rainbow path covering {zy,...,z;}. If ©i41 € P;
define P;;; = P;. Otherwise, denote by y; the j* vertex of P;, i.e.,
P; = (y1y2...yx) where k = |P;|. Set Y = X\({zit1} U {ys,...,yr})

Delete all vertices y from Y, for which ¢(yxy) or ¢(ziy1y) appears
on some edge of P;. The resulting vertex set Y' has pu(Y"') = 1, since
each of the k — 1 colors appearing in P; defines a neighborhood of z;4,
and yi of measure 0 (and p is finitely additive). If thereisa y € ¥
such that ¢(z;11y) # ¢(yry) then Piyy = (y1...YryTi41) is a rainbow
path containing z;,.;. Otherwise, ¢(z;11y) = ¢(yry) for all y € Y.
Let YUY, U... = Y' be the partition of Y’ in which two vertices y
and 3' belong to the same class if and only if ¢(yry) = ¥(yxy'). Then
#(Ym) =0 for all m > 1.

Choose an arbitrary y' € Y', and delete all y from Y' for which
¢(y'y) appears in P; or is identical to ¢(yry'). The set of those y
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is of measure 0, so that the resulting set ¥ has p(Y") = 1. If, for
some y" € Y, o(y"y") # ¢(v"yx) then Piyy = (y1...yxy"y'@iyy1) is
a rainbow path containing z;,,; and we are home. Otherwise, choose
a y'" € Y" and repeat the same argument. Either a rainbow P; i,
containing ¢;,1, is found after a finite number of steps, or an infinite
sequence y', ¥y, y'"',... of vertices is defined with the property that
(¥ Py(?) = p(yy(?) for all p < q. In the latter case, however, those
vertices would induce a subgraph isomorphic to Z*, condradicting our
assumptions, so that P; can be extended to a rainbow path P;yy, for

all 1.
O

Corollary 1.1. (Hahn and Thomassen [6]) If all monochromatic sub-
graphs are locally finite in a Z*-free coloring of K, then K contains a
rainbow Hamiltonian path.

O

An interesting particular case is when any two edges of the same color
in K|, are vertex-disjoint. Such a ¢ is called a proper edge coloring of

K.

Corollary 1.2. Every proper edge coloring of K contains a rainbow
Hamiltonian path.

O

Though Z* itself contains a rainbow Hamiltonian path, it is very
close to being non-Hamiltonian in the following sense. Denote by Z4
the graph which is obtained from Z* by recoloring the edge 2921 to
color 2.

Proposition 2. The graph Z2 contains no rainbow Hamiltonian paths.

Based on a similar idea, the following more general class of ex-
amples can be given. Consider an arbitrary complete graph K, on n
vertices, with a coloring ¢, which does not contain a rainbow Hamil-
tonian path. Suppose ¢, uses colors 1°,2°,..., none of them appearing
among the colors 1,2,.... Replace zy by K|, in Z", and define the
edge z;y to have color 7, whenever y € V(K,) and ¢ > 1. Denote this
edge-colored graph by Z*(y,). Now Proposition 2 can be stated in the
following stronger form. '
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Proposition 2°. If K,
neither does Z"(pn).

en contains no rainbow Hamiltonian path then

Proof. Suppose to the contrary that P is a rainbow Hamiltonian path
in Z*(¢y). Then the vertices of K, induce at least two subpaths P;, P,
(both maximal under inclusion) in P. We may assume all vertices
between P; and P, belong to Z* zp. Let z, be the vertex between
P, and P, in P having maximum subscript. Then the two neighbors
of z,, in P are adjacent to z,, by edges of color m, contradicting the
assumption that P is rainbow.

O

In particular, any coloring of K,, with at most n-2 colors satisfies the
assumptions on ¢y,.

2. Canonically colored subgraphs

In this section we consider infinite complete graphs K = (X, E)
with a vertex set X of arbitrary cardinality. We assume there is an
ordering < given on X. ‘

Erdés and Rado [2] proved that every coloring ¢ of K contains an
infinite Y C X such that Y| is rainbow or monochromatic or, ¢(yy') =
= p(yy") eitherforally < y' < y" orforally” <y' <y (y,¥',y" € Y).

Call a Y C X cannonically colored if for all y,y',y" € Y,y <y <y",
e(yy') = ¢(yy"). We are interested in the question how large cano-
nically colored complete subgraphs must exist in K|,. The following
particular class of colorings will be considered. We say that ¢ is properly
ordered if p(zz') # p(zz") whenever z" < z' < z(z,2',2" € X).

Theorem 3. Let ¢ be a properly ordered coloring of K, not containing
rainbow triangles. Then there is a ¥ C X, |Y| = |X]|, such that Y|, is
canonically colored.

Proof. For any three elements ©,y,z € X, z < y < z, either p(zy) =
= p(z2) or p(zy) = p(yz), since p(zz) # so(yZ)-

If X contains a maximum element z, then set X' = X\{zo}; oth-
erwise, X' = X. Now any two monochromatic edges of X' share a
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vertex. Indeed, suppose ¢(uv) = ¢(yz). Choose an z € X such that
¢ > max(u,v,y,z). Then there is an edge of color y(uv) that joins z
to uv and also to yz. Those two edges must coincide, however, since
we have a properly ordered coloring.

Thus, each monochromatic subgraph of X'|, is a star, since monochro-
matic triangles cannot occur in properly ordered colorings.

Call a monochromatic star non-trivial if it contains at least two edges.
Such a star has a (unique) centre, the common vertex of its edges.
Observe that every ¢ € X' is the centre of at most one (non-trivial) star.
Otherwise, let p(zy) = ¢(zy') # ¢(zz) = p(zz'). Choose a w € X,
w > max(z,y,y',2,2'). Then p(zy) = p(zw) = ¢(zz) should hold, a
contradiction. Since each triangle contains a pair of monochromatic
edges, there are at most two vertices z', 2" that are not centres of some
star. Set X" = X'\{z',z"}.

Thus, each # € X" is the centre of exactly one non-trivial star 8.
Renumbering the colors, if necessary, we may assume S is colored by
color z. We define a partition X; U X, = X" as follows: z € X; if
y < = implies p(zy) # z; ¢ € X, if there is a y < = with p(zy) = =.
The proof will be done if we show X;]|, and X;|, are both canonically
colored.

Suppose ¢ € X;. If there were a z > = such that p(zz) # = then
¢(yz) = = would follow for any y,p(zy) = =, a contradiction as Sy
cannot have color z. Hence, X, is canonically colored, and y € X;
whenever p(zy) # y, y < z.

Suppose X; is not canonically colored, i.e., there are three elements
z,y,2 € X1,¢ <y < z, p(zy) = a # b = p(zz). Then p(yz) = a (since
¢ is properly ordered), so that y € X3, contrary to our assumption.

¢

We note that the above argument yields the following result for
the finite case.

Theorem 3’. Every properly ordered coloring of K, with no rainbow
triangle contains a canonicaly colored K|, z)-1-

%

Instead of K3, the exclusion of a rainbow K, is not sufficient in
‘Theorem 3. This fact can be proved in the following stronger form. (R
denotes the set of real numbers.) ‘
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Theorem 4. For X = R, there ezists a properly ordered coloring ¢
with the following properties:

(i) Every canonically colored Y is countable;

(ii) X|, contains no rainbow finite subgraphs of minimum degree grea-
ter than 2. (In particular, X|, is rainbow-K4-free.)

Proof. First, consider the properly ordered (canonical) coloring @™
defined by ¢ (zy) = z for all z < y. We modify p* by splitting each
color class into two parts, and replacing each color z by two colors z',
z''. (Clearly, after any kind of splitting, the obtained coloring remains
properly ordered.)

The splitting is based on idea due to Sierpinski [5]. Consider a well-
ordering <, of R. For z < y, define p(zy) to be z' if z <1 y and to
be 2" if y <1 . Let Y|, be canonically colored, for some ¥ C X = R.
We show Y is countable.

Set B, = {zy:z <y € Y} forz € Y. If Y is canonically colored
then each E; is monochromatic. Divide Y into two (disjoint) parts Y7,
Y, as follows: ¢ € Y] if F, has color z' and z € Y, if E, has color
z''. By the definition of <, for each z € Y7, the set {y € Y7 : y > z}
contains a minimum element y,. Picking a rational number from the
interval [z,y), it follows that }; is countable. By a similar argument,
considering the sets {y € 13 : y < z} and the intervals (y,, z], it follows
that Y5 is countable.

Let G be a finite rainbow subgraph of X|,, with a vertex set {z1,...,

©n}. Then z = min z; has degree at most 2, since all edges incident to
z in G have color z' or z".

%

3. Concluding remarks

I. Corollary 1.2 is much easier to prove than Theorem 1. As a matter
of fact, in a proper edge coloring, P; can be extended to a suitable P;;,
by adding z;y; and at most one extra vertex. The finite version of
Corollary 1.2, however, is unknown. A nice construction of Maamoun
and Meyniel [3] shows there is a proper edge coloring of the complete
graph K, on n = 2F vertices (for all £ > 2) not containing a rainbow
Hamiltonian path. It would be interesting to see such colorings for all
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even n.

On the other hand, Andersen [1] conjectures that every proper edge
coloring of K, contains a rainbow path covering all vertices but one.
Some lower bounds on the length of a maximum rainbow path are given
by R6dl und Tuza [4]. Here we raise the following related question.

Problem 5. Find the minimum number f(n) of colors, such that every
proper edge coloring of K,, by at least f(n) colors contains a rainbow
Hamiltonian path.

The examples of [3] show f(n) < n — 1 does not hold in general. It
seems to be reasenable to conjecture, however, that f(n) is very close
(or, perhaps, equal) to n.

II. All our examples for colorings of a countable complete graph with-
out a rainbow Hamiltonian path have a canonical structure (cf. Propo-
sition 2). Now the following two problems arise.

Problem 6. (a) Find a class I of edge-colored countable complete
graphs with the following properties:

(i) No F € F contains a rainbow Hamiltonian path.
(ii) Allinfinite complete subgraphs of K|, have a rainbow Hamiltonian
path if and only if K|, contains no subgraph isomorphic to any

FePF.
(b) Do all f € F have a canononical structure?

III. It is easy to show there is a subset {a;,az,...} of the natural
numbers such that every positive integer occurs exactly once among
the numbers and |a; — a;|, 1 <7 < j. In other words, if color |z — j| is
assigned to edge z;z; then in this coloring of K,, some rainbow complete
subgraph contains all colors. This observation leads to the following
questions.

Problem 7. (a) Under what conditions does a countable (or an arbi-
trary infinite) complete graph K contain a rainbow complete subgraph
involving all colors that appear in K?

(b) Find theorems of this type for finite complete graphs.

(c) Let 0 < a3 < ay < ...< ag, and suppose that for each integer
1,1 <1 < n, there is exactly one pair j,m(1 < j < m < k) such that
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a@m — aj = t. Find a(n) = minag. Also, find the minimum value of
k = k(n), for which such a sequence ay,...,a; exists.

Note that a greedy argument shows a(n) < 0(n?). In fact, there exists
an infinite sequence a1,a;3,... with a, < cn® (for some constant c),
whose (2n)t" slice satisfies the requirements, for all n > 1.

IV. Concerning Theorem 3, one should ask that, instead of triangles,
what sort of rainbow subgraphs F' can be excluded so that X|, must
contain a canonically colored subgraph Y of cardinality |Y| = |X].
Theorem 4 shows F' always has minimum degree at most 2 (when F is
finite).
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