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Abstract: The method of Grobner bases has been fruitfully applied to many
problems in the theory of polynomial ideals. Recently Grobner bases have
been used in various ways for dealing with the problem of geometry theorem
proving as posed by Wu. One approach is centered around the computation
of a basis for the module of syzygies of the hypotheses and conclusion of a
geometric statement. We elaborate this approach and extend it to a complete

decision procedure.

In geometry theorem proving the problem of constructing subsidiary (or
degeneracy) conditions arises. Such subsidiary conditions usually are not
uniquely determined and obviously one wants to keep them as simple as pos-
sible. The question of constructing simplest subsidiary conditions has not
been addressed yet. We show that our algorithm is able to construct the sim-
plest subsidiary conditions with respect to certain predefined criteria, such as

lowest degree or fewest variables.
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0. Introduction

The work of Wu Wen-tsiin [Wu 1978], [Wu 1984] has renewed the
interest in automated geometry theorem proving. He has developed a
decision algorithm for a certain class of geometry problems. The class of
problems Wu considers (Wu’s geometry, for short) consists, intuitively
speaking, of those problems that can be translated into algebraic equa-
tions over some ground field K, the number system associated with the
geometry. For the relationship between axiomatic geometries and num-
ber systems we refer to [Hilbert 1977]. Basically, Wu’s geometry allows
one to talk about incidence, parallelism, perpendicularity, cocircular-
ity, congruence, etc., but not about "betweenness”, because no order
predicate is available.

Often a geometric statement is true only in a ”generic” sense, i.e.
after certain degenerate situations have been ruled out. Such degenerate
situations typically occur when triangles collapse to a line segment,
circles to a point, etc. and they are usually not explicitly mentioned. An
automatic procedure for proving geometry statements has to be able to
deal with the problem of such "degeneracy” or ”subsidiary” conditions,
that means it has to be able to automatically find suitable subsidiary
conditions which make the statement a theorem, if such conditions exist
at all.

Wu has given a decision procedure for solving the geometry theo-
rem proving problem. His procedure also finds a subsidiary condition,
if such a condition exists. Wu’s decision algorithm has been partially
implemented by himself and by Chou [Chou 1985]. Many interesting
theorems have been proved by these implementations, including Sim-
son’s theorem, Pascal’s theorem, the Butterfly theorem and Feuerbach’s
theorem. Wu’s algorithm is based on the computation of characteristic
sets of polynomial ideals, as introduced by Ritt [Ritt 1950].

Different approaches to geometry theorem proving, based on the
computation of Grobner bases [Buchberger 65], [Buchberger 85] for
polynomial ideals, have been reported. In [Chou, Schelter 1986] Grob-
ner bases over the field generated by the independent variables of a
geometric construction are employed. Kapur [Kapur 1986a,b] describes
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a refutational theorem prover, based on Rabinowitsch’s trick for proving
Hilbert’s Nullstellensatz. Kutzler and Stifter [Kutzler, Stifter 1986a,b]
describe various ways of applying Grobner bases to this problem, one
of which is centered on the computation of a basis for the module of
syzygies of the geometrical hypotheses and conclusion. This method is
not complete. However, we are able to extend it to a complete decision
procedure.

As we have mentioned above, an automatic procedure for geom-
etry theorem proving must be able to find subsidiary conditions. Of
course it would be of interest to keep the subsidiary condition as sim-
ple as possible. Referring to his approach Kapur [Kapur 1986b] claims
that ”conditions found using this approach are often simpler and weaker
than the ones reported using Wu’s method or reported by an earlier ver-
sion of Kutzler & Stifter’s paper as well as Chou & Schelter based on
the Grébner basis method.” However, no algorithm for computing the
?simplest” subsidiary condition has been reported up to now. Our algo-
rithm is able to compute the ”simplest” subsidiary condition by giving
a complete overview of the possible subsidiary conditions. Reasonable
criteria for ”simplest” might be ”of as low a degree as possible” or
”involving only certain variables.”

The stucture of this paper is as follows. In chapter 1 we give a
short introduction to the theory of Grébner bases, reviewing definitions
and basic facts as far as they will be neccessary for the geometry the-
orem proving problem. In chapter 2 we define the geometry theorem
proving problem. We derive a complete decision procedure GEQ, which
is also able to compute the simplest subsidiary condition for a given in-
stance of the geometry theorem proving problem. Finally, in chapter 3
we demonstrate how GEO can be applied to concrete geometry prob-
lems.

1. The method of Grobner bases

We define the notion of a Grobner basis for a polynomial ideal as

introduced by Buchberger [Buchberger 1965, 1985].
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Let K be a field and K{zy,...,z,] (or K[X] for short) the poly-

nomial ring over K in the indeterminates z1,...,2,. Let [21,...,2,] =

= [X] denote the monoid of power products in z;,...,z,. We start
by choosing a term ordering <, i.e. a linear ordering on [X]| which
makes [X] an ordered monoid with zJ ...z% as the least element. With
respect to < every nonzero polynomial f € K[X] contains a highest
power product, which is called the leading power product of f,lpp(f).
The coeflicient of Ipp(f) in f is called the leading coefficient of f,lc(f).
The polynomial which results from f by subtracting the leading power
product multiplied by the leading coeflicient is called the reductum of

fyie red(f) = f —le(f) - Ipp(f).

Every nonzero polynomial f gives rise to a reduction relation —
on K[X] in the following way: g1 — g2 if and only if there is a power
product u with a nozero coefficient a in g;, i.e. g; = au + h for some
polynomial A which does not contain u, such that Ipp(f) divides u,
ie. u = Ilpp(f)u' for some u', and g; = —Tc—(ﬁf—)u’red(f) +h. f Fisa
set of polynomials, the reduction relation modulp F' is defined so that
g1 —F g2 if and only if gy —¢ g, for some f € F. In this case g;
is reducible to g, modulo F. If there is no such g;,g; is irreducible
modulo F'. For every set of polynomials F' the reduction relation —F is
Noetherian, i.e. every chain f; —p fo —p --- terminates. We say that
g is a normal form of f modulo F, if f can be reduced to g by a finite
number of applications of — g, and g is irreducible modulo F. Normal
forms are usually not unique.

If F is the basis of a polynomial ideal I, then obviously f —¢ 0
implies f € I. In general, however, the implication in the reverse
direction does not hold. A non-zero polynomial f might be irreducible
modulo F' and still f € 1.

Definition 1.1. Let I be an ideal in K[X|. A finite set of polynomials
G is a Grébner basis for I iff (G) = I (G generates I) and f € I &
f—rF0, forall f e K[X]. O

There are many equivalent definitions for Grobner bases. The
interested reader may confer [Buchberger 1985]. More importantly,
however, every ideal I in K[X] has a Grobner basis and a Grobner
basis for I can always be computed starting with some basis F' of I.
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Gobner bases are an extremely powerful tools in commutative al-
gebra. We mention some applications, as far as we will need them in the
subsequent chapters. For further applications we refer to [Buchberger
1985], [Winkler et al. 1985], [Winkler 1986]. The "main problem” of
polynomial ideal theory, namely the question whether f € I for a poly-
nomial f and a polynomial ideal I, can easily be solved once a Grébner
basis G for I has been computed: reduce f to its unique normal form
modulo G and check whether this normal form is 0. The identity I = J
for two ideals I and J can be checked algorithmically by computing
Grobner bases Gy and G for I and J, respectively, and then checking
whether every basis element in G is in J and vice versa. The member-
ship problem for the radical of an ideal I (i.e. wheter f € radical(I))
can be solved by computing a Grébner basis G for (I,z - f — 1), where
z is a new variable, and checking whether G contains a constant.

The computation of a Grobner basis is an important step in solv-
ing a system of algebraic equations. The following elimination property
of a Grobner basis with respect to a lexicographic ordering of the vari-
ables has been observed by Trinks [Trinks 1978]. It means that the i-th
elimination ideal of an ideal I with Grobner basis G is generated by the
basis elements in G that depend only on the first 7 variables.

Lemma 1.2. Let I be an ideal in K[X] and G a Grobner basis for I
with respect to the lezicographic ordering < with ©; < z3 < -+ < z,,.
Then, for 1 <i<n,

INK[zy,...,z;] = (G N K[zy,...,z]),
where the ideal on the right hand side is formed in K[zq,...,z;].

Proof. Obviously the right hand side is contained in the left hand
side. On the other hand, assume that f € I N K[z;,...,z;]. Then
f can be reduced to 0 modulo G with respect to the lexicographic
ordering <. All the polynomials occurring in this reduction process
depend only on the variables z;,...,z;, and we get a representation of
f as a linear combination of polynomials in G, where all the summands
in this representation depend only on z,,...,z;. O

Given bases for the ideals I and J, bases for (IUJ) and I -J can
easily be determined. In general, however, computing bases for I N J
and I : J is a hard problem.
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Lemma 1.3. Given bases for the ideals I and J in K[X], bases for the
following can be computed:

(a) INJ,

(b)I:J,

(c) radical(I).

Proof. (a) For a new variable z we have
INJ=((z-1)IUzJ)n K[X].

From bases for I and J we immediately get a basis for ((z —1)I U zJ).
The intersection with K[X] can be computed by Lemma 1.2.

(b) If J = (f), then compute a basis {g;,...,gx} of I N (f) by (a).
{g91/f,---,9x/f} is a basis for I:(f). In the general case
J={(f1,--.,fm) we have

(c) The zero-dimensional case is treated in [Kalkbrener 1987], [Kobay-
ashi et al. 1988] and the general case in [Kandri-Rody 1984], [Gianni
et al. 1988).

¢

Definition 1.4. Let < fiyeeos fm >€ K[ X]™. < GiyeeryGm >E
€ K[X]™ is a syzygy of < fi1,..., fm > iff > i, figi = 0. For a subset
M of K[X]™, < g1,-.-,9m > is a syzygy of M iff it is a syzygy of every
element of M.

&

For a finite set M C K[X], the syzygies of M are the solutions
of a homogeneous system of linear equations with coefficients in M. A
(finite) set M C K[X]™ generates a module over K[X], and on the other
hand, as a consequence of Hilbert’s basis theorem, every submodule of
K[X]™ has a finite basis. The set of syzygies of a subset M of K[X|™
is equal to the set of syzygies of the module generated by M over K[X],
and it forms again a module over K[X]. The Grobner bases algorithm
can be used to compute a basis for the module of syzygies of M.
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Lemma 1.5. For every finite subset M of K[X|™ a basis for the module
of syzygies of M can be computed.

Proof. see [Buchberger 1985] for the case |[M| =1 and [Winkler 1986)
for the general case. An alternative approach via extending the notion
of a Grébner basis to modules is taken in [Galligo 1979] and [Méller,
Mora 1986]. O

2. Geometry theorem proving: a decision proce-
dure

We consider a geometry whose associated number system is the
algebraic closure K of a field K, i.e. the geometric objects lie in K™
for some n € N. The statements we allow have to be expressible in the
form

(21) (Ve € B™[fi(z) =0A...A fin(z) = 0= f(z) = 0]

for some polynomials fy,...,fm,f in K[ey,...,2,] = K[X]. The
f1,.-+, fm are called the hypothesis polynomials or hypotheses for short,
and f is called the conclusion polynomial or just the conclusion. Ba-
sically, this enables us to talk about incidence, parallelism, perpendic-
ularity, cocircularity, congruence, etc., but not about "betweenness”,
because no order predicate is available.

As an example let us consider the geometric theorem (in R?) that
"for every triangle ABC the lines orthogonal to the sides of the tri-
angle and passing through the midpoints of the associated sides have
a common point of intersection”. Before we can express this theorem
algebraically, we have to place the triangle in a two dimensional coordi-
nate system. Without loss of generality we can assume that A is placed
at the origin, A = (0,0), and that the side AB is parallel to the z-axis,
B = (a,0). No restriction is put on C = (b,c).




22 F. Winkler

Y C(b,c)
S
f2 3~ s f
\\\ :/
VAR
A(0,0)" Ify T B(a,0) =

The equations for f;, f, and f are

1
fl(may) =T — Ea'a

fa(z,y) = b(z — %b) +e(y — %c),

f(e,y) = (&~ B)(& — 5(a ) +ely ~ 3.

In order to prove the theorem, it suffices to show that f vanishes on
the variety of (f1, f2) C R(a,b,c)[z,y], or in other words that f €
€ radical(f1, f2). By the method described in Chapter 1 this problem
can be decided by computing a Grobner basis for (fi, f2,2-f — 1) in
R(a,b,c)[z,y]. The computation can be carried out completely over
the field Q(a,b,c), yielding the Grobner basis {1}. So f is indeed in
the radical of (fi, f2) and the theorem is proved. A geometry theorem
prover along these lines is described in [Chou,Schelter 1986].

An important step in this approach is the transition from the
question whether a polynomial f vanishes on the variety of an ideal I
to the problem whether f is in the radical of I. That is only possible
if the varieties are defined over an algebraically closed ground field.
So, for instance, one cannot decide geometric statements in real space
but only in complex space. Theorems in real geometry can only be
confirmed, but not disproved. For actually deciding statements in real
geometry one has to consider the theory of elementary algebra and
elementary geometry, based on real closed fields.This theory has been
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shown to be decidable by Tarski [Tarski 1951] and has become known as
Tarski algebra. Tarski’s decision procedure has recently been improved
in [Collins 1975], [Ben-Or et al. 1984] and [Grigor’ev 1988].

Often a geometric theorem is true only after certain degenerate
situations have been ruled out by a nondegeneracy or subsidiary con-
dition. As for the hypotheses and the conclusion, we require that the
subsidiary condition be expressible by a polynomial, this time by a
polynomial inequation of the form s(z1,...,2,) # 0. So the problem
becomes to decide whether for given fi,..., f;m, f and s in K[X]

(22) (Ve € K™)[fi(z) =+ = fm(z) = 0 A s(z) # 0 = f(z) = 0].

Moreover, as we have mentioned above, in a geometry theorem prov-

ing setting it is reasonable to require that a subsidiary condition be
determined algorithmically.

So we arrive at the following formal specification of the geometry

theorem proving problems posed in [Wu 1984]. Let K be a field, K the
algebraic closure of K.

Py

given: polynomials fi,..., fm, f in K[X]

decide: does there exist a polynomial s € K[X] such that
() (V5 € K)(1(e) = . = fnle) = 0 As(x) #0 =+ S(e) =0)
(2) 3z € K™)(fi(z) = ... = fm(z) = 0 A s(z) £ 0)?

If so, find such an s.

Part (2) in Pw, guarantees that the subsidiary condition does not ex-
clude all points in the variety of fi,..., f;m. Sometimes it seems natural
to use a finite number s4,...,s, of subsidiary conditions, replacing s(z)
in Pw,y by s1(z) # 0A ... A sp(z) # 0, thus getting a modified prob-
lem. However, it can easily be seen that a single subsidiary condition
s is sufficient. The factors of s satisfy the modified problem, and if
81,...,8y satisfy the modified problem, then their product s, ... s,
satisfies Pyy.

In [Wu 1984] Wu describes a decision algorithm for Py, which
has been partially implemented by himself and by Chou [Chou 1985].
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Wu’s algorithm is based on the computation of characteristic sets of
polynomial ideals, as introduced by Ritt [Ritt 1950]. In this paper
we solve Py, by computing a basis for the module of syzygies of the
geometrical hypotheses and conclusion, thus getting also a method for
computing the simplest subsidiary condition.

Theorem 2.1. Let fy,..., fm, f be the parameters of an instance P of
Py,
(i) Those polynomials s € K[X], which satisfy part (1) of P, constitute

an ideal Np. ‘
(ii) For every s € Np thefe exist Sy,...,3m € K[X] and k € N, such
that < 81,...,8m,8% - f*71 > is a syzygy of < f1,..., fm, f >, i.e.

si fit ot sm fmtsF fEL f=0.

(ili) If < 81y-cvy8m, 8% fF71 > k€ N, is a syzygy of < f1,-++, fmr [ >,
then s € Np.

(iv) Set
Sp={s| <581,...,8m,8 > is a syzygy of < fi,-.., fm, [ > for
some 81,...,5m}. Then Np = radical(Sp): (f).

Proof. (i) Suppose both s; and s, solve part (1) of P. Now let #;,1,
be arbitrary polynomials, and let z € K™ be such that fi(z) = ... =
= fm(w) = (0 and (tl.sl + tz.ﬂz)(m) = tl(:E) . 31(413) + tz(il}) . 32(:8) # 0.
Then either s;(z) # 0 or s3(z) # 0. W.lo.g. assume that s;(z) # 0.
But then f(z) = 0, since s; is a solution of part (1) of P. So t15; + ¢33
is also a solution of part (1) of P.

(ii) Since s € Np, we know that s - f vanishes on every common zero
of fi,...,fm in K. That, however, means that s - f is in the radical of
(fiy---sfm), and a power of s - f, say s¥ - f¥, k € N,is in (fi,..., fm)-

Therefore, for some sy,...,s,n € K[X],
sicfit A smfmt+ st fF =0,
ie. < 81y.00y8m,8% - 571 > s a syzygy of < fi,..., fmo f >

(iii) 81 - f1 4+t S fm + 8% fF =0, so for every z € K™
filz)=...= fm(z) =0As(z) #0= f(z)=0.
(iv) Clearly Sp is an ideal in K[X]. By (ii) and (iii)
Np ={s € K[X]|s*- f*~ € Sp for some k > 1}
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If s € Np, then s*f*= ¢ Sp for some & > 1. Thus s*f* ¢ Sp. This,
however,implies sf € radical(Sp) and therefore s € radical(Sp) : (f).
On the other hand, let s € radical(Sp) : (f), i.e. sf € radical(Sp).
Then s* f* € Sp for some k > 1. So s*t1fk ¢ Sp and therefore s € Np.

o

By Lemma 1.5 a finite basis for the module of syzygies of a se-
quence of polynomials can be computed. So for every instance P of
Py, one can compute a finite basis for the ideal Sp. From the basis
for Sp a basis for Np can be computed by Lemma 1.3. Hence we have
a complete overview of the solutions of part (1) of Py, . The remaining
question is, whether there is a solution of (1), which also satisifies (2).

Theorem 2.2. Let P be an instance of Pw., B a finite basis for Np.
(1) If there is a polynomial in Np which satisfies (2), then there is a
polynomial in the basis B which satisfies (2).
(ii) If B is a Grébner basis for Np with respect to the term ordering <,
B' is the set of b € B which satisfy part (2) of P, and t = min{Ilpp(b)|b €
B'}, then for every solution s of P, lpp(s) > t.

Proof. (i) Let f1,..., fm, f be the parameters of the instance P of Py,
and B = {by,...,b,}. Assume that no basis polynomial b;, 1 < i < r,
satisfies (2), i.e.

(Vo € K™)(fi(z) =...= fm(2) =0= b;(z) =0) forall 1 <i < 7.
Then also for every linear combination s = 327__ h;b; we have
(Vz € K™)(fi(z) = ... = fm(z) = 0 = s(z) = 0),
so no s € Np satisfies (2).

(i) Let s be a solution of part (1) of P. s € Np, so s is reducible to 0
w.r.t. B. Let C C B be the set of elements of B used in this reduction.
Then Ipp(b) < Ipp(s) for every b € C. If no b € C satisfies part (2) of
P, then neither does s. O

Theorem 2.2 (ii) establishes that "simplest” subsidiary conditions
can be computed by choosing the term ordering < appropriately, na-
mely so that s; is simpler than s, if and only if Ipp(s; < Ipp(ss).
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For instance, a Grobner basis for Np with respect to a graded or-
dering contains a solution of lowest degree of P, if any solution ex-
ists. A Grébner basis for Np with respect to a lexicographic ordering
zy < ... < Ty, < ... < T, contains a solution depending only on
T1,...,Tm, if such a solution exists. The variables z,,..., 2z, could be
the ”independent” variables (see [Kutzler, Stifter 1986b]) of the geo-
metric construction. So one can ask the question whether there is a
nondegeneracy condition depending only on the independent variables.
The two orderings can, of course, be combined by ordering the power
products in 21,...,Z, by some ordering <, e.g. according to the de-
gree, and also the power products in zm,41,...,%, by some ordering
~3. Then a term ordering < can be constructed by

UiUg < Tty 1 & uy <3 o V (’le =13 AN uy <1 tl),

where u1,%; are power products over zi,...,Z.;, and uz,t; power prod-
ucts over £,41,-..,Zn. This ordering will lead to a subsidiary condition
of lowest degree involving only the independent variables z1,...,2Zm.

In their report [Chou,Yang 1986] Chou and Yang consider the
problem statement P, and claim: ” The algebraic problem in this for-
mulation is well defined. However, the polynomial s sometimes has
nothing to do with nondegenerate conditions in geometry. To make
things worse, this formulation is unsound from the geometric point of
view.” They go on to stress their point by an example. We will deal
with this example and the criticism of Py, in Chapter 3.

Combining Theorems 2.1 and 2.2 we get the following decision
algorithm for Py, .

Algorithm GEO (in: polynomials fi,...,fm, f € K[X],
out: s, a solution of the instance
P=<fi,...,fm,f > of Pwa,

if such a solution exists,

or "no”);

(1) Compute a finite basis C for Sp, the ideal generated by the last
component of the syzygies of < f1,.-. s fm, [ >.

(2) Compute a basis C' for radical(Sp).
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(3) Compute a Grébner basis C'" for ((z — 1)C' U {z - f}) in K[X][z]

with respect to a lexicographic term ordering 1 < -+ <z, < 2.
(4) Set C" = C"N K[X]. C" is a basis for radical(Sp) N (f).
(5) Set B={h/flh € C'"}. B is a basis for radical(Sp): (f) = Np.

(6) Check the polynomials b in B for b ¢ radical(I), where I=

= (fi,---sfm)- If B 1s a Grobner basis with respect to the term
ordering < and b is the element of B with the least leading power product
satisfying b € radical(I), then b is the simplest subsidiary condition.
Set s = b and stop. Otherwise output "no”. ¢

3. Examples

We use the decision algorithm GEO to prove that

Yif P, and P, are two points on a circle and M is the midpoint of Py
and P, then the line through M and perpendicular to P, P, contains the
center of the circle”.

The hypotheses of the given instance P

P of PW are 1(21,91)
frie} 4yl —=23 -y /m: —

(P; and P, are points on a ——t=

circle with center (0,0)) g
faia(zy — 1) +b(y2 — 1) Py(z2,92)

((3) is perpendicular to Py P,)

and the conclusion is

fralyr +y2) — bz +z2)
(the line y = 2z contains A, the midpoint of P, and F;).

First we compute a basis for the ideal Sp, i.e. the third com-
ponent of the module of syzygies of (fi, f2,f). A Grobner basis for
ideal(f1, f2, f) in Qa,b,z1,72,y1,y2] w.r.t. the lexicographic ordering
witha <b<z3 <zy <y; <yz1is

1

1 -1 1
{f1,f2, f, fs = abys — §b2$2 - ‘2‘"‘2"’2 - ’z‘bzml +‘§a2:c1}.
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From the Grébner basis we immediately get a basis for the module of
syzygies of < fi, fa, f3, f >. By an algorithm described in [Buchberger
1985 this syzygy basis can be transformed to a basis of the syzygies of

< fl’f27f >
» (_b7y2 +y1,i’31 - Il!z),

(—a,zy + 1,52 — Y1),
(0, ays + ayy - bry — bzq,—bys + by1 — axy + amwy),
(2aby; — b’zy — a’zy — b2z + alzy,ay? — ay? + axs — az?,
—byZ + by? — bal + bz?).
Thus Sp = (z3 — z1,y2 —y1) and C = {@y — 1,92 — 41 }-

Sp is radical, so C' = C. Next we determine a Grobner basis C"

for ((z —1)C'U {zf}) in Qla,b,z1,Z2,y1, Y2, 2], getting

Loz —T12 — Ty + 21,

Y22 — Y12 — Y2 + V1,
aysz + ay;z — bryz — bz, z,
1 1 1 1
ay1z — bz z + 52 ~ 51 — -2‘53:2 + 56931,
azT2ys — a1y + azzyy — axyys — bzl + bz? = (22 — x1) - f,

ay§ — bzyy, — bz1ys — ayf + bzyyy + briyr = (y2 — 1) - f-

Intersecting this basis with Q[a,b,z1,z2,y1,y2] and dividing by f we
finally get the basis B = {z2 — 1,y2 — 1} for radical(Sp) : (f) = Np.

Neither z, — ; nor y; — vy is in the radical of ideal(fi, f2), so
both are solutions of the geometric problem instance P, and they are
solutions of lowest degree.

That means the theorem holds in (;2 (and therefore also in R?) if
either the z-coordinates or the y-coordinates of the two points P; and
P, differ from one another, i.e. P; and /, do not collapse to a single
point.

For further demonstrating the usefulness of computing a simplest
subsidiary condition, we consider an example used in [Chou,Yang 1986]
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to support the claim that the polynomial s computed as a solution
of Py, may have nothing to do with a subsidiary condition for the
geometric problem.

The goal is to prove that "every triangles is isosceles”, which of
course, is not a theorem in complex geometry. Chou & Yang observe,
however, that there is a formulation of this problem as an instance of
Py, which admits a subsidiary condition s.

The algebraic formulation they use is the following: let ABC be
a triangle, and BE the altitude from B. Show that AB = CB. As
coordinates for the points they choose 4 = (0,0), B = (y1,0), C =

(Y4,¥5), and E = (y3,y3). Now the hypotheses can be translated into
the algebraic equations

hi=ysys + (y2 — y1)ya = 0 BE1AC
hy = —Y2Ys +yays =0 E is on AC
and the conclusion into the equation
9=—Y5 ¥ + 25192 =0 AB =CB.
C
E
A B

s = y2 + y2 — y1y, satisfies both conditions in Py,. In fact,
Kapur’s theorem prover confirms the "theorem” under the subsidiary
condition s. Chou & Yang now state that *Thus under this formulation
we can prove that "every” triangle is isosceles” and they take this as
evidence of their claim that Py, is "unsound”.

In our oppinion, the controversy stems from the fact that the de-
pendent variables y,,y; are not explicitly excluded from the subsidiary
condition. If one wants to consider only such subsidiary conditions,
which do not involve the dependent variables (which is reasonable from
a geometric point of view), then this can be achieved by a suitable
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ordering of the power products, e.g. a lexic

Y1 <Ys <Ys <Yz <
N, mmaresmsenons’ No— |

indep. var. dep.

Now the algorithm GEO is able to detect th
condition involving only the independent v
also Kapur [Kapur 1986b] mentions the pc
there is no such subsidiary condition in a r

Let us apply the algorithm GEO to
the formulation above, where ki, hs are i
conclusion. We get

{b1 = yays — Ysy2,
by = yiys + yiys —
bs =i +v5 — y1y2
by = ysys + Yaya —

as a basis for Sp, the ideal generated by
syzygies of (h1,h2,g). Sp is radical, so w
intersection Sp N tdeal(g) and divide by
{bl,bz,b3,b4} for Np.

Finally in step (6) we detect that by
exists no possible subsidiary condition inv¢
variables y1,v4,¥s.
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