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Abstract: Embeddings of a free algebras of countable rank in free algebras
of rank two are studied, which possess special properties, such as inertia or
honesty. Their existence has the consequence that the embedding can be
extended to one of their universal fields of fractions.

1. Introduction

It is well known, and easily verified, that a free (associative) alge-
bra F' of countable rank can be embedded in a free algebra G of rank
2; thus in k < @,y > the elements y"z (n = 0,1,...) freely generate
a free subalgebra. But frequently one needs embeddings with special
properties, and here the above example is usually insufficient. Thus
one may want embeddings F' — G with one or more of the following
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properties:

1. l-inert embeddings. This means that if ¢ € F' has a factorization
¢ = abin G, then there exists a unit u in G such that au,u'b € F (for
simplicity we have here identified F' with its image in G.)

2. More generally, an n-inert embedding is the case where the matrix

ring M, (F) is 1-inertly embedded in M,(G).

3. Honest embeddings. Their definition will be given below in §2; it
amounts to requiring the universal field of fractions of F' to be embedded
in that of G.

The existence of 1-inert embeddings of F' in G was conjectured by G.M.
Bergmann in {1] and later proved (though not published) by him (cf.
Th. 4.5.3, p. 217 of [5]). Our aim in this note is to construct an honest
embedding of F' in G, in §2, and to give an illustration, in §3. Our
construction also provides an example of a 1-inert embedding which is
simpler than that in [5]; whether it is n-inert for n > 1 remains open.

2. An honest embedding

Throughout, all rings are associative with 1, which is preserved
by homomorphisms and inherited by subrings. Fields need not be co-
mutative; sometimes the prefix ’skew’ is used for emphasis.

A matrix C over a ring R is said to be full if it is square, say n x n
and cannot be written in the form C = PQ, where P is n xr, @ is
r X n and 7 < n. A homomorphism of rings is called honest if it keeps
full matrices full. Since every non-zero element, as 1 x 1 matrix, is full,
an honest homomorphism is necessarily injective. To give an example,
in the embedding F' — G described in §1, with 2, — y™z say,

20 2 T ye \ (1
(zz z3> maps to (yzm y3m>_(yz>(m yz),

and this shows that the mapping is not honest.

The importance of full matrices is that certain classes of rings such as
semifirs have the property that each can be embedded in a skew field
over which every full matrix from the ring becomes invertible. This
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is called the universal field of fractions
of the ring and for a ring R it will be

denoted by U(R) (cf. [5], Ch. 7 for F A G
details). Thus if we have a homomor- L !
phism of semifirs 8 : F — G, we can U(F) U(G)

form a commutative square as shown g
precisely when [ is honest, and one
method of establishing that [ is

honest is to prove the existence of such a commutative square.

Let D be a skew field and K a subfield. By the tensor-D-ring over
K on a set X we understand the ring generated by D (as ring) and X,
with the defining relations

(1) az =za forall ze€ X, a€ K.

This ring will be denoted by D < X >; when D = K, it reduces to
the free K-ring K < X > (called a free K-algebra when K is commu-
tative), and the free D-ring over K may be expressed as a free product
(coproduct) '

Dg <X >=Dg K< X >.

Frequently it is assumed that K is contained in the centre of D, but
we shall not make this assumption here. We must then bear in mind
that we cannot substitute arbitrary elements of D for X (because the
relations (1) might then be violated), but we have to restrict X to values
in the centralizer of K.

We shall write F' = K < Z >, where Z = {2¢,21,...},G =k < z,y >;
as indicated above, to find an honest embedding of F' in G we only need
an embedding of U(F') in U(G). Such an embedding was described in
[2] (cf. [3], p. 120), but under that mapping the image of F was not
confined to G. It was obtained by finding an automorphism permuting
Z transitively, and realizing this automorphism by conjugation in G.
We shall find that the same purpose can be achieved by a derivation,
and this time the image of F' stays within G. We first describe the
derivation.

Lemma 2.1. The free K-ring K < Z >, where Z = {29,21,...}, has
a derivation § over K such that 28 = z;,1, and § eztends to a unique

derivation of U(F).
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Proof. The mapping
(2) §:zi 241 (1=0,1,...)

extends to a unique derivation of F' because F' is free (Prop. 1 of 3.3,
p. 67 of [4]). Thus we have a derivation § of F' satisfying (2). We can
write this as a homomorphism form F to M,(F):

3) | sia (3%);

it induces a homomorphism from M,(F) to Mz,(F) such that every
full matrix over F' maps to an invertible matrix over U(F'). For if A is
full over F, then it is invertible over U(F), hence

A Af has the ; A"l —A71A54
0 A as the invers 0 4-1 .

Therefore the homomorphism A can be extended to a unique homomor-
phism from U(F') to M4(U(F)), again denoted by A. Clearly it has
again the form (3) and the (1,2)-entry is a derivation of U(F') extending
3 it is unique because the extension of A was unique.

We can now obtain the desired embedding by realizing é§ as an inner
derivation. As usual we write [a,b] = ab— ba.

Theorem 2.2. Let G = K< z,y >, F = K< Z >, where Z = {2,
21,...} and K i3 a skew field. Then there is an embedding By : F — G
defined by

(4) 20 &/ Y, 21 [y,w], 22 H[[yaw]’m]v

If the image of F' is denoted by Fy, then G = @2 o Foz™. Moreover,
the embedding is 1-inert and honest.

Proof. Let § be the derivation of F defined as in Lemma 2.1, (1),
and denote by H the skew polynomial ring H = F[z;1,6] with the
commutation rule

(5) az =za+a® forall acF.
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Then we have by (2) and (5), zi41 = 2f = zz — 22 = [2,2]. We
claim that H is the free K-ring on z,z. For it is clearly generated by
z and zy over K; to show that z,2, are free generators, we establish
a homomorphism § : H — G such that z — =, zp — y. We begin by
defining #: Z — G by ' : .

B:zp—[...[y,z],...,2] with n factors z.

Since F' is free on Z, this mapping extends to a homomorphism Sy :
F — G. Moreover, we have 258y = 2,110 =][...[y,2],...,2] =
= [2n00,x] (where there are n + 1 factors z). Hence if §, is the inner
derivation defined by ¢ in G, we have §8y = $y6,. Now the defining
relations of H in terms of F' are just the equations (5), which may be
written 6 = 6,. Hence on H we have 6,8y = [od,; thus the defining
relations of H are preserved by [y and so By may be extended to a
homomorphism # of H into G. Since G is free on z,y, this shows H
to be free on x,z9, as claimed. Moreover, we see that 3 is surjective,
hence it is an isomorphism between H and G, and the structure of H
as skew polynomial ring over F' shows that G = @32, Fyz™, where Fj
is the image of F' under §,.

We now repeat the construction with U(F') instead of F', thus we form
the ring U(F)[z;1,8]; this is justified by the fact that é is defined on
U(F). This gives us a skew polynomial ring over a field, and we can
form its field of fractions L = U(F) (z;1,6). Since H = F[z;1,6] is
generated over K by z, zy, it follows that L is generated by x, z; over K.
Now the homomorphism F' — G extends to a specialization from U(F)
to U(G) and this extends to a specialization of L as H-field to U(G)
(cf. Ch. 7 of [5]). But G is free on z,y, so the specialization must be an
isomorphism, by the universality of U(G), and we find that L = U(G).
This provides an embedding of U(F') in U(G); in particular, any full
matrix over F' is invertible over U(F'), hence also over U(G) and so is
full over G. Thus we have shown that the mapping B : F — G is
honest.

It remains to show that /3y is 1-inert. Given ¢ € F, suppose that in H

we have ¢ = ab, a,b € H. We can write ¢ = aqpz” +..., b =bgz® + ...,
where ag,by € F and dots denote terms of lower degree in z. Then
¢ = ab = agboz™® 4 ...; by uniqueness, 7 +s = 0, hence r = s = 0

and a,b € F. This shows F' to be l-inert in H, hence the mapping fy
is 1-inert, as we wished to show.
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We can extend the scope of this result as follows.

Proposition 2.3. Let F,G be semifirs that are K-rings, with an honest
embedding A : F — G, and let D be a skew field containing K. Then
the induced embedding D F' — DG is honest.

Proof. Our aim will be to show that A : F' — G induces an embedding
U(D*F) — U(D*@G). We begin by showing that

(6) U(D"F) = U(D*U(F)).

On the left we have the universal field of fractions of the semifir D" F'.
On the right we have a field generated by the subring D" F', hence a
specialization of the left-hand side. It is a proper specialization pre-
cisely if some full matrix over D*F is not invertible over the right-
hand side. But D*U(F) is a localization of D*F, so the embedding
D*F — D*U(F) is honest, and every full matrix over D*F is full over
D*U(F), hence invertible over the right-hand side of (6). Hence the
specialization is improper, i.e. (6) is an isomorphism.

It now remains to show that there is a natural embedding of
U(D*U(F)) in U(D*U(G)). Let us write U(F') = L, U(G) = M; we
have an embedding L — M and we shall show that the embedding

(7) DL - D'M

is honest; this will complete the proof.
Write U; = U(D*L); this is a field containing D and L and we have

a natural homomorphism
(8). DM — U, M,

which reduces to the indentity on D and M. Moreover, it is an epi-
morphism, since the right-hand side is contained in U(U; M), which is
generated, as a field, by I? and M. Let A be a full matrix over D*"L;
then A is invertible over I/; = U(D*L), hence in the mapping (8) it
must have come from some full matrix over D* M, and this shows (7)
to be an honest homomorphism, and it completes the proof.

Applying the result with F = K< Z >,G = K < z,y >, we obtain
the first assertion of
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Corollary 2.4. The embedding A : Dx < Z >— Dg < z,y > mduced
by the homomorhism of Th. 2.2 is honest and 1- inert.

Now l-inertia follows essentially as in Th. 2.2. If ¢ € D < Z >
satisfies cA = ab, write a = ag + a3 + ... +a,, b = by +b; +... + b,
where a;,b; are the terms of degree 7 in #, when these elements are
expressed in terms of ¢, z;A\(= z;4). Then ¢ = agb, +...+a.b, and we
have a contradiction, unless » = s = 0; but this leads to a factorization
of cin Dg < Z >, and it proves A to be 1-inert.

3. An Example

As an example of a full matrix over Di < Z > Which is also used
elsewhere (cf. [6]) we consider the following n x n matrix C = (e;;)
suggested by G.M. Bergmann (for use in [6]):

(1) Cij = Zpyjdz;, where de€ D, d#0.

Our object is to show that this matrix C is full. Let us define, for .any V
m X n matrix , its inner rank or simply rank rkA, as the least number
r such that A can be written in the form

A=PQ, where P mxr and Q@ is 7 X n.

We also recall from [5], p.253 the law of nullity: If UV = 0, where U is
mxrand Visr xn,thenrk U 4+7k V < r.

We shall use induction on n to prove that the matrix C given by (1)
is full over R = Dg < Z >. If this is not so, then its inner rank r is
less than n and we have

(2) C =PQ, where P is nxr and Q is r x n.

Let us write Q@ = (Q1,Q"), where Q; is the first column of Q and
similarly put C = (Cy,C"), so that

(3) e C]:PQla

(4) . C'=PQ'.
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If we omit the first row and column from C, the resulting matrix is
full by the induction hypothesis; hence C' has inner rank n-1 and it
follows from (4) that r = n — 1. Now consider the homomorphism
of Dg < Z > obtained by mapping z,41 — 0 and leaving the other
variables unchanged. Denoting images under this homomorphism by a

bar, we have, by (1), (3), (4)
C,=PQ, =0, C'=PQ' =0C".

Since C' has inner rank n-1, it follows that P has inner rank n-1. By
the law of nullity B _
rk P+rk Q1 <n-—1,

hence Q; has rank 0, i.e. @Q; = 0. This means that the elements in
the first column of @ lie in the ideal generated by z,11; similarly the
elements of the jth column of @ lie in the ideal generated by z,4; and
by a symmetric argument the elements in the ith row of P lie in the
ideal generated by z;. Hence in the product PQ, in any term of degree
2, there is a factor z; on the left of a factor z,; but in C these factors
are in the opposite order, and so we have a contradiction. This proves
C to be full, as claimed. Now we can apply Cor. 2.4 to deduce that
under the embedding of D < Z > into Dg < z,y >, C maps to a full
matrix.
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