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Abstract: The main subject of this paper are umirinkl with an absorbing
zero 0 which are zero divisor free (ZDF), but which have sero sums. We
show that each such semiring S contains a greatest subring R D {O} (in the
usual meaning, even if (S +) is not commutative) which has no a-fiers and
of course no zero divisors. Conversely, each ring R of this kind occurs as the
greatest subring of some semiring .S as above, where S itself is not aring. In
this situation, various structural results on S, R and Ul = § \ R 75 O are
proved, e.g. that each s 75 0 in S has infinite additive order. We also deal
with semirings which are multiplicatively left or right cancellative or even
both (briefly MLC, MRC and MC). For a semiring .S with zero, each of these
assumptions implies that S is ZDF, but not conversely. We show that each
semiring with zero sums is MLC iff it is MRC and thus MC. Moreover, such
a semiring S has an absorbing zero, (S ) -I—) is commutative and cancellative,
and S is embeddable into a ring which is also MC. Finally, we prove by
examples that all our results on proper ZDF semirings S with an absorbing
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zero and zero sums are fairly complete. In particular, each ring K satisfying
the necessary conditions above can be embedded into such a semiring .5 which
is MC as well as into one which is merely ZDF.

1. Introduction

A (2,2)-algebra S = (S, +,-) is called a semiring iff S(,+) and
(S,-) are arbitrary semigroups, which are connected by ring-like distri-
butivity, i.e. a(b+ ¢) = ab + ac and (b + ¢)a = ba + ca hold for all
a,b,c € S. This rather general concept has been investigated in several
papers (e.g. (3], [5], [10], [14], [16], [18], [20], [21]), whereas all semirings
occuring in various applications in the last two decades, in particular
in different branches of Theoretical Computer Science (cf. e.g. [1], [2],
[7], [12], [13], [15]), have commutative addition. Moreover, they mostly
have a zero, which'is then always assumed to be absorbing (cf. Section
2). Our main purpose is of course to add some knowledge on semirings
of the latter kind, but we do not assume that (S, +) is commutative for
all results which are in fact independend of this assumption. We also
say explicitly if a zero is assumed to be absorbing. We further call a
semiring S non-trivial iff it contains at least two elements, and proper
iff S is not a ring.

Let S be a semiring with a zero 0. Then S is called zero divisor free
(briefly ZDF) iff ab = o implies @ = o or b = o for all ¢,b € §. Now
either a+ b = o implies a = b = o for all a,b € S, or there is at least one
pair (r,8) € §* x §* for §* = §'\ {0} satisfying r + s = o, called a zero
sum of S. In the first case, for a non-trivial ZDF semiring, (S5*,+, ) is
a subsemiring of (5,4, '), and by Lemma 2.1 any semiring T occurs as
such a subsemiring S* of a ZDF semiring S. So the assumption that
a semiring S is ZDF provides in this case no more results than those
which concern any semiring S*.

Therefore our interest is with the second case, and the subject of this
paper are ZDF semirings which have zero sums, in particular those
where the zero is absorbing. We prepare these investigation by some
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general concepts and statements on semirings in Section 2.

Then we show that a ZDF semiring S with an absorbing zero o has zero
sums iff it contains a nontrivial subring R' with o as zero, in the usual
meaning that (R',+) is commutative even if (9,+) is not. Moreover,
the greatest subring R of this kind consists of all elements r,s,... of S
which occur in zero sums of S (cf. Thm. 3.3). Provided that S itself is
not a ring, various structural results on S, R and U = § \ R and their
interrelation are obtained in Section 3. We only mention here that each
element s # o of S has infinite additive order, that R is a ring which
has no a-fier for any o € N as defined in [6] (cf. Section 2 and Thm.
3.7), and that (under a rather general supplementary assumption) §
is an Everett-Rédei semiring extension of R as introduced in {14] (cf.

Suppl. 3.6).

In the following section we sharpen some of the above results, dealing
with semirings which are multiplicatively left or right cancellative or
even both (briefly MLC, MRC and MC, cf. Section 2). For a semiring
S with a zero, each of these assumptions implies that § is ZDF, but
not conversely, and there are even semirings which are e.g. MLC and
do not contain any multiplicatively right cancellable element. So it is
surprising that each semiring S with zero sums is MLC iff it is MRC
and hence MC, which also yields that the zero of S is absorbing and
that (5,4) is cancellative and commutative (cf. Thm. 4.1). We further
obtain that such a MC semiring S with zero sums is embeddable into a

ring and the smallest ring D(S) of this kind is also MC (cf. Thm. 4.4).

In Section 5 we recall that a well-known construction to embed rings in
those with an identity transfers similarly to semirings (cf. Prop. 5.1).
Using this and results of Section 3, we show that each ZDF semiring S
with commutative addition and an absorbing zero is embeddable into
a semiring of the same kind which has an identity (cf. Thm. 5.3 and
Remark 5.5). Moreover, the constructions mentioned above are also
basic for Thm. 5.6 and Constr. 6.1, which leads to Thm. 6.2. The
purpose of these theorems will be explained in the following.

Concerning the completeness of our structural statements on proper
ZDF or MC semirings S with an absorbing zero and zero sums, the
greatest subring R of such a semiring S is of course also ZDF and, as
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mentioned above, has no a-fiers. Conversely, each ring R of this kind
occurs as the greatest subring of such a semiring §. In fact, we give two
general constructions for those embeddings. By the first (Thm. 5.6) we
obtain, for each R, a semiring S which is even MC and has an identity,
by the second (cf. Thm. 6.2 and Suppl. 6.3) we get semirings S which
are ZDF, but neither MLC nor MRC. Moreover, these considerations
and some other examples (Expl. 4.2 and 6.4, Remark 4.3) disprove
various further conjectures on S, R and U and their interrelation, which
have been suggested to us in the context of our investigations.

2. Preliminaries on Semirings

Let § = (S,+,-) be a semiring as defined in Section 1. If there
exists a neutral element o of (S, +)[e of (S,-)], it is called the zero [the
identity] of the semiring S. An element ¢ € S is said to be absorbing
iff at = ta = t holds for all @ € §. It is well-known that the zero o
of a semiring S need not be absorbing and may even coincide with the
identity of § (cf. e.g. [20]). Conditions ensuring that the zero o of
a semiring S is absorbing are that (§,+) has no further idempotents
or that (§,+) is left or right cancellative. If (S,+) has the last two
properties, we call § additively cancellative (briefly AC). '

Since we consider semirings as (2,2)-algebras (5, +,-), concepts as sub-
semirings, homomorphisms etc. are clear and refer merely to the two
binary operations, also for semirings which have a zero or an identity.

For subsets A, B of S, we define
A+B={a+blac A, bc B} and AB = {abla€ 4, b€ B}.

In particular, A # 0 is called an ideal of Sif A+ AC A, SAC A and
AS C A are satisfied (cf. e.g. [3]).

A semiring S is called multiplicatively left cancellative (MLC) iff all
a € S or, for a semiring S with a zero o, all a # o of S are left
cancellable in (S,-). In the second case this implies (cf. [23]): either
the zero o is also left cancellable in (S,-), or o is (from both sides)
absorbing. Hence a non-trivial semiring S with an absorbing zero is
MLC iff (§*,-) is a left cancellative subsemigroup of (5, ).
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The dual concept and statements for a multiplicatively right cancellative
(MRC) semiring S are clear, and S is called multiplicatively cancellative
(MC) iff it is MLC and MRC. Now assume that § has a zero. Then,
as already mentioned in Section 1, each of these properties implies that
S is ZDF, but not conversely (cf. [5]), contrasting the situation with
rings for Wthh all four properties are equivalent.

It is well-known that an absorbing zero can be adjoined to each semir-
ing:

Lemma 2.1. Let T = (T,+,-) be any semiring and o an element not
contained in T. Eztend the operations on T to those on S = T'U{o} by

a+o=0+a=a and a-o=0-a=o0 forall ac§.

Then (S,+,-) is a semiring with o as absorbing zero, which is ZDF,
without zero sums, and contains T = S* as a subsemiring. Moreover:
S has commutative addition or multiplication iff this holds for T'; S is
AC iff T is AC and has no zero; S is MLC iff T is MLC and has no

absorbing zero or consists only of one element.

The semiring (N, +,-) of positive integers is in a natural way a (left
and right) operator domain for each additively commutative sem.lrmg
(S,+,+) according to

v

(2.1) VSZ.BV:ZB for all VEN,vaES'.

=1

The obvious rules v(s+ ) = vs+vr, (v+p)s = va+ us, (vp)s = v(us)
and 1s = s show that (5, +) is a unitary left (and right) N-semimodule,
and one also has v(sr) = (vs)r = s(vr). If S has an absorbing zero o,
the semiring (No, +, ) of non-negative integers is also such an operator
domain if one extends (2.1) by 0s = 0. Moreover, the ring of integers
(Z,+,-) operates a corresponding way on each ring.

Generalizing a concept introduced for rings in [6], an element a of a
semiring S is called an a-fier of S for some a € N iff

(2.2) as = sa = as holds for all s € S.
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The original purpose of this concept was to describe the epimorphisms
¢ which occur in Remark 5.2 in the case of rings (cf. also [19]). In the
semiring case the situation is similar, but more complicated. Here we
need a-fiers in the context of Thm. 3.7.

Let S be a semiring with a zero 0. An element r € S is called additively
invertible (in S) iff » + (—r) = (—7r) + r = o holds for some —r € §,
which is then uniquely determined by r. Clearly, all elements of this
kind form a subgroup (R, +) of (S, +) with o as neutral element.

Lemma 2.2. Let S be a semiring with zero o and R the set of all
additively invertible elements of S. Then R is an tdeal of S iff o is
absorbing. In this case, (R,+,-) is a subsemiring and additively a group,
but the latter need not be commutative.

Proof. In the trivial case R = {0}, clearly SR = {0} = RS holds iff
o is absorbing. For R D {0}, let R be an ideal of S and @ € S. Then
0+ o = o implies ao + ao = ao, so that ao is an idempotent in the
group (R, +). This yields ao = 0, and oa = o follows in the same way.
Conversely, let o be absorbing, a € S and r € R. Then

r+(=r)=(-r)+7r =0 yields ar 4+ a(—7r) = a(—7) +ar = o,

which proves a(—r) = —(ar) and hence ar € R. So we have SR C R
and correspondingly RS C R. For the last statement we note that there
are various semirings (R, +,-) such that (R,+) is a non-commutative
group, also called additively not commutative rings (cf. [9] and [22],

the latter also for more references). However, semirings (R, +,-) of this
kind are never ZDF.

As a constrast to the situation in Thm. 3.3, we show that a semiring S
may contain subrings Ri, Rj,... which have different zeroes o0y, 04,...,
even if § is a ZDF semiring with an absorbing zero:

Example 2.3. Consider a distributive lattice (L,U,N) as a semiring
(L,+,-) and let T' = {(+,!)|r € R,l € L} be the semiring obtained as
the direct product of a ring R with L. Then, for each [; € L, T contains
R; = {(r,1;)|r € R} as a subring isomorphic to R, and all corresponding
zeroes (o,!l;) are distinct. By Lemma 2.1 one obtains from T a semiring
S as claimed above.
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3. ZDF Semirings with an Absorbing Zero

In this section we investigate the structure of semirings as indi-
cated by the title. According to the introduction we have to assume
that such a semiring has zero sums, since otherwise nothing can be said
beyond Lemma 2.1. The following statement will be used several times.

Lemma 3.1. Let S be any semiring and a,b,s,7 € S. If
(3.1) as is left and br is right cancellable in (S5,+),
then ar + bs = bs + ar holds.

Proof. Applying the distributive laws to (a + b)(s + r) in both. orders
of succesion, we obtain

as + ar + bs + br = as + bs + ar + br,
which yields our statement by the assumpfions on ds and br
Lemma 3.2. Let S be a ZDF semiring with an absorbing zero o. Th‘en,
(3.2) r+r' =o0 tmplies r' +r =0 forall r,r' €8S.

Proof. Since (3.2) is trivial for » = o, we assume r # o and apply
Lemma 3.1 for a = b =r and s = r'. From rr + rr' = o it follows that
as = rr' is left and br = rr is right cancellable in (S, +), which yields
rr +rr' = rr' + rr. Now r + r' = o implies rr + rr' = 0. So we get
r(r' + 1) =oforr # o, hence ' +r = 0 as S is ZDF.

Theorem 3.3. Let S be a ZDF semiring with an absorbing zero o.
Then S has zero sums iff S contains a non-trivial subring with o as its
zero. If this is the case,

(3.3) R={reSlr+7" =0 or »"+r=0 for some 7' € 8§}
18 the greatest subring of S, and even an ideal of S.

Now suppose additionally that S is a proper semiring with zero sums.

Then {0} C R C S holds for R as above and U = S\ R satisfies
(3.4) U+SCU, S+UCU and hence U+ U CU,
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and each element s # o of S has infinite additive order. Thus R and the
subsemigroup (U,+) of (S,+) are infinite. Moreover, for any s,t € §
and a € N,

(3.5) as+ts=o0 or as+st=o0 tmply s =o.

Proof. If S contains any subring R' D {0}, clearly S has zero sums.
Conversely, the latter implies B O {0} for the set R defined by (3.3).
Applying Lemma 3.2, we obtain that R consists of all additively inver-
tible elements of §. Hence, by Lemma 2.2, R is a subsemiring and an
ideal of S, and (R, +) is a group. To show that (R, +) is commutative,
we consider the commutator p+ g+ (—p)+(—q) for any p,q € R. Again
by Lemma 3.2, we have gr + (—p)r = (—p)r + gr for some r # o of R,
since gr and (—p)r are in R and hence cancellable in (S5,+). So we
obtain (p+q—p—¢q)r =pr+gqr—pr—gqr =pr —pr+qr —qr = o and
thus p+ ¢ — p— g = o since S is ZDF. So (R, +) is commutative, hence
(R,+,) a ring and obviously the greatest subring of S which contains
o. In fact, the latter restriction is superfluous since each subring of §
contains o. This is clear if R = S holds, which was not excluded so far,
and will follow as a by-product from the following considerations for

R#S.

Now we assume U = S\ R # 0. Thenu+ s € U holds forall u € U
and s € §. Otherwise, u +s = r € R would yield v + s+ (—7) = o and
thus the contradiction u € R by (3.3). The other statement of (3.4),
S + U C U, follows in the same way. Next we show that each s # o
of S has infinite additive order (which also yields that any subring of
S.must have o as its zero). By way of contradiction, assume at first
vr =74+ -+ 7 = o for some r # o of R and some v € N. Then
(vr)u = r(vu) = o holds for any v € U. Since § is ZDF, we get
vu=u+ - +u = o and thus the contradiction v € R by (3.3). Now
assume that an element v € U has finite additive order, which only
means that the set {gu|u € N} is finite (and not necessarily vu = o for
some v € N). Then {(pu)r = p(ur)|p € N} is also finite for any r # o
of R. Thus ur # o of R would have finite additive order, which was
already disproved.

For (3.5), assume by way of contradication that e.g. as +1ts = o holds
for some o € N and s # o. This yields u(as) + uts = o for each u € U,
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hence (au + ut)s = o and au + ut = o as S is ZDF. But the latter
implies © € R by (3.3), a contradiction.

Corollary 3.4. Let S be a proper finite ZDF semiring with an absorb-
ing zero. Then S has no zero sums.

Supplement 3.5. Let S be a proper ZDF semiring with an absorbing
zero o and zero sums, R ils greatest subring and U = S\ R.

a) Assume sa = sb or as = bs for some s # o0 and a £ b of S. Then

ra =rb and ar = br hold for each r € R, and a and b are in U.

b) For allv # o of R we have rRN7U = 0 and hence TR C R, and
correspondingly for Rr and Ur.

c) Assumes+a=s+bora+s=>b+s for some s and a # b of S.
Then s,a and b are in U and ra = rb and ar = br hold for each r € R.

d) One has U+ R=R+U =U where u; +7 = uy +r implies u; = u,
and u + 11 = u + 73 tmplies 71 = ry, and correspondingly for R+ U.
Moreover, there is a subset W C U such that each v € U has a unique
presentation w + v for some w € W and r € R.

Proof. a) From sa = sb we obtain sar = sbr or s(ar + b(—7)) = o
for each » € R, which yields ar = br as S is ZDF. The latter implies
ra = rb for each » € R in same way. Since a ZDF ring is also MC, at
most one of @ and b can be in R. We may assumea =q € Rand b e U.
But then rq = rb for some r # o would imply r(b — ¢q) = o, hence the
contradiction b = gq.

b) We have just proved that r¢ = rbforr 2 o0of Rand g€ R, bc U
is impossible, which yields R N rU = @. Note that R C R is also a
consequence of (3.5).

c) From s+a = s+band a # bit follows that s € U since each element of
R is clearly cancellable in (5, 4). For the same reason, rs+ra = rs+rb
implies ra = rb for each r € R by 7s € R. The rest follows from a).

d) The first part is a consequence of (3.4), 0 € R and c). Next we state
that

(3.6) a+p=>b+gq forsome p,q€ R,
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i.e. a = b+ r for some r € R, defines clearly an equivalence a ~ b on S
for which R is one equivalence class. Each set W of representatives for
all other classes obviously satisfies the last statement.

It is well known that, for each ideal R of a semiring S, (3.6) defines a
congruence & on (S, +,) provided that (5,+) is commutative (cf. [3],
but observe [4]). The latter can be replaced by u + R = R + u for all
uw € U = S\ R. The converse question to construct all semirings S
which contain R as an ideal such that the congruence class semiring
S/k (mostly denoted by S/R as in the ring case) is isomorphic to a
given semiring has been settled by Rédei in [14]. The restriction to AC
semirings in [14] is unessential. So we can state: :

Supplement 3.6. For S, R and U as in Suppl. 3.5, assume u+ R =
= R+ u for all u € U and define axb by (3.6). Then S is an Everett-
Rédei semiring extension of the ring R by the congruence class semiring
S/k = S/R, a semiring with an absorbing zero, but without zero sums,

which is ZDF iff U is a subsemiring of S.

Although those extensions are hard to handle in general, we have used
the theory given in [14] as a guide-line to obtain some of our examples,
which, except Expl. 6.4, are all special cases of extensions according to

Suppl. 3.6.

The main purpose of these examples given in Section 5 and 6 is to
prove that our statements on S, R and U in Thm. 3.3 and Suppl. 3.5
are fairly complete concerning the general situation (but ¢f. Thm. 4.1).
In particular, we shall see that the subsemigroup (U, +) need not be a
subsemiring of § (cf. Remark 4.3), that only the elements of R have to
commute in (S, +) (cf. Thm. 6.2 and Expl. 6.4), and that all violations
of cancellativity left over by a), c) and d) of our supplement really may
occur (cf. Thm. 6.2). Also our statements on R are complete according
to the following:

Theorem 3.7. Let R' be a non-trivial ring with zero o. Then R' is a
subring of a proper ZDF semiring S such that o is the absorbing zero
of S iff R' is ZDF and satisfies the condition

C) as+ts=o 1mplies s=o0 forall s,tc R and o €N.

The condition C) can also be formulated with as + st = o and is equi-
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valent to the fact that R' contains no a-fier for any o € N. It implies
tha.t each r # o of R' has infinite addztwe order.

Moreover, for each ring R' of this kmd S can-be chosen in such a way
that R' is its greatest au,brmg '

Proof If R'is contamed in' a sermrmg S as assumed above, S has zero
sums. Hence the greatest subring R of S is clearly ZDF and sa.tlsﬁes
C) and thus the same holds for R' C R.

The converse statement including the last one will be shown in two
versions; namely in Thm. 5.6 (where S is even MC) and in Thm. 6.2
(where S is ' merely ZDF).

Concerning the remarks on C), we consider any ZDF ring R' and assume
as +ts = o for any s # o. This yields ar +rt=o for each r € R, in
partlcular as+ st.= o, and in turn ar + tr = o. Hence (—t) is an a-fier
of R' as defined by (2 2) which conversely implies as + ts = o0 even for
each s € R'. The last remark is clear, since an element s # o of R' of
finite additive order satisfies s = o for some a € N, which contradicts

c).
4. Multiplicative Cancellativity

Let S be a proper ZDF semiring with an absorbing zero o and zero
sums. Then, according to Suppl. 3.5 a), left and right cancellativity
in (.5,-) are closely connected. In particular, it is near by hand to ask
whether there are semirings S as above which are not ML.C or MRC.
We have claimed that without proof in [12], Section 6, and we will show
this by the following concrete Expl. 4.2 which can be checked directly
(regardless that our constructions in Section 6 will provide lots of those
examples as already indicated in the proof of Thm. 3.7). Before that
we sharpen the situation by the following result::

Theorem 4.1. Let S be semiring which has sero sums. Then S is

MLC +ff S is MRC, hence in turn iff S 1s MC.
If this is the case, the zero o of S is absorbing and S is AC and additively
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commutative.

Proof. Since all statements are true if S is a ring, we consider a proper
semiring. We show at first that MLC implies MRC and the statement
on o. So let S be MLC. Then, by a result of [23] cited in Section
2, its zero o is either also multiplicativeley left cancellable in (S,-) or
absorbing. Assuming the former, we get from o(a + a) = (0 + 0)a = oa
that a+a = a holds for each a € S. But then 7 +7' = o for any r,7' € §
implies '
r=r+o=r+r+r'=r+r' =0

and hence r' = o. This contradicts that S is assumed to have zero
sums. So the zero o of § is absorbing and, since MLC yields ZDF, we
can apply our results of Section 3. By way of contradiction, assume that
S is not MRC. Then there are elements s # o and a # b of S satisfying
as = bs. But this yields ra = rb for all » € R # {0} by Suppl. 3.5 a),
contradicting that S is MLC. Clearly, MRC implies MLC in the same
way.

Now we assume that S is MC and that s +a=s+bora+s=b+3s
hold for some s € S and a # b of S. Then we obtain, by Suppl. 3.5
c), ra = rb for all r € R # {o}. This contradicts that S is MC and
proves S to be AC. Hence Lemma 3.1 implies ac + bc = bc + ac for all
a,b,c € § which yields a + b = b + a since S is' MC.

Example 4.2. Let 2°%,2',22,... be the elements of the free monoid
(X,-) generated by = with z° as its identity, and (H,-) the semigroup
obtained from (X,-) by adjoining a new identity e ¢ X. Let

D ={)_vi' +velri,7y € I}

1=0

be the semigroup ring of (H,-) over the ring Z of integers. (In other
words, D is obtained from the polynomial ring Z[z] by adjoining a new
identity e, or D is the Dorroh-ring Do(Z,Z[z]) in the sence of Section
5). Clearly, D is commutative. Now

S = {Z’y,'mi +'Yeh’o,’)’ €Ny, 7; € Z fori > 1}

=0
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is a subsemiring of D with o € D as its absorbing zero. Further, S has
zero sums and its greatest subring R consists of all polynomials of 7(z]
satisfying vo = 0. Moreover, (1z)(1z°) = (1z)(le) shows that S is not
MC. So it remains to prove that S is ZDF, which is easily checked in a
straightforward way.

Remark 4.3. In Expl. 4.2, U = S\ R consists of all elements of S
satisfying v9 + v # 0, and U is a subsemiring of S. But we can change
the definition of § e.g. by 71, 70, v € Ny, but also by 71,70 € Ny
and vy = 0 (and, clearly, v; € Z for ¢« > 2). In both cases S remains
a ZDF semiring with zero sums, where the greatest subring R consists
now of all polynomials of Z[z| satisfying v0 = y1 = 0. Hence U = S\ R
contains in both cases the element 1z, and (1z)(1z) = 1z € R shows
that U is not a subsemiring of S. Note that S is MC in this second
variation of Expl. 4.2, but not in the first one.

Together with statements of Section 3, we obtain a further result from
Thm. 4.1. Recall for this purpose that a semiring S is embeddable into
a ring iff § is AC and additively commutative (where the former yields
that the zero of S is absorbing, if there is one). If this is the case, there
exists, unique up to isomorphisms, a smallest ring which contains S as
a subsemiring. This ring is called the difference ring of S and denoted
by D(S), since it consists of all differences a — b for a,b € S, subject to
elementary rules.

Now let .S be a semiring such that D(S) exists. If S is ZDF but not
MRC or even MLC but not MRC, then clearly the properties ZDF or
MLC of S do not transfer to D(S). (Otherwise, since ZDF, MLC and
MRC are equivalent for the ring D(S), such a transfer would yield that
S is also MRC. Cf. also Expl. 4.2 in this context.) But even if §
has all these properties, i.e. if § is MC, its difference ring D(S) need
not be MC. E.g., consider the congruence class ring T' = Z[z]/(z?) of
the polynomial ring Z[z] and let S consist of all classes which can be
represented by some v¢ + v1z for vp > 0 and v; > 0. Then one checks
that S is a MC subsemiring of T', whereas D(S) = T is clearly not MC
(cf. [21], p. 221).

Theorem 4.4. Let S be a semiring with zero sums which is MLC (or
MRC). Then S is embeddable into a ring, and the smallest ring D(S)
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containing S is MC,

Proof. If § itself is a ring, there is nothing to prove. If S is a proper
semiring, we apply Thm. 4.1. Hence S is AC and additively commu-
tative, and so a subsemiring of its difference ring D(S). It remains
to show that the latter is ZDF and thus MC (which, according to the
above counter-example, depends on some further assumption on S, in
our case the existence of zero sums). By way of contradiction, assume
(a —b)(c — d) = o for some a — b # 0 and ¢ — d # o of D(S). Note that
S satisfies all conditions such that it has a greatest subring R # {o}
according to Thm. 3.3. So we obtain (ra — rb)(cr — dr) = o for some
7 # o of R, where ra,rb,cr and dr are in R and hence also ra —rb and
cr — dr. Since R is MC we get that e.g. ra — b = o holds, which yields
a =bin S, hence the contradiction a — b = o.

5. Embedding into Semirings with an Identity

Considerations according to the title will also lead to all our con-
structions of ZDF semirings with zero sums. For this purpose we need
explicitly the well-known result due to Dorroh (cf. [8]) that each ring
R can be embedded into a ring with identity in the following way. One
defines operations on the set D =7 x R by

(5.1) (v,8) + (p,t) = (v + p,s +t) and
(5.2) (v,8) - (1, t) = (v-p, vt +ps+s-t),

where vt and ps are defined according to (2.1). Then (D, +,-) is a ring
with (1,0) = e as identity. By an obvious isomorphism, one can identify
(0,5) with s for each s € R so that R becomes a subring of D, which
also yields the unique presentation

(5.3) (v,8) = v(1,0) + (0,8) = ve + s for the elemtents of D.

We call this ring D = Ze + R the Dorroh-ring of R and denote it by
Do(Z, R). 1t is universal in the sense that each ring Ze' + R generated by
R and an identity €' is an R-epimorphic image of Do(Z, R) (cf. [6],[19],
and the corresponding Remark 5.2 for semirings).
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It is also known that a semiring with non-commutative addition need
not be embeddable into one with an identity (cf. [10], but observe
[11]), whereas the above statements can be transfered to additively
commutative semirings (cf. e.g. [16]):

Proposition 5.1. Let S be a semiring with an absorbing zero o and
commautative addition. Then the above construction applied to D =

= No X § yields a proper additively commutative semiring (D,+,")
with (0,0) as absorbing zero and (1,0) = e as identity. Obviously, the
subsemiring {(0,s)|s € S} of D is isomorphic to S and can be replaced
by the latter, which yields D = Nge + S according to (5.3).

We call this semiring the Dorroh-semiring of S and denote it by
Do(Ny, 5). Observe also that Do(Ng, S) is AC iff §is AC.

(Clearly, Prop. 5.1 applies also to an arbitrary additively commutative
semiring T' via Lemma 2.1).

Remark 5.2. The semiring D = Do(Ng, S) is universal in the following
sense. Let S be a subsemiring of any additively commutative semiring
T with an identity, say e'. Then

T =Noe' + 5§ = {ve' +slv € Ny, s € §}

is a subsemiring of T with o € § as absorbing zero and €' as identity,
and there is an epimorphism

v:(D,+,) = (T,+,-) given by ve+s — ve' + s.

Since ¢ leaves each s € S fixed, we call it an §-epimorphism. One checks
that a typical example of such an epimorphism ¢ satisfying ¢(ae') =
= p(a) for a fixed a-fier a of § according to (2.2) is obtained from the
congruence on D defined by

(vy—oa, catc)=(y—7a, Ta+c)
for any (v,¢) € D and any o,7 € Ny satisfying v > 7a and v > ca.
Now we obtain a rather general result on ZDF semirings:

Theorem 5.3. Each proper ZDF semiring S with commutative addi-
tion and an absorbing zero o can be embedded into a semiring of the
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same kind which has an identity. In particular, the Dorroh-semiring

Do(Ng, S) of § is such a semiring.

Proof. We only have to show that Do(Ny,S) is ZDF. By way of
contradiction, assume (v,s)(u,t) = (0,0) for some (v,s) # (0,0) #
(p,t) of Do(Ng,S). To obtain vu = 0 in (5.2), we assume at first
v = 0, which yields s # o and ps + st = o. Clearly, = 0 and hence
t # o contradicts that S is ZDF. But p # 0 implies that the proper
semiring S has zero sums. ‘

So we can apply Thm. 3.3, where (3.5) states that ps+st = oforp € N
yields s = o, again a contradiction. The case p = 0 follows in the same
way via vt + st = o.

Remark 5.4. Due to [16], the first part of Thm. 5.3 remains true
if one replaces ZDF by MC. However, D = Do(Ny, S) itself need not
be MC if S is. In the contrary, there is a unique S-epimorphic image
T = D/k of D which is MC (cf. Remark 5.2), where the corresponding

congruence « on D is given by

(v,8)s(v',s') iff vi+ts=0't+ts' forsome t#o of 5.

Remark 5.5. The first part of Thm. 5.3 remains also true if § = R
is a ZDF ring and hence also MC. But again the semiring Do(No, R)
as well as the ring Do(Z, R) need not be ZDF. Due to [17], there is a
unique R-epimorphic image Ze' + R = Do(Z, R)/a of the Dorroh-ring by
a suitable ideal a, the smallest ZDF ring containing R and an identity
(cf. also [19]). Clearly, the R-epimorphism of Do(Z, R) induces one for
its subsemiring Do(Ny, R).

A special case of the last remark provides, as announced in Section 3,
our first construction of a ZDF semiring which contains a given ring R
(satisfying the necessary conditions) as its greatest subring;:

Theorem 5.6. Let R bc a non-trivial ZDF ring which satisfies the
condition C) of Thm. 3.7. Then the Dorroh-semiring Do(No, R) of R
is a proper ZDF semiring S with zero sums containing R as its greatest
subring. In fact, S is even MC and contains an identity.

Proof. Clearly, R is the greatest subring of Do(Ny, R), and it remains
to show that Do(Ng, R) is MC, due to the conditions on R. For the
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latter, we prove that the Dorroh-ring Do(Z, R) is ZDF and hence MC.
By way of contradiction, assume (v, s)(g,t) = (0, 0) for some (v, s) #
# (0,0) # (u,t) of Do(Z, R). There is no loss of generality in assuming
that v and p are in Ny. So we can use the proof of Thm. 5.3 and obtain
for v = 0 clearly s # o, but also us + st = o for some p € N, which
contradicts C). For p = 0 and t # o we get vt 4 st = o for some v € N,
which is also excluded by C) and completes our proof. -

Note that each MC semiring 'S which contains R as a subring such
that both have the same absorbing zero has to be AC and additively
commutative by Thm. 4.1. So the fact that § = Do(Ng, R) has these
properties corresponds to this situation.

6. Further Constructions of ZDF Semirings

Our next point is to show that each ring R satisfying the necessary
conditions of Thm. 3.7 is the greatest subring of a proper ZDF semiring
which is not MLC (and hence not MRC by Thm. 4.1). For this purpose
we generalize the construction of the Dorroh-semiring Do(Ny, S) given
in Prop. 5.1 as follows.

Construction 6.1. Let W, be any semiring with an absorbing zero
o and ¢ a homomorphism of (Wy,+,) into (Ng,+,-). To simplify our
notation, we write 1 (v) = |v| for each v € Wy. Note that |o| + |o| = o]
yields |o| = 0. Let S be a semiring with commutative addition and an
absorbing zero, also denoted by o. Then we define operations on-the
set D = Wy x S in replacing (5.1) and (5.2) by '

(6.1) | (v,8) + (w,t) = (v +w,s +1) and
(62) (1,) - (w,€) = (0w, Jole + s + 5 ),

where |v|t and |w|s are defined by the natural operation (2.1) of N
on S. It is straightforward to check that (D,+,:) is a semiring with
(0,0) as absorbing zero. Moreover, by obvious isormorphisms, we can
identify (o, s) with s for each s € S and (v,0) with v for each v € Wy.
Then W, and S become subsemirings of D, and we have the unique
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presentation
(6.3) (v,8) = (v,0) + (0,8) =v+s for the elements of D.

We denote this semiring by Do(Wy,, S).

Theorem 6.2. Let R be a non-trivial ZDF ring which satisfies the
condition C) of Thm. 3.7. Let Wy be a non-trivial semiring with a zero
o and ¢ : Wy — Ny a homomorhism satisfying

(6.4) ¢(v)¥\v|:0<:,*v:o for all v € Wy,

which yields that the zero o of Wy is absorbing and that Wy is ZDF and
has no zero sums.

Then the semiring S = Do(Wy,v, R) constructed above with (0,0) = o
as absorbing zero is ZDF and has zero sums, and R = {(o,7)|r € R}
is its greatest subring. Clearly, S is additively commutative or AC iff
Wy has the same property, and S has an identity, namely (e, 0), iff Wy
has an identity e. However, S is neither MLC nor MRC iff there are
elements w # w' of Wy satisfying |w| = |w'|.

Proof. All statements on W, claimed as consequences of (6.4) are
checked straightforwardly. In particular, Wy has no zero sums. Hence,
by (6.1), all zero sums of S are of the form (o0,7) 4 (0, —7) = (0,0) for
some r € R, hence R is the greatest subring of §. Next we show that
S is ZDF and assume, by way of contradiction, (v,s)(w,t) = (o, 0) for
some (v,s) # (0,0) # (w,t). From vw = o by (6.2) and since W, is
ZDF, we get v = o or w = o, and it is enough to consider the first case.
Then we get s # o and, by (6.2), |w|s + st = o, which yields |w| =0
due to the assumed condition C) for R. But the latter implies w = o
by (6.4), and st = o yields t = o since R is ZDF. Thus we have the
contradiction (w,t) = (o0,0). Finally, if 9 is injective, Do(Wy,%, R) is
R-isomorphic to a subsemiring of Do(Ny, R) and hence MC by Thm.
5.6. Otherwise, there are w # w' in W, satisfying |w| = |w'|, which
yields (o, s)(w,t) = (o0,s)(w',t) for all s # o of R. So § is not MLC and
hence not MRC by Thm. 4.1. :

We remark without proof that all elements (v,s) € S with v # o are
multiplicatively left as well as right cancellable in §.
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Note that each element of the semiring § = Do(Wy,v, R) = Wy +R has
the unique presentation (v,r) = v+ r for v € Wy and r € R, according
to (6.3). In particular, W = Wy \ {0} is a subset of U = S\ R such that
© = w + r is the unique presentation of the elements of U as described
in Suppl. 3.5 d). So, in order to obtain by Thm. 6.2 embeddings of R
into ZDF and not MC semirings S, as we have announced in Section 3,
it remains to show:

Supplement 6.3. There are semirings Wy with a zero o which have
non-injective homomorphisms 1 : Wy — Ny satisfying (6.4). In par-
ticular, there are semirings Wy of this kind which are not AC or not
additively commutative.

Proof. Let A be any non-trivial semiring and W the direct product
of N and A4, which means that the set W = {(v,a)|v € N,a € A} is
endowed with componentwise addition and multiplication. Let Wy be
obtained from W by adjoining an absorbing zero o ¢ W according to
Lemma 2.1. Then 9((v,a)) = v for all (v,a) € W and (o) = 0 define
obviously a homomorphism v : Wy — Ny as claimed above. Moreover,
Wy is AC or additively commutative iff A has the same property. There
are clearly semirings which even violate both properties. E.g., let A be
any set of at least two elements and define ¢ + b = a and a - b = ¢ for
all a,b € A and any fixed element ¢ € A.

As noted above, for each semiring S = Do(Wy,%, R) obtained in this
way by Thm. 6.2 and Suppl. 6.3, W is a subsemiring of U = S \ R.
Hence we also see by the last statements that (U,+) need neither be
cancellative nor commutative (observe again Thm. 4.1 in this context).
So we have settled all our announcements given before Thm. 3.7 con-
cerning the structure of proper ZDF semirings § satisfying § O R D {0}
as considered in Thm. 3.3 and Suppl. 3.5, except an example such that
u + 1 # r +u holds for some u € U and r € R. Although this could
also be done in a rather general way, we restrict ourselves to present a
concrete case.

Example 6.4. On Wy = 2Ny x 2Ny, where 2Ny denotes the set of even
non-negative integers, define operations by

(6.5) (v1,v2) + (p1,p2) = (V1 + p1,v2 + p2) and

(6.6) (vi,v2) - (1, p2) = (0, (v1 + v2)(p1 + p2))-
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One easily checks that (W, +,) is a semiring with (0,0) = o as ab-
sorbing zero, and that ¥(v1,v2) = v1 + vy defines a homomorphism
1 : Wy — Ny which is not injective and satisfies (6.4). Note that there
is'an automorphism x of Wy given by x(vy,vs) = (va, v1) which satisfies

(6.7) P(x(v)) = ¢(v) for all v = (vy,13) € Wy. .

Let R be the subring of Z[z| given by
R={f(z) =) ma'ly €1}
1=1

Then Do(Wy,v,R) = {(v, f(z))|v € Wy, f(z) € R} provides a ZDF
semiring (.5, +, -) according to Thm. 6.2 which contains R as its greatest
subring, whose addition is of course commutative. The semiring we
want to construct will be (S, ®, "), obtained from (5, +, ) in defining a
new addition by

J v+ w, f(z) + g(z)) if v; 1s even
(v, f(z)) ® (w, g(z)) = { (v + x(w),f(:v)g—|— g(z)) if 11 is odd,

where 71 € Z denotes the coefficient of «! in f(z). This clearly yields
flz)ow=x(w)® flz) ZFwvd f(z)foralw #oof WC U =S5\R
and all f(z) € R for which v, is odd.

To show that (S, ®, ) is again a semiring, one has to check that (5, ®) is
a semigroup and, since (.9, ) is commutative, one of the two distributive
laws. This can be done in a straightforward manner. But we note
that the associativity of (9,®) is known, since the latter is a special
semidirect product of the semigroups (Wy,+) and (R, +). Moreover,
the distributivity depends essentially on (6.7) and on the restriction of
Wy to pairs of even integers, the latter since then in (6.2),

(v, f(z))(w, g(z)) = (v - w, [v|g(z) + lw|f(z) + f(2) - 9(2)),

the crucial coeflicient of z' of the polynomial of the right hand side is
always even.

Clearly, (S, ®,-) is a ZDF semiring like (S5,+,-), and (R,®,')=
= (R,+,-) is again the greatest subring of (5,®,'). But w € U\ S and
f(z) € R do not always commute as noted above.




Semirings without Zero Divisors 93

References

(1]

(2]

(o]

[10]

(1]

[13]

[14]

AHO, A.V., HOPCROFT, J.E. and ULLMANN, 1.D.: The Design and Ana-
lysis of Computer Algorithms. Addison-Wesley, 1974.

BERSTEL, J. and REUTENAUER, C.: Hational Series and Their Languages.
Springer, 1988. '

BOURNE, S.: The Jacobson radical of a semiring. Proc. Natf. Acad. Sci.
USA, 87: 163 — 170, 1951.

BOURNE, S.: On the homomorphism theorem for semirings. Proc. Nat.
Acad. Sci. USA, 38: 118 — 119, 1952.

BOURNE, S.: On multiplicative idempotents of a potent semiring. Proc. Nat.
Acad. Sci. USA, 42: 632 - 638, 1956.

BROWN, B. and McCOY, N.H.: Rings with unit element which contain a
given ring. Duke Mathematical Journal, 13: 9 — 20, 1946.

CARRE,'B.: Graphs and Networks. Clarendon Press, 1979.

DORROH, L.L.: Concerning adjunctions to algebra. Bull. Amer. Math. Soc.,

-38: 85 — 88, 1932,

FURTWANGLER, P. and TAUSSKY, O.: Uber Sch.iefringe. Sitzungsberichie
Akad. Wissensch. Wien, 145: 525, 1936.

GRIEPENTROG, R.D. and WEINERT, H.J.: Embedding semirings in semi-
rings with identy. Coll Math. Soc. J. Bolyai, 20. Algebraic Theory of
Semigroups, North-Holland, 225 — 245, 1979,

GRIEPENTROG, R.D. and WEINERT, H.J.: Correction and remarks to our
paper "Embedding semirings in semirings with identy”. Coll. Math. Soc. J.
Bolyai, 39 Semigroups, North-Holland, 491 — 493, 1985.

HEBISCH, U. and WEINERT, H.J.: Generalized semigroup semirings which
are zero divisor free or multiplictively left cancellative. Theoretical Computer

Science, to appear.

KUICH, W. and SALOMAA, A.: Semirings, Automata, Languages. Springer,
1986.

REDEI, L.: Die Verallgemeinerung der Schreierschen Erweiterungstheorie.
Acta Sci. Math., 13: 252 — 273, 1952.




94

[15]

(21]

(22]

(23]

U. Hebisch and H.J. Weinert

ROTE, G.: A systolic array algorithm for the algebraic path problem (shortest
paths; matrix inversion). Computing, 34: 191 - 219, 1985.

STEINFELD, O.: Uber Semiringe mit multiplikativer Kiirzungsregel. Acta
Sci. Math., 24: 190 — 195. 1963.

SZENDREI, J.: On the extension of rings without divisors of zero. Acta Sci.
Math., 18: 231 — 234, 1949/50.

VANDIVER, H.S.: Note on a simple type of algebra in which the cancellation
law of addition does not hold. Bull. Am. Math. Soc., 40: 920, 1934.

WEINERT, H.J.: Uber die Einbettung von Ringen in Oberringe mit Einsele-
ment. Acta Sci. Math. Szeged., 22: 91 — 105, 1961. '

WEINERT, H.J.: Uber Halbringe und Halbkérper 1. Acta Math. Acad. Seci.
Hung., 13: 365 — 378, 1962.

WEINERT, H.J.: Uber Halbringe und Halbkorper II. Acta Math. Acad. Sci.
Hung., 14: 209 — 227, 1963. :

WEINERT, H.J.: Ringe mit nichtkommutativer Addition I. Jber. Deutsch.
Math.-Verein, T7: 10 - 27, 1975,

WEINERT, H.J.: Multiplicative cancellativity of semirings and semigroups.
Acta Math. Acad. Sci. Hung. 35: 335 — 338, 1980.





