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Abstract: We provide a characterisation of all subvarieties of the variety
"MS of MS-algebras via their dual sﬁaces. It consists of universal sentences in
disjunctive normal form which involve only one variable. We apply this result
to the construction of distributive lattices on which there can be defined (up

to isomorphism) a unique MS-algebra which belongs to a preassigned class.

In 1983 we introduced the notion of an MS-algebra as a common
abstraction of a de Morgan algebra and a Stone algebra [3]. Precisely,
an MS-algebrais a bounded distributive lattice L endowed with a unary
operation a — a° such that

(Ya € L)a < a°;

¥ NATO Research Grant 0532/85 is gratefully acknowledged.




96 T.S. Blyth and J.C. Varlet

(Va,b € L)(a Ab)° =a’ Vb°;
1° = 0.
Clearly, an MS-algebra is a distributive Ockham algebra ([2], [6] and
). | |

The class MS of MS-algebras is equational and all its subclasses were
described in [4] by identities that involve at most two variables. We
keep the numbering which was adopted in [4, page 159].

R. Beazer [1] and ourselves [5] showed the role that duality theory can
play in the study of MS. Throughout we assume familiarity with H.A.
Priestley’s topological duality for bounded distributive lattices as it is
presented in [8]. We only recall the facts we need.

A Priestly space X is a compact totally order disconnected space, the
property of total order disconnectedness being defined as follows:
(TOD) given z £ y in X, there exists a clopen order ideal V' C X such
that c ¢ V andy € V.

The lattice of clopen order ideals of X is denoted by O(X) and is
isomorphic to Ly, the dual algebra of X. In any Priestley space X, for
each z € X there is y < z such that y is minimal with respect to the
partial order. The set of all minimal points of X is denoted by min X.

Since MS-algebras are bounded distributive lattices, they are dually
equivalent to some suitable category of Priestley spaces. In fact, an MS-
space X is a Priestley space endowed with a continuous order reversing
map g : X — X which satisfies

(Vz € X)z > g*(=).
In [5] we observed that the latter condition implies
(Vz € X)g*(2) = 9(2)

and that to determine such a mapping g it suffices to find a closed
subspace X; of X which possesses a dual order isomorphism h, then a
decreasing order preserving retraction f: X — X;, and to take
g = ho f . Clearly, g?(z) = z if and only if ¢ € X;. It follows that
X; 2 minX.

The unary operation ° on Ly is defined by

P=x\g'() (I€O(X)
= {eeXig(z)gI).
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Consequently, ,
I>={zecX:¢%=z)cI} DI

We use the symbols Z and || to indicate that two elements are compa-
rable and incomparable respectively. The signs C and C are employed
for inclusion and strict inclusion respectively. The expression " L prop-
erly belongs to X” means that X is the least subvariety of MS to which
L belongs.

After establishing the main result of this paper, that is, the character-
isation of all the subvarieties of MS via their dual spaces, we formulate
some direct consequences which highlight the crucial role played by du-
ality theory. The characterisation theorem is then used to solve the
following problem: given a subvariety X of MS, how to construct a
distributive lattice on which there can be defined a unique MS-algebra
which belongs to X. We show that this is possible except for the class
S of Stone algebras.

Theorem 1. Let (L;°) be an MS-algebra and (Xr;g) its dual space.
Then (L;°) satisfies the identity on the left if and only if (XL;g) satis-
fies the corresponding formula on the right:

(2) ava’=1 (I =z=g(=z)

(24) ana® =0 (L) 9(2) = ¢(2)

(3) a=a (1)  z=g%=)

(4) aAa®=aAa° (IV) z=g%(z)orz > g(z)
(44) ava® =a° Vva® (IVa) z=g%(z) or z < g(z)

(3) (aAa®)Vvbvi =bv 4] ng(:r.)

(6) (aAa®)VDEoVE =b°VH (V1) g(z)Zgz(z)

() (aAa®)VvbVE =(a° Aa’) VbV (VII) 2= g*(z) or z$g(z)

(8) avbd® Vb =a® Vb Vi (VIII) z = g*(z) or g*(z) < g(=)

(9) (aAa®)VDEVDE® =(a° Aa®)VDE° VB (IX) =z=g%z) org(z) :gz(::).

Proof. (2) & (II).

(2) IuI°=X (VI € O(X))
Scelorg(e)gl (VI € O(X))
< z ¢ I implies g(z) € I (VI € O(X)).

Let (2) be satisfied. Then if z # g(z), by (TOD) there is V € O(X)
which separates the elements z and g(z), which constradicts the last
equivalence. The converse is straightforward. ¢

Observe that (II) implies that X is an antichain. In fact, if y > @ then




98 T.S. Blyth and J.C. Varlet

y=g(y) < g(z) =, hence z = y.
(24) & (11).

(2d) sInlc=0 (

S{zecX:ze€landg(z)g I} =0 (

< z € I implies g(z) € I (
&g(z)<e (Ve € X) by (TOD)

& g(z) = g*(z) (

)

)

direction is clear since g?(z) < = always. ¢

The condition (II;) is equivalent to
(I’4) every connected component A of X contains exactly one element
a of min X and g(A) = {a}.

Clearly (II’4) implies (II;). Conversely, suppose that (II) holds (i.e.
g = g°). Since g is order reversing and g? is order preserving, it follows
from ¢ 7y that g(z) = g(y). Hence, since 4 is connected, g(4) is a
singleton, necessarily a minimal element, and (I1I’y) is verified. ¢

Note also that (II’;) has as direct consequence the well-known fact
that in a Stone algebra every prime ideal contains exactly one minimal
prime ideal.

(3) & (III).

(3) @I=I°~ (VI € O(X))
e I°Cl (VI € O(X))
& g*(z) € I implies z € I (VI € O(X))
& g¥z)==r (Vz € X).

The last equivalence is justified as follows: if z > g?(z), then by (TOD)
there is V € O(X) such that g?(z) € V and z ¢ V, a contradiction. ¢

(4) & (IV).

(4) & INI° =I°nI° (VI € O(X))
sI°nNI°CI (VI € O(X))

< (¢%(z) € I and g(z) ¢ I) implies « € I (VI € O(X)).

)

Let (4) be satisfied. If z > ¢g?(z) and g(z) £ =z, then by (TOD) there
exist VW € O(X) such that ¢ € V, g(z) ¢ V, g*(z) e W,z ¢ W.
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We thus have g?(z) € VN W and g(z) ¢ VN W whereasz ¢ VN W,
contradicting (4). It follows that z > g(z).

Conversely, let (IV) be satisfied. If g?(z) € I and g(z) ¢ I for some
I € O(X), then g(z) £ g*(z), hence g(z) £ z, and, by (IV), z = ¢*(z),
z € I and (4) holds. ¢

(45) & (IV,).

(4g) & I°UI*® CI°UT ( (X))
S I°CI° Ul (VI € O(X))
< g*(z) € I implies (z € I or g(z) ¢ I) ( (X))
& (z ¢ I and g(z) € I) implies g%(z) ¢ T ( (X))

Let (44) be satisfied and z > ¢g%(z). If ¢ = g(z) then z = g?(z),
contradicition. If z £ g(z), then thereis V € O(X) such that g(z) € V
and ¢z ¢ V. Since by assumption z £ g%(z), there is W € O(X) such
that g(z) € W and ¢ ¢ W. Thus we havez ¢ VUW, g(z) € VUW
and nevertheless g*(z) € VU W.

Conversely, let (IV;) be satisfied. If z = g?(z) then (44) is triv-
ially satisfied. If g(x) > «, then every order ideal which contains g(z)
contains z as well and (44) holds. ¢

(5) & (V). |
(5) & INI°CJUJ® (VI,J € O(X))
< (x € I and g(z) ¢ I) implies ‘
(zx e Jorg(z)dJ) (VI,J € O(X)).

Let (5) be satisfied. If g(z)||z, then there are V,W € O(X) such that
tecV,g(z) gV, g(z) € W and ¢ ¢ W, contradiciting the preceding
implication. ‘ ‘

Now suppose that (V) is satisfied. The case g(z) < z is straightfor-
ward. Now if g(z) > z, any decreasing subset which does not contain
x does not contain g(z) either. ¢

(6) < (VI).
(6) & INI°CJ°UJ™ (VI,J € O(X))
& I°nI°CJou g (VI,J € O(X))

& (9%(z) € I and g(z) ¢ I) implies :
(9(z) € J or g(=) ¢ J) (VI,J € O(X)).
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The proof is similar to the preceding one, just changing z into g*(z). ¢

(7) & (VII).

(1) & (I*°NI°)UJUJ°CINIYUJUT® (VI,] € O(X))
e I°nI°PCIuJuJe (VI,J € O(X))
< (g%(z) € I and g(z) ¢ I) implies

(zeTorzeJorg(z)gd) (VI,J € O(X))
& z satisfies (IV) or (V) (Ve € X)

©z=g'(z)ora’g(e) ¢
(8) & (VII). |

(8) & IcPUJoUJ® CTUJUJ®® (VI,J € O(X))
- e I CIuJeuJee VV (VI,J € O(X))
< g*(z) € I implies ' o
(welorg’z)eJorg(z)gJ) (VI,Jc OX))
& (g*(z) € I and z ¢ I) implies B
(¢%(z)s € J or g(z) & J) ' (VI,J € O(X))
Let (8) be satisfied and ¢ > g2%(z). If g%(z) £ g(z), then there is
V € O(X) such that g(z) € V and g?(z) ¢ V, which contradicts (8).
Conversely, let (VIII) be satisfied. Since every decreasing subset which
does not contain g(z) does not contain g(z) either, (8) is satisfied. ¢

(9) & (IX). |
The proof goes along the same lines as in (7) < (VII). .
(9) & z satisfies (IV) or (VI) (Vz € X)

&z =g%z)or g(m)igz(m). O

Corollary 1. All the subvarieties of MS can be characterised via their
spaces by the disjunction of at most three universal sentences which
involve only one variable.

The results are recorded in the subvariety lattice represented on the
page 102. Note that g° means idx.

Proof. Theorem 1 yields the characterisation of the subvarieties which
are defined by a unique identity. The other non-trivial subvarieties are
characterised by the conjunction of two or three conditions. An easy
computation provides the corresponding conditions on the dual space in
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disjunctive form. For instance, L € SVK if and only if (X1 ; g) satisfies
(IV),(V) and (VIII). The conjunction of (IV) and (VIII) is equivalent
to the disjunction of z = g*(z) and z > g(z) > ¢g?(z), which in turn is
equivalent to the disjunction of z = g?(z) and g(z) = ¢g?(z). Finally,
the conjunction of (IV), (V) and (VIII) is equivalent to the disjunction
of z = g*(z) 2 g(z) and g(z) = ¢*(z). ¢

Corollary 2.- If X has at least two connected components A, B and
g(A) C B, then L does not satisfy (6). If moreover g(A) C B, then L
properly belongs to M;.

Proof. The first part is obvious. As for the second part, observe that

thereis z € B\ g(A) such that z # g?(z) and g(z)||g?(z), hence L does
not satisfy (9). ¢

Corollary 3. If X; C X and Xy is convez, then L does not satisfy
(44)-

Proof. If L satisifies (44) but not (3), then there is z € X \ X; such
that g?(z) < z < g(z) and X is not convex. ¢ :

Corollary 4. If X; is open and convez, then the dual of X, is a
principal ideal of I the generator of which is the least element a of L
such that a® = 0.

Proof. Since X; is always closed, it is clopen; since it contains min X
and is assumed to be convex, it is decreasing. Its dual is a principal
ideal a! of L. By its very definition X =0. Let Y € O(X). Clearly
Y O X, if and only if ¥° = . So the least element ¥ of O(X) such
that Y°=01is X;. ¢

We already noticed that (III) is equivalent to X = X, and that (II)
implies X = X;. Can the verification of some of the other axioms be
restricted to X;7 The answer is afirmative as shown by

Corollary 5. The azioms (1I3) and (VI) are satisfied if (and only if)
they are so on Xi. If Xy is totally ordered, then L satisfies (6).

Proof. Just observe that Yy = {g(z) 1z € X} = {g*(z):z € X}. ¢
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There is a significant difference between Stone algebras and de Mor-
gan algebras: when a bounded distributive lattice can be made into
a Stone algebra, this can be done in only one way (in other words,
the lattice structure determines the unary operation °); on the con-
trary, many bounded distributive lattices admit various definitions of
the unary operation ° which satisfy the axioms of a de Morgan algebra
(more generally, of an MS-algebra of a given class other than S or B).
This provokes the question as to whether we can find, for a given sub-
variety X of MS-algebras, a distributive lattice L on which there can
be defined to within isomorphism a unique MS-algebra structure such
that (L,° ) € X. A subvariety X for which this is the case will be called

saturated.

Theorem 2. All subvarieties of MS-algebras, other than S, are satu-
rated.

Proof. We first show that the subvariety S of Stone algebras is not
satureted. Suppose that L is a distributive lattice on which there can
be defined an MS-algebra structure such that (L,° ) belongs properly to
S. Let (Xr;g) be the corresponding MS-space. We have X1, = (4;)icr
where the A; are the connected components of X;. By (IIg) every A;
has a least element a;. Moreover, not every 4; consists of a singleton,
for otherwise (L,°) € B. For a given A; that is not a singleton, say
Ajs, choose an element z;, # a;. and take X; = {a; : 4 € I} U {2;.}.
Since a;. = g(zi+) # ¢*(ziv) = z;.,we obtain an MS-algebra that does
not belong to S.

Now, for each non-trivial subvariety X, other than S, we give an
example of a distributive lattice L that can be made into an MS-algebra
in only one way with (L,”) € X. This we achieve by considering in
each case an appropriate MS-space. In all examples the space X is
connected and, except for the class B of Boolean algebras, |min X| > 2
since otherwise X; could be chosen in various ways. The black circles
correspond to the elements of X which do not belong to Xy, and to the
meet-irreducible elements of Ly other than 1.
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