ERDŐS-MORDELL INEQUALITY FOR SPACE N-GONS

P. Pech

Department of Mathematics, University of South Bohemia, Jeronýmova 10, 371 15 České Budějovice, Czech Republic

Received January 1992

AMS Subject Classification: 52 A 15, 53 A 05

Keywords: Erdős-Mordell inequality, special polygons.

Abstract: The Erdős-Mordell inequality is extended on the space closed n-gons in E^3 . The inequality holds for any point O of the convex hull of the n-gon. The equality is attained only for regular n-gons with the center O.

H. Ch. Lenhard [3] proved the following statement: Let A be a closed n-gon with vertices $A_0, A_1, \ldots, A_{n-1}$ bounding a star shaped region in the plane and let O be a point in the interior of A such that all sides of A are visible from O. Denote by R_i the distance of the points O and A_i and let r_i denote the distance of O to the line A_iA_{i+1} (where $A_n = A_0$). Then

(1)
$$\cos \frac{\pi}{n} \sum_{i=0}^{n-1} R_i \ge \sum_{i=0}^{n-1} r_i$$

holds. Equality holds only if A is a regular n-gon with center O.

The inequality (1) for n=3 is known as the Erdős-Mordell inequality. L. Fejes-Tóth [2] conjectured (1) for convex plane n-gons. Lenhard's result confirms and generalizes Fejes-Tóth's conjecture, because (1) holds even for non-convex n-gons. In the present work we will give a further generalization of (1), which is given in the following **Theorem 1.** Let A be a closed n-gon in E^3 with vertices $A_0, A_1, \ldots, A_{n-1}$ and let O be a point in the convex hull K(A) of A. Denote by

4 P. Pech

 R_i the distance of the points O and A_i and denote by r_i the distance of O to the line A_iA_{i+1} . Then inequality (1) holds. Equality in (1) is attained iff A is a plane regular n-gon and O is its center.

To prove Th. 1 we shall need the following lemma: **Lemma.** Let \mathcal{A} be a closed space n-gon in E^3 with vertices $A_0, A_1, \ldots, A_{n-1}$ and let O be a point in the convex hull $K(\mathcal{A})$ of \mathcal{A} . Writing $\varphi_i = |\langle A_i O A_{i+1}| |$ we have

(2)
$$\sum_{i=0}^{n-1} \varphi_i \ge 2\pi.$$

Proof. Our proof is based on the following statement given by I. Fáry [1]: Let \vec{u}, \vec{v} be two vectors and φ their angle. Denote by $\varphi(\sigma)$ the angle between the orthogonal projections of \vec{u} and \vec{v} in the direction σ . Then

$$\varphi = rac{1}{4\pi} \int\limits_{\Omega} \varphi(\sigma) \, d\Omega \quad \sigma \in \Omega,$$

where Ω is a unit sphere and σ its point determined by the direction σ . By applying this statement to the n-gon \mathcal{A} we get

$$\sum_{i=0}^{n-1} \varphi_i = \frac{1}{4\pi} \int_{\Omega} \sum_{i=0}^{n-1} \varphi_i(\sigma) d\Omega.$$

This equality reduces the space case to a planar one. To prove (2) it suffices to show that

$$\sum_{i=0}^{n-1} \varphi_i(\sigma) \ge 2\pi \quad \text{for all} \quad \sigma \in \Omega.$$

Let \mathcal{A}_{σ} denote the orthogonal projection of \mathcal{A} in the direction σ . From the definition of the convex hull, it follows that the point O belongs to the convex hull $K(\mathcal{A}_{\sigma})$ of \mathcal{A}_{σ} . The convex hull $K(\mathcal{A}_{\sigma})$ of \mathcal{A}_{σ} is a polygon, whose vertices form a subset of the set of vertices of \mathcal{A}_{σ} . Because of convexity of $K(\mathcal{A}_{\sigma})$, the sum of the angles between O and the vertices of $K(\mathcal{A}_{\sigma})$ equals 2π . Our assertion now readily follows. \Diamond

For the proof of Th. 1 we shall need another geometrical result, known as a discrete case of Wirtinger's inequality: Let A be a closed space n-gon in E^3 with vertices $A_0, A_1, \ldots, A_{n-1}$ and with the centroid at the origin of the coordinate system. Then

(3)
$$\sum_{k=0}^{n-1} |A_k A_{k+1}|^2 \ge 4 \sin^2 \frac{\pi}{n} \sum_{k=0}^{n-1} |A_k|^2.$$

Equality holds iff A is a plane affine-regular n-gon. Inequality (3) was

stated for plane n-gons by B. H. Neumann [4]. For a proof of the general case see [5], [6].

Proof of Th. 1. We will proceed similarly as H. Ch. Lenhard. It is more convenient to use now the notation $|\langle A_i O A_{i+1}| = 2\varphi_i$. We will show that even

(4)
$$\cos \frac{\pi}{n} \sum_{i=0}^{n-1} R_i \ge \sum_{i=0}^{n-1} \sqrt{R_i R_{i+1}} \cos \varphi_i \ge \sum_{i=0}^{n-1} r_i$$

holds. Namely,

$$|OP_i| = \frac{2R_i R_{i+1}}{R_i + R_{i+1}} \cos \varphi_i,$$

where P_i is the intersection of the bisector of the angle R_iOR_{i+1} with the side A_iA_{i+1} . The second inequality in (4) now follows from the inequality between the harmonic and geometric mean, with equality only for $R_i = R_{i+1}$.

To prove the first inequality in (4), construct the central symmetric 2n-gon \mathcal{B} with vertices $B_0, B_1, \ldots, B_{2n-1}$, with $B_{2n} = B_0$, with the centroid at the point O as the origin of the coordinate system, so that

$$|B_i| = \sqrt{R_i}$$
, $| \triangleleft B_i O B_{i+1} | = \varphi_i$, $B_{n+i} = -B_i$, $i = 0, 1, \dots, n-1$.

Inequality (2) ensures, that this construction always gives at least one 2n-gon \mathcal{B} . By applying the inequality (3) to the 2n-gon \mathcal{B} we get

(5)
$$\sum_{k=0}^{2n-1} |B_k B_{k+1}|^2 \ge 4 \sin^2 \frac{\pi}{2n} \sum_{k=0}^{2n-1} |B_k|^2,$$

which is equivalent to

$$\cos \frac{\pi}{n} \sum_{k=0}^{2n-1} |B_k|^2 \ge \sum_{k=0}^{2n-1} |B_k| \cdot |B_{k+1}| \cos \varphi_k.$$

Dividing both sides by 2, we get the left inequality in (4). Equality in (5) is attained if and only if the 2n-gon is a plane affine-regular one which, together with the condition $R_i = R_{i+1}$, $i = 0, 1, \ldots, n-1$, gives that equality in (1) is attained iff the n-gon \mathcal{A} is regular and O is its center. \Diamond

References

 FÁRY, I.: Sur la courbure totale d'une courbe gauche faisant un noed, Bull. Soc. Math. France 77 (1949), 128-138.

- [2] FEJES-TÓTH, L.: Inequalities concerning polygons and polyhedra, *Duke Math. J.* **15** (1948), 817–822.
- [3] LENHARD, H. CH.: Verallgemeinerung und Verschärfung der Erdős-Mordellschen Ungleichung für Polygone, Arch. Math. 12 (1961), 311-314.
- [4] NEUMANN, B. H.: Some remarks on polygons, J. London Math. Soc. 16 (1941), 230-245.
- [5] PECH, P.: Inequality between sides and diagonals of a space n-gon and its integral analog, Čas. pěst. mat. 115 (1990), 343-350.
- [6] SCHOENBERG, I. J.: The finite Fourier series and elementary geometry, Amer. Math. Monthly 57 (1950), 390-404.