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Abstract: The Erdés-Mordell inequality is extended on the spate closed
n-gons in E3. The inequality holds for any point O of the convex hull of the

n-gon. The equality is attained only for regular n-gons with the center O.

H. Ch. Lenhard [3] proved the following statement: Let A be a
closed n-gon with vertices Ag, A1,...,An—1 bounding a star shaped re-
gion in the plane and let O be a point in the interior of A such that all
sides of A are visible from O. Denote by R; the distance of the points
O and A; and let r; denote the distance of O to the line A;Ait1 (where
Ap, = Ag). Then '

n—1 n—1
T
(1) cos;;RiZ;ri

holds. Equality holds only if A 1s a regular n-gon with center O.

The inequality (1) for n = 3 is known as the Erdés—Mordell in-
equality. L. Fejes-Téth [2] conjectured (1) for convex plane n-gons.
Lenhard’s result confirms and generalizes Fejes-Toth’s conjecture, be-
cause (1) holds even for non-convex n-gons. In the present work we will
give a further generalization of (1), which is given in the following
Theorem 1. Let A be a closed n-gon in E® with vertices Ay, A1, - ..,
An_1 and let O be a point in the convez hull K(A) of A. Denote by
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R; the distance of the points O and A; and denote by r; the distance
of O to the line AjAiyy. Then inequality (1) holds. Equality in (1) is
attained iff A i3 a plane regular n-gon and O is its center.

To prove Th. 1 we shall need the following lemma:

Lemma. Let A be a closed space n-gon in E® with vertices Ag, Ay, ..
An—1 and let O be a point in the convez hull K(A) of A. Writing ¢; =
= |<1AiOA;11| we have

(2) Z @i > 2m .

Proof. Our proof is based on the following statement given by I. Fary
[1]: Let i, ¥ be two vectors and ¢ their angle. Denote by (o) the angle
between the orthogonal projections of i and ¥ in the direction o. Then

90=4_7r (P(U)dﬂ UEQv

Q
where §) 13 a unit sphere and o 1ts point determined by the direction o.
By applymg th_ls statement to the n- gon A we get

E% ——/Zsoz(d)dﬂ

. s =0
ThlS equality reduces the space case to a planar one. To prove (2) it
suﬂ"ices to show that

n—1

Z wi(c) > 2r forall occf.

Let A, denote the ortohogonal projection of A in the direction o. From
the definition of the convex hull, it follows that the point O belongs*
to the convex hull K (As) of As. The convex hull K(A,) of A, is
a polygon, whose vertices form a subset of the set of vertices of A,.
Because of convexity of K(A,), the sum of the angles between O and
the vertices of K(A,) equals 2r. Our assertion now readily follows. ¢

For the proof of Th. 1 we shall need another geometrical result,
known as a discrete case of Wirtinger’s inequality: Let A be a closed
space n-gon in E3 with vertices Ag, Ay, ..., Apn_; and with the centroid
at the origin of the coordinate system. Then

i . n—1 n—1
(3) | Y Ak Aral? > 4sin® T 4,
n

Equality hbld.s’ iff Ais a plane affine-regular n-gon. Inequality (3) was
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stated for plane n-gons by B. H. Neumann [4]. For a proof of the general
case see [5], [6].
Proof of Th. 1. We will proceed similarly as H. Ch. Lenhard. It is
more convenient to use now the notation |[<A;0A; 11| = 2p;. We will
show that even

n-—1 n-—1 n—1
s
(4) cos — E R; > Z vV Ri;Riy1cosp; > Z T
=0 1=0 1=0
holds. Namely,
2R;R;
oy = 2FiBe
R+ Rip

where P; is the intersection of the bisector of the angle R;OR;; with
the side A;A;y;. The second inequality in (4) now follows from the
inequality between the harmonic and geometric mean, with equality
only for R; = Ri41.

To prove the first inequality in (4), construct the central symmet-
ric 2n-gon B with vertices By, By, ..., Byp—1, with By, = By, with the
centroid at the point O as the origin of the coordinate system, so that

|Bi!=\/Ri |<IBZ‘OBH_11:§0,', Bn+i=‘“Bi, i:O,l,...,n~1.

Inequality (2) ensures, that this construction always gives at least one
2n-gon B. By applying the inequality (3) to the 2n-gon B we get

cos @; ,

2n—1 T 2n~1
2 2 2
(5) Z |Bkak+1| > 4sin o Z |Bi|*,
k=0 k=0
which is equivalent to
o 2ol 2n—1
— Bil* > Bi|-|B :
COSn k}_:o |Bx|* > ; |Be| - |Bi+1] cos o

Dividing both sides by 2, we get the left inequality in (4). Equality in
(5) is attained if and only if the 2n-gon is a plane affine-regular one
which, together with the condition R; = R;41,2=0,1,...,n—1, gives
that equality in (1) is attained iff the n-gon A is regular and O is its
center.
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