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Abstract: We show how a number of well-known results follow from a char-

acterization of torsion-free modules.

In this note we bring to light a result which seems to be lying
beneath the surface of a number of well known theorems and, once
stated, from which these theorems may be readily derived. To wit, let
R be a Noetherian ring and M a finitely generated R-module admitting
a finite free resolutions

F:0—F, 2 2 S M —.
We observe that M is torsion-free if and only if the ideal of minors
associated to the ith map in the resolution has depth greater than or
equal to ¢+ 1. The similarity with this statement and the one appearing
in the celebrated exactness theorem of Buchsbaum and Eisenbud [3] is
not coincidental. The result is essentially equivalent to their theorem.
However, it seems that bringing it to the fore allows one to see precisely
how the conditions of their theorem yield exactness. The result also
serves as the inductive step in an analogous characterization for M to be
a kth syzygy. Using this result, we can derive a theorem of Auslander—
Bridger appearing in [1] and extend a result of Bruns concerning the
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structure of kth syzygies to non-Cohen-Macaulay local rings. Finally,
though the proposition below doesn’t seem to explicitly appear in any of
the standard references on the subject, undoubtedly it is not new. OQur
primary purpose here is to demonstrate the central place it occupies.

Let F be given as above i.e., each F} is a free R-module of finite
rank and ¢; is a rank (Fi—1) x rank (F;) matrix with entries in R. The
rank of ¢; is the size of the largest non-vanishing minor of ¢; and we
will write I(¢;) for the ideal generated by minors of size rank (¢;). If
rank (¢;) = 0, take I(¢;) = R. With this we may state the result as
follows.

Proposition. Let M and F be as above. Then M i3 a torsion-free
R-module if and only if depth (I(4;)) > i+ 1 fori=1,...,n.

Proof. We begin the proof with a couple of remarks. First, recall that
for M as above, M 1is torsion-free if and only if every prime ideal associ-
ated to M is an associated prime of R. Furthermore, as the hypotheses
and conclusions of the proposition are preserved under localization,
we are free to localize at a prime ideal at any point in the argument.
Finally, recall that if R is local and the projective dimension of M
(denoted. p.d.g(M)) is finite, then the Auslander-Buchsbaum formula
states that depth (M) + p.d.r(M) = depth (R) (see [2]).

Now, suppose that M is torsion-free. Let i be the largest integer
for which depth (I(¢;)) < i. We seek a contradiction. Select a prime
ideal P containing I(¢;) such that depth(Rp) < i. It follows that
I(¢;) € P, for j > i. Therefore, upon localizing at P, the sequence F
splits at F;. Localizing at P and changing notation, we have I(¢;4+1) =
=R, I(¢;) # R and depth(R) < i. Thus F; = image(¢i+1) ® F; and
we may truncate F to obtain an exact sequence

F.0—F 2 . 2 m oMo

Thus p.d.g(M) <i. If p.d.g(M) < 1, image(¢;) is projective (free) for
some j < i — 1, so the truncated sequence splits to the left of F; and
it follows that I(¢;) = R, which isn’t so. Thus p.d.g(M) = i. Since
depth (R) < ¢, the Auslander-Buchsbaum implies i = depth(R) =
= p.d.g(M). Consequently depth (M) = 0. Therefore P, the maximal
ideal of R, is an associated prime of M, and hence R, since M is torsion-
free. Thus ¢ = depth (R) = 0 and this is the contradiction we sought.

- Conversely, suppose the depth condition holds. Let P be an as-
sociated prime of M. We must show that P is an associated prime of
R. We may assume that R is a local ring and P is its maximal ideal.
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Since depth (M) = 0, depth(R) < n (by the Auslander-Buchsbaum
formula). Moreover, as depth(I(¢.)) > n + 1, we must have I(¢n) =
= R. Thus the sequence F splits at F},_;, so we may truncate as before
to obtain
! f d’n—l ¢2 ¢1
F:0—F, _,— - —Fh—F—M-—0.
By induction on n (the case n = 0 is trivial), M is torsion-free, so P is
_associated to R, as desired. {
Corollary A (Buchsbaum-Eisenbud). Let R be a Noetherian domain
and
F:0-—F, %N 25 p 2Eo

a complex of finitely generated free R-modules. Then F is acyclic
(i.e., ker (¢;) = image(¢it1) for i > 0) if and only if: (i) rank(s;) +
+rank (¢;y1) = rank (F;) and (ii) depth(I(¢;)) > ¢, fori=1,... ,n.
Proof. Let K denote the quotient field of R and suppose the conditions
hold: We proceed by induction on n. If n = 1, the complex is exact by
McCoy’s theorem. Assume n > 1. Condition (i) implies that F @ K is
an acyclic complex of vector spaces. Hence the ith homology module
is a torsion module, for ¢ > 0. In particular, H1(F) is torsion. On the
other hand, by induction H;(F) = 0 for < = 2,... ,n. Thus F resolves
the cokernel of ¢,. By the Prop., condition (ii) implies that the cokernel
of ¢, is torsion-free. Hence its submodule H;(F') is torsion-free. Thus
H,(F) is both torsion and torsion-free, and therefore zero. That is, F
is acyclic. Conversely, if F is acyclic, then F ® K is an acyclic complex
of vectors spaces, so (i) holds. Clearly depth(I(¢1)) > 1. Moreover,

the cokernel of @, is torsion-free, so (ii) holds by the proposition. {
Remark. Of course the Buchsbaum-Eisenbud theorem holds for any

Noetherian ring, but we have presented the domain case to exhibit more
clearly how conditions (i) and (ii) determine exactness. However, essen-
tially the same proof works in general (with the aid of some additional
linear algebra). For example, one can show that the conditions (i) and
depth (I(¢;)) > 1 hold if and only if the complex F ® K is split exact,
where K now denotes the total quotient ring of R. Hence if (i) and (ii)
hold, H;(F) is torsion on the one hand and torsion-free on the other
(by the Prop., as in the proof above) and therefore zero.

Corollary B. Let R be a Noetherian ring and M a finitely generated

R-module. Then M is the kth syzygy in o finite free resolution of an R-
module N if and only if M admits a finite free resolution F (as before)
satisfying depth (I(¢;)) > ¢+ k fori=1,...,n.
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Proof. Suppose that M is the kth syzygy in a finite free resolution of
the R-module N. Then M = image(tr), where 1 is the kth map in the
resolution of N. We may take for F, the resolution of M, that portion
of the resolution for N whose first map is ¥g41. That depth(I(¢;)) >
> 1+ k forz = 1,...,n now follows from the Buchsbaum-Eisenbud
theorem.

Conversely, suppose M admits a finite free resolution F satisfying
the required depth condition. We proceed by induction on k. When k =
=1, M is torsion-free (by the Prop.) and it is well known that M can be
embedded in a free module (when R is not a domain, this requires that
M have finite projective dimension, which we are assuming). Therefore
M is the first syzygy in a resolution of the cokernel of this embedding.
Now suppose that k > 1. Let fi,..., f, generate Hom(M, R) and take
u: M — R™ to be the so-called universal pushforward (see [6]). In other
words, for each m € M, u(m) is the column vector whose jth entry is
fi (m) Let C’ = cokernel(u) Using * to denote R duals, we have exact
sequences _

. 0—M-—R"—(C—0

0 — C* — (R")* — M* —0

'Where exactneSS in the first sequence follows because M is torsion-free,
‘and exactness in the second sequence follows from the definition of
universal pushforward. Let @ C R be a prime ideal with depth (Rg) <
< k. Then I(¢1) € @, so Mg is a free Rg module. Therefore Mg is
free, so the second sequence splits over Rg. Therefore the dual of the
second sequence (i.e., the “double dual”) splits over Rq. Since My is
free this shows that C’Q = C’** and that the first sequence splits over
'RQ It follows that if we let ¢0 denote the composition Fy — M — R,
then depth (I (gbo)) > k + 1 and C admits a resolution satisfying the
.given depth condition for £ — 1. By induction C is a (k — 1)st syzygy
of the required form, so M is a kth syzygy, as desired. ¢
Corollary C (Auslander-Bridger). Let R be a local ring satisfying
Serre’s condition Sy and M a finitely generated R-module having fi-
nite projective dimension. Then M 1s a kth syzygy if and only iof M
- satisfies Sk (k> 1).
Proof. Recall that a finitely generated R-module N satisfies S} if for all
prime ideals P in the support of N, depth g, (Np) > min(k, dim(Rp)).
Now, let M satisfy Sg and F be a projective resolution. We want to see
that F satisfies the depth condition of Cor. B. As in the proof of the
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Prop., we let ¢ be the largest integer for which depth (I(¢;)) <i+k—1
and we select a prime ideal P containing I(¢;) with depth (Rp) <1+
+k—1. If we localize at P, then p.d.(Mp) =i > 0. Thus depth (Mp) <
< k — 1, by the Auslander—Buchsbaum formula. Since M satisfies Sg,
this implies depth (Mp) = depth(Rp). Thus Mp is free, so i = 0,
contradiction. A
Conversely, suppose that M is a kth syzygy and F is a resolution
of M. We may assume that F' satisfies the depth condition of Cor. B.
Let P C R be prime ideal. If dim(Rp) < k, then I(¢;) € P, so Mp is
Rp-free. Thus depth (Mp) = depth(Rp) = dim(Rp), since R satisfies
Si. Hdim(Rp) > k+1, depth (Rp) = k+1, for some :z > 0, as R satisfies
Sk. Thus I($it1) € P. Hence, p.d.(Mp) <1, so depth (Mp) > k. Thus
M satisfies Si. ‘
Remark. In [4] Bruns proves the following result which shows how to
construct kth syzygies of rank k from kth syzygies having rank greater
than k. Let (R,m) be a Cohen-Macaulay local ring and M a finitely
generated R-module having finite projective dimension. Suppose that
M is a kth syzygy having rank k+s, for s > 1. Then there exists a free
submodule F' C M such that FNmM = mF, rank (F) = s, and M/F
is a kth syzygy. In the corollary below, we use Cor. B to extend Bruns’
theorem to non-Cohen—Macaulay rings. In order to do this, we need to
observe that choosing basic elements on subsets of Spec(R) determined
by depth conditions can be done analogously to the more standard
method of choosing basic elements on subsets of Spec(R) determined
by height conditions. We follow the treatment given in [6] (which is
based upon [4]).
Basic Element Lemma. Let (R,m) be a local ring and M C R™ be
a finitely generated R-module with well-defined rank > k + 1. Suppose
that Mp 13 a free summand of (R™)p for all prime ideals P satisfying
depth(Rp) < k. Then there exists a minimal generator z € M such
that = 1s basic at P for all P satisfying depth (Rp) < k.
Proof. We first recall that a submodule M' C M is said to be t-
fold basic at P if at least ¢ minimal generators for Mp can be chosen
from the image of M'. The proof now follows along the same lines
as that of Cor. 2.6 in [6], once we verify the following statement. Let
{z1,...,25s} be a subset of a set of generators for M such that M’,
the submodule they generate, is ¢-fold basic at all primes P satisfy-
ing depth (Rp) < j — 1. Then M' is t-fold basic at all but finitely
many primes P satisfying depth(Rp) = j. To see this, suppose that
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{#1,... ,Z4,... ;Tm} is a set of generators for M and write A for the
n X m matrix whose columns correspond to the z;. Let A’ denote the
corresponding submatrix associated to M’. Then for any prime ideal
P such that Mp is a summand of (R")p, M’ is t-fold basic at P if
and only if I;(A’), the ideal of ¢ X ¢ minors of A, is not contained
in P. Now, since M' is t-fold basic at all P satisfying depth (Rp) <
< Jj—1, depth(L(A")) > j. If depth(L(A")) > j + 1, the statement
follows. Otherwise, letting ay, ... ,a; be a maximal regular sequence
in I;(A’), it follows that I;(A') C P and depth (Rp) = j if and only
if P € Ass(R/(a1,...,a;)R). Since Ass(R/(ay,...a;)R) is finite, the
statement follows in this case as well. ¢

Corollary D. Let (R,m) be a local ring and M a finitely generated
R-module with finite projective dimension. Suppose that M is a kth
syzygy having rank k + s, for s > 1. Then there exists a free submodule
F C M such that F N mM = mF, rank(F) = s, and M/F is a kth
3yzygy.

Proof. We follow the path laid out in Bruns’ original theorem. Let F as
above be a projective resolution of M. We may assume that F satisfies
the depth condition of Cor. B. Since depth (I(¢;)) > k + 1, Mp is free
for all prime ideals P satisfying depth(Rp) < k. As in the proof of
Cor. B, we may use the universal pushforward of M to further assume
that M C R™ for some n, and Mp is a summand of (R™)p, whenever
Mp is free. We now employ the Basic Element Lemma to find a minimal
generator z € M which is basic at all P satisfying depth (Rp)<k.In
particular, Rz is a free submodule of M and without loss of generality
we may assume that z is the “first” generator of M. It follows that a
minimal resolution for M/Rz has the form

. F':O——)Fnﬁ)---ﬁ)Fl—HFé——)M/Rz——)O

where ¢) is the matrix obtained from ¢; by deleting the first row and
F} is the free R-module on one less generator than Fy. Furthermore,
the choice of z implies that (M/Rz)p is free for all primes P satisfying
depth(Rp) < k, so depth(I(¢})) > k + 1. Hence the resolution for
M/ Rz satisfies the depth condition of Cor. B. That is, M/Rz is a kth
syzygy. The process may be repeated if M/Rz has rank greater than
k. O

Remark. Unfortunately, Cor. B does not shed a lot of light on the
Evans-Griffith Syzygy Theorem (see [6]), which states that kth Syzy-
gies with finite projective dimension have rank > k (when the ring R




Torsion-free modules and syzygies 13

contains a field). Using Cor. B in a manner analogous to its use in
Cor. D, one can easily see that it suffices to find a minimal generator z
whose order ideal has depth > k. For then M/Rz would be a (k — 1)st
syzygy, and induction would yield the result. (For rings containing a
field such z exists.) This is exactly the original line of thought followed
by Evans and Griffith. The point of Cor. B is that one need not have
any standing assumption on the ring (like the Cohen—Macaulay prop-
erty) as long as one replaces height by depth in a characterization of
kth syzygies. (See also [7] or [5], where for rings containing a field, the
Evans—Griffith estimates on the ranks of syzygies are improved.)
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