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Abstract: In this paper the existence of the solution of a three-point bound-
ary value problem belonging to a system of nonlinear differential equations
d— = f(t,z), =z, f€R™, Az(0)+ Ajz(t;) + Cz(T) = d

is investigated by using a new version of the numerical-analytic methods. The
approximate solution is determined and an estimation for the error is given.

1. Introduction

In the literature different numerical, analytic and functional-ana-
lytic methods are known to investigate both the two- and the n-point
boundary value problems depending on the type of the equation and
the boundary value condition ([1], [4], [5]).

When the existence of the solution can be supposed some nu-
merical methods aim mainly at the approximate determination of the

solution ([2], [6]).
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The analytic methods (i.e. those of the continuous closed form)
based mostly upon various series expansions are generally used for qual-
itative investigations (uniqueness, stability) ([3], [10], [11], [12]).

When using functional analytic methods the given boundary value
problems are substituted by a suitably chosen equivalent operator equa-
tion ([4], [12]). For certain three-point boundary value problems — see
papers ([7], [8]) — this operator equation is an integral equation, which
is' set up by using a suitably chosen Green-function. These integral
equations are generally investigated by using contraction and fix-point
theorems.

The so-called numerical-analytic methods which have been devel-
oped in the last some years [9] give the opportunity of investigating the
two most important approach for solving the boundary value problems
— the existence and the approximate determination of the solution —
simultaneously.

These methods are fairly widely used (see monograph [9]), mostly
for handling periodic or two-point nonlinear boundary value problems.

When the boundary value problems are of more general nature

(three- or n-point b.v. problems) and, in addition, even degenerate ma-
trices are contained the evaluation and the mathematical foundation
of numerical analytic methods based on successive approximations are
facing several difficulties. In this connection we mention the determina-
tion of the successive approximation satisfying the boundary conditions
and the proof of the uniform convergence, the determination of the nec-
essary and sufficient conditions ensuring the existence based upon the
features of the approximate solutions. '

In this paper both the existence of the solution and the approx-
imate solution of a three-point boundary value problem belonging to
a system of nonlinear differential equations are investigated by using a
numerical-analytic method. It is worth mentioning that the earlier ver-
sions of the numerical-analytic methods are not suitable for solving our
problem due to the singularity of the matrices in the boundary value
conditions.

Let a nonlinear differential equation be given

(1) z=f(,z), = feR* te€[0,T],
with a three-point linear boundary value condition
(2) Az(0)+ A1z(t1) + Cz(T) =d

where z, f,d are points of the n-dimensional Euclidean space R™ while
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A, A, C are constant matrices of type n x n and #; € (0,T'). Matrices
A, Ay, C are allowed to be singular, but it is supposed that there exist
constants ky and ky (ky # ko) satisfying

(3) @th+hAr+pr+%@2—hﬂo]¢a

It will be shown that a {z,(¢,z¢)} sequence of functions depending on
the parameter =, can be constructed on the set of continuous functions
satisfying the boundary value conditions (2) such that for certain value
of the parameter z, the sequence of functions uniformly converges and
its limit is the solution of the nonlinear boundary value problem (1),
(2). The existence of the solution for the underlying problem is proved
by using the properties of the approximate solution. An estimation for
the error of the approximate solution is given.

2. Construction of successive approximations

Let D denote a closed, connected domain in R™. Let us suppose
that the domain of definition of the right hand side function f(¢,z) in
Eq. (1) fulfills

4) (t,z) € [0,T] x D

and the following conditions hold
(i) f(t,z) is continuous in its domain of definition (4);
(ii) f(t,z) is bounded by the vector M

|f(t,2)l < M, (t,z) €[0,T] x D,

and f(t,z) satisfies the Lipschitz-condition in the variable z with ma-
trix K: ‘

(5) |f(¢,2") — f(t,2")] < K|z’ — 2",
where the vector |f(¢,z)] is

[f(t2)l = (11t @), - -, [ falt, 2)]),

and both the vector M = (M;,M,,... ,M,) and the matrix K =
= {Kij, 1,7 =1,... ,n} contain only non-negative constant elements.

In relations |f(¢, )] < M and (5) the inequalities are meant com-
ponentwise. Those boundary value problems (1), (2) will be investi-
gated, for which the parameters M, K, A, A;, C, d, ki, k; and the
domain of definition (4) satisfy condition (3) and the following condi-
tions:
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1. The set Dg, the collection of those points zo € R™ belonging
— together with their F-neighbourhood — to the set D, is non-empty

(6) Dp # 0,
where B(zo) = LM + Bi(z0),
[‘31(5130) — [lk1!+ |QC_2_~—.t.lkli

where H = D™', D = k1A + ko A1 + [k1 + £(k2 — k1)]C. (The $-
neighbourhood of the point z is the following {z: z € R™, |z — 2| <
< B}.)

2. The highest eigenvalue A(Q) for the matrix @ = Z(K + @) is
less than unity

(7) A@) <1,

where

H [lH(d‘<A+A1 +C)zo)l + %lHAllM],

G = [k + ](—kl’;ﬂﬂ |HA|K.

A sequence of functions {z,,(t,z0)} whose elements satisfy the bound-
ary value conditions (2) in every point z¢ € D is constructed.
Let us consider the functions determined by the following formula:

3 1 T
Tm(t,To) = :co—l—/ [f(t,:vm_l(t,:co))——f/ f(s,2m—1(s,z0))ds|dt+
8) oT 0
+a [le—I— t_(k2 — kl)t], m=12,...; zo(t,z0) = o,
1

where o = (01, ..., Ton) is a parameter of dimension n, a = (ay, ..., ap)
is an unknown vector chosen such that the functions (8) satisfy the
boundary value conditions (2) for every point zo € Dg. Substituting
the functions (8) into the boundary value conditions (2) the following
system of linear algebraic equations is obtained

1
(9) Da = Td(mo,xm_l),

where
Cl(il!o,:l!m_l) =d— (A + Al + C)il)o—

(10) —Al/otl[f(ﬂ Zmr(t, 70)) - %/on(s, Zm—1(s,0))ds | dt.
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From (9) we get a = #Hd(zo,Zm-1), and from (8) we obtain the
sequence of functions we wanted to get

mm(t,mﬂ) = ZO(:EOamm-—l)-i'
t T
+/0 [f(t,zm_l(t,:ro)) - %/0 f(s,a:m_l(s,z?))ds dt+

(11) :
+t_(k2 — kl)Hd(l'o, xm—l),
1

zo(t,xo) = zg, m=1,2,...
where 2zo(zg,Tm-1) = zo + k1Hd(z0,2m-1), and d(zg,Tm—1) can be
expressed from (10).
The convergence of the above constructed functions is stated in

Theorem 1. Let the function f(t,z) in Eq. (1) be continuous in the
domain (4) and satisfy the conditions (5). Furthermore, if the param-
eters of the boundary value problem (1), (2) satisfy the conditions (6),
(7) then

(i) the functions of sequence (11) satisfy the boundary value con-
ditions (2) for each zo € Dg;

(i1) lm z,(t,z0) = 2*(¢t, o), where the limit function is a solu-
m-—+00

tion for the integral equation

z(t) = zo(zo,z)+

D [ rteeo) - & [ 1o )i + Lt - a0

where

20(1,'0,56) =zy + le[d — (A-I— Al + C)EO—

_ A, /0 b [f(t,m(t))——% /0 ' f(s,m(s))ds] dt];

(iii) z*(0,z0) = 2o (:co,a:*(t,aco)) and the limit function z*(¢, zo)
satisfies the boundary value conditions (2) i.e. z* is a solution for the
perturbed boundary value problem

& = f(t,z) + A(zo)
(13) Az(0) + Arz(t:) + Cx(T) = d,
where
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1 . 1 (T .
Alzy) = EUCZ — k1)Hd(z9, V(t,mo)) - T/ f(t,:c (t,a:o))dt,
0

d(zo, (1, z0)) = d— (A + A + C)zo—
4, /Otl [f(t,xf(t,mo)) ——%/OTf(s,z*(s,xg))ds] dt:

(iv) the deviation of functions z*(t,zo) and z,(t, o) is governed
by the inequality :
(14) 2" (t,20) = zm(t, 20)| < Q™ (E — Q)" B(20).
Proof. It will be shown that in the space C(0,T) of continuous vector
functions the sequence of functions given by (11) is a Cauchy-sequence
and therefore it is uniformly convergent. First we prove that zo € Dy

implies &, (t,z0) € D.for each element of the sequence.
From (11) we get

1

/Ot [f(t,:to(t,lvo)) -z /OTf(s,xo(s,xo)’)ds] dt’+

T
| = k)| [Hd(w0,20)| + [k | Hdl(0, 20)].
Using Lemma 2.1 in [9, p. 31] it is obvious that if f(¢) € C[0,T], then

[Tro-3 [ sow] ] < (1-2) [+ £ [N <
< a(t) Dax, lF(,

llil(t,l'o) - l'o' S

where a(t) = 2t(1 — %), a1 (t)] < L. Thus
[21(t,20) — 20| < ()M + [| (ks — k)| + Il | B (o, 20)].
1

Furthermore, from (10)
|[Hd(z0,z0)| <

11 1 T
< |H(d—(A+A1+C')m0)|+lHA1/ [f(t,mo)—T/ f(s,:vo)ds]dt' <
0 0

t T
5|H(d—(A+A1+C’)a:O)|+|HA1|/O [f(t,:co)—-lf/o f(s,:co)ds]dtl,
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T
|Hd(zo, 20)| < [|H(d — (A+ A1+ C)ao)| + §|HA1|M]
therefore
T
(15) Iml(taxo)—rol < 2M+ﬂ1($0),

and z1(t,z0) € D when z, € Dy.
In a similar way, using induction we obtain

T
Izm(t7z0) - 1’0' < EM +,51(370),

that is z,(t,z0) € D, when z¢ € Djp.
We prove that {z,(t,z0)} is really a Cauchy-sequence. Let us
consider the following difference:

zo(t, zo) — z1(t, 20) = /ﬁt{ (t,z1(t, zo))—l/ f(s,z1(s, xg))ds dt—

_/Ot [f(t,zo(t,mo)) —%/OTf(s,:co(s,xo))ds]dt+
+%(k2—k1)H[—A1 /Otl [f(t,xl(t,a:o))—%/(;Tf(s,xl(s,wg))ds]dt+

4, /0“ {f(t,zo(t,xo)) ——%,—/OTf(s,:co(s,xo))ds]dt]+

+k‘1H [d((l)o, 131) — d(mo, .’EQ)] .
Rearranging and using Lemma 2.1 of [9, p. 31]

lzo(t, o) — z1(t, z0)| < 1—— / |f t , z1(t, .’EO)) (t zo(t, xo))|dt+
—/ |7 (t,21(¢, 20)) — £ (£, zo (%, 70)) ;dt+[|k |+\MH|H‘A1|-
[ 1 - / | (t,21(t, 20)) — f(¢, zo(t, o)) |dE+

-{j% tﬁf(t,zl(t,:co))— (t zo(t, o)) |dt] [Ik‘ ]+l-—kl)zthA1[K’
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T ,
[(1 _ %) /o (@1 ()M + By (wo))dt + % /t (aa ()M + ﬁ1(xo))dt] +

t T
+K[(1- %) /0 (aa())M + (o)) dt + /t (ca ()M + ﬁl(mo))dt] .
Applying Lemma 2.2 of [9, p. 31] we get
lmz(t, 1‘0') — $1(t, $0)| S K[O(g(t)M + al(t)ﬂl (560)]-{—

+G[oa(t)M + o1 (t1)B1(20)]

where

ay(t) < %al(t) and a;(t) < g,

consequently

| 0T T

(22(t, 20)—21 (¢, 20)| < K [§M+ﬂl(z0)]a1(t)+G[§M+ﬂ1(xo)] a(t1),
thus : '

(16) |z2(t, 20) — 21 (2, o) S Q@(fﬂo),
with o C '

Q=G 4Gl Bleo) = TH -+ fr(zo).
Equality ( 1 1) 1mmed1 ately gives

Tmt1(t, To)—2Zm(t, o) = — [kri—i(kz-—h)] HA, /Otl [[f(t,:cm(t,xo))——

f(t Tm-1(t, :co))] 1/ [f(,s Tm(s, :co)) f(s,:cm_l(s,zo))]ds]dt-l—

1

/[[f(t T, 20)) — F (b Tmor(t,70))] — T»/OT[f(s,a:m(s,zo))_

~f(s,2m_1(s,z0))] ds] dt

and

|em41(t, 20) ~Zm(t, 20)| < G[ -7 / |#m (£ 20) = @m—1(t; 20)|dt+
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(17) t—l-/:lfb‘m(t,xo); -’Bm—l(t,ﬂ:o)|dt]+

+K [(1 - = / Imm(t o) — Tm—1(t, mo)ldt-I-
_/ |zm(t,20) — Tm-1 (2, mo)]dt]

Using induction and (15) and (16) it can be shown that

(18) |Zm1(t20) — 2m(t, 20)| < Q™ B(20),
supposing the validity of inequality
(19) |Zm(t,20) — Tm_1(t,70)| < Q™' B(z0).

In fact, using inequalities (17) and (19) we get
t\ [
|2t 1(t, 30) — Tm(t, 30)| < G[(l - %) / Q™ B(zo)dt+
‘ 0

+’% Qm 1ﬁ(x0)dt} +A[ 1—— / Q™! B(zo)dt+

11

23

-|—%/tTQ’"‘1ﬁ(mo)dt] GQ™ 1 4( xo)[ 1——- / dt+t1/ dt]+

+I{Qm“1ﬂ(xo)[(1—— /dt+—/ dt]

= Q" B(z0) [Gau(t1) + Kaa(t)] Q™ 'B(20) [§(G+I&’)] =Q@"B(z0).

Introducing the notation
Fmt1(t) = |Zmt1(t, 20) — 2m (2, 20)|
and using (18),

J

(20)  |Zmas(tT0) = Tm(t, o) <D rmiilt) < QT Z Q*B(=0)-

i=1
From (7) we get

ZQ’ < ZQ’ (E-Q)™", lim Q" —0,

where E is the unit matrix. Hence from (20) one can easily get that
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{zm(t,z0)} is a Cauchy-sequence, therefore it uniformly converges to a
continuous limit function z*(¢,z¢):

im z,(t,z0) = z*(¢,20).
m-—00

It is evident that taking the limit (m — oo) in (11) the limit
function z*(¢,z¢) is a solution of the integral equation (12). Since all
the elements of sequences (11) satisfy the boundary-value conditions
(2), therefore so does the limit function too.

From (12) it is easily seen that z*(0,z0) = zo(z0,z*(¢,z0)) and
z*(t,z¢) is a solution of the perturbed boundary-value problem (13),
which is equivalent to the integral equation (12).

It is easy to see that taking the (j — oo) limit in (20) the in-
equality (14) holds for the deviation of the limit function from its mtt
iteration. {

3. Some properties of the limit function

It is demonstrated how the right-hand side of the system of differ-
ential equations can be modified in such a way that the solution of the
Cauchy-problem belonging to the newly constructed equation satisfies
the given boundary value condition.

Theorem 2. If the conditions of Th. 1 are satisfied then in an arbitrary
pownt zo € Dg a unique requlating parameter pn = (p1,... ,un) of the
form

T
(21) p= %(kz — k1) Hd(zo,2*(t,z0)) — %/0 f(t,z*(t,z0))dt,

can be constructed, where z*(t,z¢) 1s the limit function of the sequence
of functions {zn(t,z0)} given by (11). Under these conditions the so-
lution = = z(t) = z*(¢, o) of the Cauchy-problem

(22) i=fo)+u  a(0)= z(z)
Zo(.’llo) = Zp (:Eo,:l,'*(t,xo)) = Tq + le [d — (A + A1 + C)CIZ()—

1 T

— A /Ot1 [f(t,:c*(t,:co))—T i f(s,:c*(s,:co))ds]dt]

satisfies the boundary value conditions (2) i.e. it is a solution of the
perturbed boundary value problem (13) with A(zq) = p.
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Proof. Th. 1 implies that the function z(t) = z*(¢, zo) is a solution for
both the integral equation (12) and the Cauchy-problem

i = f(t,z) + le(k2 — k1) Hd(z, 5 (t, 70)) —

T
_% [) f(t, z*(t, :co))dt,

z(0)=z¢(zo) =20 (xg,w*(t,mo)) =zo+ki H [d—(A+A1 +C)zo—

—A; " f(t,a:*(t,xo))—% Tf(s,x*(s,:co))ds dt
Al |

and, in addition, z*(¢,z,) satisfies the boundary value conditions (2).
This means that we have found the parameter u of the form (21) for
which the function z(t) = z*(¢,z¢) is a solution of the initial value
problem (23). It can be shown that this parameter value is unique,
since for any other value of the parameter p (not of the form (21))
z* is a solution of the Cauchy-problem (22) but does not satisfy the
boundary conditions (2).

Let us suppose that the statement above is not true. Then there
exist two such values y', p", p' # p" that the solutions of the Cauchy-
problem (22) z(t, zo, ') and z(t, zo, ") with g = p' and p = p"' satisfy
even the boundary value conditions (2). Then using (12) the following
identity for the difference of these solutions is obtained

2(t, 70, ") — 2(t, 3o, ') = /0 {[f(t,m(t,zo,,u”)) (2t 20, 1))]

1 T
T ; [f(37$(8,1!0,,u”)) —f(s,x(s,:cg,y'))]ds dt-+

(23)

+%(k2 — k) Hd(zg,z(t,u'")) — %(kz — ki) Hd(zo,z(t, pn"))—
—kH [Al/o 1 [(f(t,x(t,:co,/.z")) — f(t,:v(t,:co,,u')))——

-7/ (7,00, 20,4) — f(S,x(s,wo,u’)))ds] dt].

Supposing |z(t, zg, ") — z(¢, 2o, p#')| = r(t) and using Lemma 2.1 of [9,
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p- 31],
r(t) < 1{[(1 - %) [r(s)ds + %/tTr(s)ds] + |§(k2 — k) |14 ]
| [ 06009 = 0,500, 200) = 3 [ (505200,
[ [(tsatts 0~
1

etz ) = 3 [ (500,00 0,200 s ] <
< [t [E 2 agae [ (1= 2) [ rcran+ 2 [ rcwa s
R (Y S |
t<6](i-2) [“rae B [ o]+
’+K[(1 -7 r(t)dt + % / Tr(t)dt]- |

Let |r(¢)lo = (sup [ri(t)],... ,sup |rn(t)]). We have
1 i

—f(s,z(s, zo, ,u')))ds] dt‘ + |k H||A4]

r(t) < [Gal(tl) + Kozl(t)] Ir(t)]o < Qlr(®)lo,

r(t)‘ga[p— / QIr(lodt + 2= er(t)|0dt]

+K[(1—%)/0 Q|r(t)|odt+—;—,/t Q|r(t)}odt] <

< Q[Gay(tr) + Kay(t)]|r(®)|o < @*|r(t)lo, - - -
r(t) < Q"[r(t)lo, ie. [r(t)lo < Q™Ir(t)lo.

Since all the eigenvalues of the matrix @ are within the circle of
unit radius, therefore the last inequality holds only if |r(¢)jp = 0, i.e.
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p' = p'. This is a contradiction, thus there exists only one parameter
value p. ¢

The following statement gives a necessary and sufficient condition
for the existence of the solution of the boundary value problem (1), (2).
Theorem 3. Let us consider the initial value problem

T = f(taw)
(24) 2(0) = 2% + ki H [d —(A+ Ay + C)zt—

—Ay Otl [f(t z*(t, z8)) — Tfo (s,m*(s,za‘))ds]dt]

connected to the given differential equation. If the conditions of Th. 1
are fulfilled, then a solution of (24) z = z*(¢) 13 a solution of the original
boundary value problem (1), (2) if and only if the determining function
A(zg) assumes the value zero at point z§:

T
(25) A(w(’;):%(kz—kl)ﬂd(xg,w*(t,m;‘)‘))—-% /0 £t (¢, 23))dt =0,

where z*(t, z§) is the limit function of the sequence of function zm (¢, z}).
In this case z*(t) = z*(t, ) and the deviation of z*(t) from its (¢, z5)
mth approzimation is determined by inequality (14).

Proof. Since the function z*(t,z0) is a solution of the Cauchy-initial
value problem (23) and satisfies the boundary-value conditions (2),
therefore if inequality (25) holds, then the problems (24) and (23) are
equivalent at value o = z§. In such a way we proved that (25) is a
sufficient condition.

The necessity of the condition (25) is a consequence of the fact
that if z = 2*(¢) is a solution of the boundary value problem (1), (2)
with the initial value

2°(0) = 2% + ky H [d —(A+ A+ O)al — 4y /0 1 {f(t,:c*(t,a:g))—

_% /OT f(s,z*(s,xa‘))ds} dt],

then the solution z = z(t,z}, u) of the Cauchy-initial value problem
satisfies the initial value conditions (2) exactly at y = A(z§) = 0. Then
equality z(t, z§, #) = z*(¢) holds and according to Th. 2 the parameter
p = A(z}) = 0 is unique. Thus z*(t) = z*(¢,z}) and the following
inequality holds
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|2*() = zm(t, 25)| < Q™(E — Q)" B(z5). 0
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